JOURNAL OF LABELLED COMPOUNDS AND RADIOPHARMACEUTICALS J Label Compd Radiopharm 2006; 49: 101-108. Published online in Wiley InterScience (www.interscience.wiley.com), DOI: 10.1002/jlcr.1054 #### Research Article # ¹⁸F-glycosylation using Koenigs-Knorr conditions: a comparative study Simone Maschauer, Torsten Kuwert and Olaf Prante* Laboratory of Molecular Imaging, Clinic of Nuclear Medicine, Friedrich-Alexander University, Schwabachanlage 6, D-91054 Erlangen, Germany ## **Summary** We compared two ^{18}F -glycosylation methods, the BF_3 -mediated ^{18}F -glycosylation versus the newly developed AgOTf-activated ^{18}F -glycosylation procedure. The AgOTf-activated ^{18}F -glycosylation makes use of 3,4,6-tri-O-acetyl-2-deoxy-2-[^{18}F]fluoro-glucopyranosyl bromide and revealed an improved radiochemical yield of 67 \pm 6% in the case of a protected serinyl precursor as compared to 27 \pm 4% obtained by the BF_3 -method. This suggests the suitability of Koenigs–Knorr conditions for ^{18}F -glycosylation of protected bioactive peptides. Copyright © 2006 John Wiley & Sons, Ltd. Key Words: ¹⁸F-glycosylation; F-18; Koenigs-Knorr; glycosyl donor; PET #### Introduction The use of ¹⁸F-labelled prosthetic groups for the radiofluorination of biomolecules has gained considerable importance for the synthesis of radiopharmaceuticals suitable for positron emission tomography (PET), since the presence of sensitive functional groups excludes a direct nucleophilic radiofluorination reaction under basic conditions. In particular, *N*-succinimidyl-4-[¹⁸F]fluorobenzoate ([¹⁸F]SFB), ¹⁻³ 4-nitrophenyl-2-[¹⁸F]fluoropropionate, ⁴ 4-[¹⁸F]fluorobenzaldehyde^{5,6} or ¹⁸F-labelled maleimide derivatives^{6,7} have found widespread use for ¹⁸F-labelling of peptides and proteins. As an extension of the available ¹⁸F-labelling agents, we recently examined the applicability of tetra-O-acetylated 2-[¹⁸F]fluoro-2-deoxy-glucopyranose ([¹⁸F]1) as ¹⁸F-glycosylation agent. ⁸ However, this approach implies problems *Correspondence to: Olaf Prante, Laboratory of Molecular Imaging, Clinic of Nuclear Medicine, Friedrich-Alexander University Erlangen-Nürnberg, Schwabachanlage 6, D-91054 Erlangen, Germany. E-mail: olaf.prante@nuklear.imed.uni-erlangen.de Contract/grant sponsor: Friedrich-Alexander University, Erlangen when applied to the labelling of peptides: the use of BF_3 as a Lewis acid promoter could cause side-reactions, such as cleavage of protecting groups, and limits the choice of the reaction solvent. In order to circumvent these drawbacks, we aimed at the development of an alternative ^{18}F -glycosylation procedure. We herein report the radiosynthesis of 3,4,6-tri-O-acetyl-2-deoxy-2-[¹⁸F]fluoroglucopyranosyl bromide ([¹⁸F]2) and its use as ¹⁸F-labelled glycosyl donor under Koenigs–Knorr⁹ conditions in silver trifluoromethanesulphonate (AgOTf) promoted ¹⁸F-glycosylation reactions on protected serinyl derivatives as model compounds. In addition, we compared this approach to the BF₃-promoted reaction sequence with regard to radiochemical yield, reaction time, mechanistic implications and dependence on the labelling precursor. #### Results and discussion Starting from the tetra-O-acetylated ¹⁸F-labelled glycosyl donor [¹⁸F]1, which was synthesized by nucleophilic ¹⁸F-for-OTf substitution on the corresponding tetra-O-acetylated mannopyranoside following the method of Hamacher and others¹⁰ and isolated by HPLC in a radiochemical yield (RCY) of 68% (decayuncorrected) in 30 min as reported previously, we developed two different routes for ¹⁸F-glycosylation of amino acids: the BF₃-method and the AgOTfmethod (Scheme 1). First, we reinvestigated the BF₃-method⁸ using 200 mM BF₃·Et₂O and 10 mM Fmoc-Ser-OH or Z-Ser-OBn as glycosyl acceptors in acetonitrile as solvent. This procedure gave a decay-uncorrected radiochemical yield (RCY) of 23% for [18F]3 after HPLC-separation in a total synthesis time of about 60 min (Scheme 1). Using Z-Ser-OBn as a more sterical demanding glycosyl acceptor, a decreased RCY of about 11% for [18F]4 was obtained. Studying the reaction of [18F]1 with Fmoc-Ser-OH at early time points (1–6 min) by analytical radio-HPLC, we observed the formation of glycoester I¹⁸FI5, which was almost completely converted into the desired O-glycosylated product [18F]3 during the progress of the reaction (Figure 1). Thus, the use of BF₃ in high concentration (200 mM) ensured completed formation of [¹⁸F]3, nicely confirming the observation of Salvador et al. for the synthesis of glycopeptide building blocks. 11 Therefore, we conclude, that glycoester [18F]5 was cleaved in the presence of BF₃ leading to an oxocarbenium intermediate as depicted in Scheme 2, which could subsequently be attacked at the electrophilic C-1 by the hydroxyl side chain of Fmoc-Ser-OH. In order to provide an alternative ¹⁸F-glycosylation method, we developed and optimized a procedure based on the classical Koenigs–Knorr conditions using [¹⁸F]2 as glycosyl donor, AgOTf as activator and Fmoc-Ser-OH or Z-Ser-OBn as glycosyl acceptor. Peracetylated 2-deoxy-2-[¹⁸F]fluoroglucopyranose ([¹⁸F]1) was completely converted into its anomeric bromide [¹⁸F]2 with HBr/CH₃COOH in a reaction time of 5 min followed by solid phase extraction Scheme 1. Time course of the BF₃-mediated ¹⁸F-glycosylation method starting from [¹⁸F]1 compared to the AgOTf-activated ¹⁸F-glycosylation (Koenigs-Knorr method) using glycosyl donor [¹⁸F]2. RCY are expressed as decay-uncorrected yields of the HPLC-isolated ¹⁸F-labelled products and referred to [¹⁸F]fluoride on a RP-18 cartridge (Scheme 1). The AgOTf-method was optimized in regard to solvent, temperature, reaction time, activator and the ratio of glycosyl acceptor (Z-Ser-OBn) to activator (AgOTf) (Table 1). The most favourable reaction parameters turned out to be the ratio of labelling precursor Z-Ser-OBn to AgOTf of 0.5–6 and dichloromethane as solvent affording [¹⁸F]4 in a RCY of 67% after a reaction time of 1–2 min at room temperature (Table 1). Applying these Koenigs–Knorr reaction conditions to the ¹⁸F-glycosylation of Fmoc-Ser-OH to give [¹⁸F]3, the RCY decreased to about 21% (Table 2), due to the formation of glycoester [¹⁸F]5 as major by-product in equivalent RCY compared to the desired product [¹⁸F]3. HPLC analysis showed the formation of a radiolabeled hydrophilic compound, possibly indicating the presence of an oxocarbenium trifluoromethanesulphonate intermediate, which equably Figure 1. Dependence of the radiochemical yield of the 18 F-labelled products on reaction time for the BF₃-mediated 18 F-glycosylation of Fmoc-Ser-OH using [18 F]1 as glycosyl donor (200 mM BF₃·Et₂O in CH₃CN, $V=500\,\mu$ l, 8 mM Fmoc-Ser-OH, $T=80^{\circ}$ C) Scheme 2. (i) HBr/CH₃COOH, CH₂Cl₂; (ii) BF₃·Et₂O, CH₃CN, Fmoc-Ser-OH; (iii) AgOTf, CH₂Cl₂, Fmoc-Ser-OH decreased during the progress of the reaction in support of both products, the ¹⁸F-glycosylated product ([¹⁸F]3 or [¹⁸F]4) and the by-product [¹⁸F]5. In contrast to the BF₃-mediated glycosylation method, no consequential conversion of [¹⁸F]5 into product [¹⁸F]3 occurred under Koenigs–Knorr conditions (Scheme 2). In summary, the two investigated 18 F-glycosylation methods differed in maximum RCY for the 18 F-glycosylation key step depending on the labelling precursor (Table 2). The Koenigs–Knorr 18 F-glycosylation method revealed an improved radiochemical yield of $67 \pm 6\%$ in the case of the N^{α} - and Table 1. Optimization of the Koenigs-Knorr ¹⁸F-glycosylation of Z-Ser-OBn using I¹⁸F|2 | Activator | Ratio/(Z-Ser-OBn | Solvent | Temperature | Reaction time | RCY ^b
(%) | |---------------------|------------------|---------------------------------|-------------------------|---------------|-------------------------| | | activator)a | | | (min) | | | Hg(CN) ₂ | 5 | CH ₂ Cl ₂ | rt | 10 | 7 | | $HgBr_2$ | 1 | CH_2Cl_2 | rt | 2 | 0 | | AgOTf | 0.1-0.25 | CH ₂ Cl ₂ | rt | 1–2 | 22 ± 10^{c} | | AgOTf | 0.5 - 6 | CH_2Cl_2 | rt | 1–2 | 67 ± 6^{c} | | AgOTf | 10 | CH_2Cl_2 | rt | 1–2 | 55 ± 13^{c} | | AgOTf | 24–120 | CH_2Cl_2 | rt | 1–2 | 0 | | AgOTf | 3 | Et ₂ O | rt | 2 | 30 | | AgOTf | 3 | dichloroethane | 80° C | 2 | 38 | | AgOTf | 3 | CH_3NO_2 | 90°C | 2 | 7 | | AgOTf | 1 | CH ₃ CN | rt | 5 | 7 | | AgOTf | 1 | DMF | 130°C | 5 | 0 | | AgOTf | 3 | CH ₂ Cl ₂ | 0°C | 5 | 46 | | AgOTf | 1 | CH ₂ Cl ₂ | $-20^{\circ}\mathrm{C}$ | 1 | 22 | | AgOTf | 1 | CH_2CI_2 | $-20^{\circ}\mathrm{C}$ | 10 | 53 | ^a n (Z-Ser-OBn) = 1.5–50 μmol, V = 500 μl. Table 2. BF₃-method vs AgOTf-method: comparison of maximum radiochemical yields (RCY) of the ¹⁸F-glycosylation key step | Precursor | Product | AgOTf-method using glycosyl donor [¹⁸ F]2 | | BF ₃ -method using glycosyl donor [¹⁸ F]1 | | |--------------------------|--|---|----------|--|---------| | | | RCY ^a (%) | t (min) | RCY ^a (%) | t (min) | | Fmoc-Ser-OH
Z-Ser-OBn | [¹⁸ F]3
[¹⁸ F]4 | 21 ± 3
67 ± 6 | 2
1–2 | 47 ± 8
27 ± 4 | 5
10 | ^a RCY are expressed as mean \pm standard error (SEM, n=4) determined by analytical radio-HPLC from a sample withdrawn from the reaction mixture and referred to the ¹⁸F-labelled glycosyl donor. C-protected serinyl precursor (Z-Ser-OBn) as compared to $27 \pm 4\%$ obtained by the BF₃-method (Table 2). In contrast to this result, a serinyl labelling precursor containing a free carboxyl group (Fmoc-Ser) was advantageously labelled by ¹⁸F-glycosylation applying the reaction conditions of the BF₃-method. Thus, the use of [¹⁸F]2 for ¹⁸F-glycosylation under Koenigs–Knorr conditions should particularly be of interest for labelling precursors without interfering free C-terminus, such as bioactive cyclic peptides. As shown in Scheme 1, we also performed a comparison of both ¹⁸F-glycosylation methods with regard to the reaction time and overall decay-uncorrected radiochemical yields. Starting from [¹⁸F]fluoride, the BF₃-method b RCY are expressed as mean of two independent experiments (n = 2) determined by analytical radio-HPLC from a sample withdrawn from the reaction mixture and referred to the ¹⁸F-labelled glycosyl donor [¹⁸F]2. c Mean \pm standard error of the mean (SEM, n = 4). gave [¹⁸F]3 or [¹⁸F]4 in an overall decay-uncorrected RCY of 23 and 11%, respectively, within a total reaction time of 60 min including 2 HPLC purification steps (Scheme 1). The AgOTf-method permitted the use of dichloromethane as solvent, lasted 15 min longer affording [¹⁸F]3 in an overall RCY of 8%, but was more advantageous for the radiosynthesis of [¹⁸F]4 revealing an overall decay-uncorrected RCY of 27% (Scheme 1). Experiments concerning the deacetylation of the ¹⁸F-glycosylated compounds ([¹⁸F]3, [¹⁸F]4) were beyond the scope of the present study, since this issue was successfully addressed elsewhere.⁸ # **Experimental** #### General N^{α} -(9-Fluorenylmethoxycarbonyl)-L-serine (Fmoc-Ser-OH) and N^{α} -(phenylmethoxycarbonyl)-L-serine phenylmethyl ester (Z-Ser-OBn) were purchased from Bachem (Germany). [18F]Fluoride was obtained from PET Net GmbH (Erlangen, Germany). Radio-thin layer chromatography (radio-TLC) was carried out on plastic sheets (Polygram®, Sil G/UV₂₅₄, Macherey Nagel) using ethyl actetate/n-hexane (1:1, v/v) as eluent. Analytical HPLC was performed on the following system: HPLC Agilent 1100 with a quarternary pump and variable wavelength detector and radio-HPLC-detector D505TR (Canberra Packard). Computer analysis of the HPLC data was performed using FLO-One software (Canberra Packard). Electronic autoradiography was used to analyse radio-TLC data (Instant ImagerTM, Canberra Packard). The syntheses of 1,3,4,6-tetra-O-acetyl-2-deoxy-2-fluoro-D-glucopyranose ([¹⁸F]1, [¹⁹F]1), 1,3,4,6-tetra-O-acetyl-2-O-trifluoromethanesulfonyl-β-D-mannopyranose and all other reference compounds ([19F]2, [19F]3, [19F]4, [19F]5) were described elsewhere. Each 18F-labelled compound was identified by k' values on the radio-HPLC system and co-injection of the corresponding reference compound. # 3,4,6-Tri-O-acetyl-2-deoxy-2-[¹⁸F] fluoroglucopyranosyl bromide ([¹⁸F]2) Three hundred microlitre 33% HBr/CH₃COOH were added to a reaction vessel containing [18 F]1 in 50 µl dichloromethane at room temperature. The reaction was monitored by radio-TLC. After 5 min conversion was complete and the mixture was diluted with 10 ml H₂O and passed through a C18-cartridge (Merck, 100 mg). The cartridge was washed with H₂O, dried and eluted with 1 ml CH₃CN. Starting from 250 MBq [18 F]1 this procedure yielded 205 MBq [18 F]2 within 15 min. Radio-TLC: $R_f = 0.77$. HPLC (Kromasil C8, 250 × 4.6, 1.5 ml/min, 40–100% CH₃CN in water (0.1% TFA) in 50 min): k' = 6.2. N^{α} -(9-Fluorenylmethoxycarbonyl)-O-(3,4,6-tri-O-acetyl-2-deoxy-2-[^{18}F]fluoro-D-glucopyranosyl)-L-serine ($I^{18}FI3$) and N^{α} -(phenylmethoxycarbonyl)-O-(3,4,6-tri-O-acetyl-2-deoxy-2-[^{18}F]fluoro-D-glucopyranosyl)-L-serine phenylmethyl ester ($I^{18}FI4$) ¹⁸F-glycosylation using BF₃. A solution of the labelling precursor (10 mM Fmoc-Ser-OH or Z-Ser-OBn) in 200 µl anhydrous CH₃CN and 5 µl BF₃ etherate were added to a reaction vessel containing dry [18F]1 at 80°C. The radioactive products ([18F]3 or [18F]4) were obtained in a radiochemical yield 47% ([¹⁸Fl3) or 27% ([¹⁸Fl4) after a reaction 5-10 min. The reaction mixture was diluted with H₂O (1:10) and passed through a C18-cartridge (Merck, 100 mg). The cartridge was washed with CH₃CN/H₂O (30:70) to remove hydrolytic by-products, dried and eluted with 1.0 ml CH₃CN. The solvent was evaporated and the residue (diluted in 500 µl acetonitrile/water (40:60)) was separated by gradient reversed-phase HPLC (Kromasil C8, 125×8 mm, 4 ml/min, 40-100% CH₃CN in H₂O (0.1% TFA) within 50 min). The product fraction was diluted with water (1:10), fixed on a C18-cartridge (Merck, 100 mg) and eluted with 1 ml acetonitrile in a reaction vessel. Starting from 250 MBq [¹⁸F]1 this procedure yielded 85 MBq of [¹⁸F]3 or 40 MBa of I¹⁸Fl4 within 30 min. ¹⁸F-glycosylation using AgOTf. A solution of the labelling precursor (10 mM Fmoc-Ser-OH or Z-Ser-OBn) and 10 mM AgOTf in 500 μl anhydrous CH₃CN were added to a reaction vessel containing dry [¹⁸F]2 at room temperature. The radioactive products ([¹⁸F]3 or [¹⁸F]4) were obtained in a radiochemical yield of 21% ([¹⁸F]3) or 67% ([¹⁸F]4) after a reaction time of 1–2 min. The reaction mixture was passed through a Si-cartridge (Merck, 200 mg) and seperated by gradient reversed-phase HPLC (Kromasil C8, 125 × 8 mm, 4 ml/min, 40–100% CH₃CN in H₂O (0.1% TFA) within 50 min). The product fraction was diluted with water (1:10), fixed on a C18-cartridge (Merck, 100 mg) and eluted with 1 ml acetonitrile in a reaction vessel. Starting from 205 MBq [¹⁸F]2 this procedure yielded 30 MBq [¹⁸F]3 or 100 MBq [¹⁸F]4 within 30 min. [¹⁸F]3 and [¹⁸F]4 were characterized by radio-HPLC and radio-TLC for both methods ([¹⁸F]3: Radio-TLC: $R_{\rm f} = 0.10$. HPLC (Kromasil C8, 250 × 4.6, 1.5 ml/min, 40–100% CH₃CN in water (0.1% TFA) in 50 min): k' = 10.3. [¹⁸F]4: Radio-TLC: $R_{\rm f} = 0.71$. HPLC (Kromasil C8, 250 × 4.6, 1.5 ml/min, 40–100% CH₃CN in water (0.1% TFA) in 50 min): k' = 13.8). Optimization of the ¹⁸F-glycosylation procedure using the AgOTf-method The ¹⁸F-glycosylation procedure was optimized by repeating the reaction with varying parameters as indicated in Table 1. #### Conclusion The ¹⁸F-labelled glycosyl bromide [¹⁸F]2 was easily available without the necessity of an additional HPLC purification step as compared to the radiosynthesis of the corresponding tetra-O-acetylated glycosyl donor [¹⁸F]1. Applying Koenigs–Knorr reaction conditions, [¹⁸F]2 proved its suitability for the AgOTf-activated ¹⁸F-glycosylation of Z-Ser-OBn with improved radiochemical yield. Therefore, the ¹⁸F-glycosylation agent [¹⁸F]2 should be preferentially applied to O-glycosylation reactions on suitably protected bioactive peptides in further studies, in order to develop ¹⁸F-glycopeptides as potential PET radiopharmaceuticals. #### Acknowledgements The authors gratefully acknowledge Wilhelm Hamkens and the cyclotron staff for producing and delivering [¹⁸F] fluoride (PET Net GmbH, Erlangen). This work was supported by a grant of the Hochschul- und Wissenschaftsprogramm (HWP, Chancengleichheit für Frauen in Forschung und Lehre) at the Friedrich-Alexander University. ## References - 1. Wester HJ, Hamacher K, Stöcklin G. Nucl Med Biol 1996; 23: 365-372. - Bergmann R, Scheunemann M, Heichert C, Mading P, Wittrisch H, Kretzschmar M, Rodig H, Tourwé D, Iterbeke K, Chavatte K, Zips D, Reubi JC, Johannsen B. Nucl Med Biol 2002; 29: 61–72. - 3. Vaidyanathan G, Zalutsky MR. Bioconjug Chem 1994; 5: 352–356. - 4. Haubner R, Kuhnast B, Mang C, Weber WA, Kessler H, Wester HJ, Schwaiger M. *Bioconjug Chem* 2004; **15**: 61–69. - 5. Poethko T, Schottelius M, Thumshirn G, Hersel U, Herz M, Henriksen G, Kessler H, Schwaiger M, Wester HJ. *J Nucl Med* 2004; **45**: 892–902. - 6. Toyokuni T, Walsh JC, Dominguez A, Phelps ME, Barrio JR, Gambhir SS, Satyamurthy N. *Bioconjug Chem* 2003; **14**: 1253–1259. - 7. de Bruin B, Kuhnast B, Hinnen F, Yaouancq L, Amessou M, Johannes L, Samson A, Boisgard R, Tavitian B, Dollé F. *Bioconjug Chem* 2005; **16**: 406–420. - 8. Maschauer S, Pischetsrieder M, Kuwert T, Prante O. *J Label Compd Radiopharm* 2005; **48**: 701–719. - 9. Koenigs W, Knorr E. Chem Ber 1901; 34: 957–981. - 10. Hamacher K, Coenen HH, Stöcklin G. J Nucl Med 1986; 27: 235-238. - 11. Salvador LA, Elofsson M, Kihlberg J. Tetrahedron 1995; 51: 5643–5656.