A CONVENIENT SYNTHESIS OF TRIALKYLALKYLIDYNE TUNGSTEN (6+) COMPOUNDS AND THE X-RAY CRYSTAL STRUCTURE OF (Me₃CCH₂)₃W=CPh(py)

MALCOLM H. CHISHOLM,* JOHN C. HUFFMAN and JEFFREY A. KLANG

Department of Chemistry and Molecular Structure Center, Indiana University, Bloomington, IN 47405, U.S.A.

(Received 27 September 1989; accepted 9 January 1990)

Abstract—A convenient synthesis for trialkylalkylidyne tungsten compounds is reported based on the metathetic reaction between alkyllithium or alkyl-Grignard reagents and ('BuO)₃W=CR compounds. The success of the strategy is limited to alkyl ligands that lack β -hydrogen atoms. The X-ray crystal structure of (Me₃CCH₂)₃W=CPh(py) is reported. Cell dimensions at -155°C: a = 13.657(7), b = 13.897(9), c = 14.115(7) Å, Z = 4 and space group $P2_12_12_1$. The central WC₄N unit is based on a distorted trigonal bipyramid with axial alkylidyne and pyridine ligands, with W—C = 1.74(3) and W—N = 2.57(3) Å, respectively.

As part of our long-standing interest in Group VI organometallic and inorganic chemistry we have become interested in exploring new, molecular routes to carbides, nitrides and oxides of molybdenum and tungsten.¹ We believe that trial-kyltungstenalkylidynes, R'_3WCR , will serve as low temperature precursors to tungsten carbides (WC or W_2C). Girolami and his co-workers² have reported the formation of titanium carbide in the decomposition of Ti(CH₂CMe₃)₄ at temperatures as low as 150°C.

As we begin this work there are only a few examples of tungsten alkylidynes supported exclusively by alkyl ligands. These are prepared by reactions involving multiple α -hydrogen abstractions and are specific for Me₃SiCH₂ and Me₃CCH₂ ligands.² We require a more general method and chose to investigate metathetic reactions involving ('BuO)₃WCR complexes.

RESULTS AND DISCUSSION

Synthesis

Reaction of the alkoxide supported alkylidyne ('BuO)₃WCR with alkyl-Grignard or alkyl-lithium

reagents of the type RCH_2M results in the formation of the desired trialkylalylidynes as shown in eq. (1). As the complexes ('BuO)₃WCR can be made with a wide variety of different R groups by the reaction of $W_2(O^tBu)_6$ with RCCR,³ this route has the potential to be quite general. Table 1 lists the compounds made by this route so far, along with selected ¹³C NMR data for their alkylidyne ligands. All of the new compounds have been characterized by ¹H and ¹³C NMR spectroscopies, elemental analysis in most cases, and for (Me₃CCH₂)₃ WCPh(py) by single crystal X-ray crystallography.

Table 1. New alkylalkylidyne tungsten compounds with selected ¹³C NMR data for the alkylidyne carbon

	Chemical shift (ppm)	J _{wc} (Hz)
(PhCH ₂) ₃ WC'Bu	297.5	n.o.
(Me ₃ CCH ₂) ₃ WCSiMe ₃	338.3	188.7
(Me ₃ SiCH ₂) ₃ WCPh	303.6	221.0
$((Me_3SiCH_2)_3WC)_2$	314.4	n.o.
$(Me_3CCH_2)_3WCPh \cdot py$	283.4	n.o.
(Me ₃ SiCH ₂) ₃ WCPh · py	n.o .	
$((Me_3CCH_2)_3WC)_2$	n.o .	
$(py(Me_3CCH_2)_3WC)_2$	305.3	n.o .
(Me ₃ SiCH ₂) ₃ WC ^t Bu	319.5	215.0

n.o. = not observed.

^{*} Author to whom correspondence should be addressed.

 $(^{t}BuO)_{3}W \equiv CR + 3 LiR' \longrightarrow$

$$(\mathbf{R}')_3 \mathbf{W} \equiv \mathbf{C}\mathbf{R} + 3^{\mathsf{t}}\mathbf{B}\mathbf{u}\mathbf{O}\mathbf{L}\mathbf{i}.$$
 (1)

Compounds containing benzyl or neopentyl ligands have only been prepared using the Grignard or lithium reagents, respectively. This is simply due to the convenience of these reagents relative to benzyllithium or neopentyl-Grignard. Compounds with Me₃SiCH₂ ligands can be made equally well from Me₃SiCH₂MgCl or Me₃SiCH₂Li. In some cases, when alkyl-lithium reagents were used it was difficult to separate the 'BuOLi formed from the desired product. A useful procedure in this situation was to add a stoichiometric amount of BF₃ · OEt₂ to a cooled hexane solution of the mixture. This quantitatively precipitated BF₃('BuO)Li which was then removed by filtration.

As expected, the stability and physical properties of the trialkylalkylidynes depended markedly on the substituents R and R'. Although combinations of large R and R' groups give the best stability, steric and electronic factors cannot be separated at this point. The importance of the alkylidyne substituent, R, in determining the stability of these complexes is underscored by the relative stabilities of $(PhCH_2)_3WCR$ (R = ^tBu, Me₃Si, Ph). The neopentylidyne is a yellow crystalline solid which is indefinitely stable in the absence of air or moisture. The trimethylsilylmethylidyne can be detected in solution (¹H NMR : PhCH₂ 2.18 ppm, $J_{WH} = 7.7$ Hz) but decomposes at a rate similar to that of its formation from ('BuO)₃WCSiMe₃ and PhCH₂MgCl and cannot be isolated. The benzylidyne has never been detected. Likewise, no evidence for a complex with an ethylidyne ligand (RCH₂)₃WCMe has ever been seen with any alkyl ligand.

Of the alkyl ligands investigated, Me₃CCH₂ and Me₃SiCH₂ most effectively stabilize the alkylalkylidynes. In these series even compounds with relatively small alkylidyne substituents such as phenyl, and the dimers $(RCH_2)_3WC-CW(CH_2R)_3$, can be made and are relatively stable. The mixed neopentyl/trimethylsilylmethyl complexes (Me₃C-CH₂)₃WCSiMe₃ and (Me₃SiCH₂)₃WCCMe₃ are both quite volatile, the latter subliming with little or no decomposition at $ca \ 10^{-3}$ Torr and 50–55°C. The former compound is an oil and although small amounts of it can be distilled onto a cold finger condenser, attempted distillation on larger scales causes extensive decomposition. The benzylidynes, (Me₃SiCH₂)₃WCPh and (Me₃CCH₂)₃WCPh, are oils at room temperature and decompose upon attempted distillation. Their pyridine adducts are, however, crystalline allowing purification of these

compounds. The X-ray crystal structure of one of these is presented below.

We have not had as much success with other alkyl ligands. Only one complex containing benzyl ligands has been isolated, and with smaller alkyl groups or those with β -hydrogens (Me₂CHCH₂, Me₂CH) we have found no evidence for formation of R'₃WCR complexes.

NMR studies

The ¹H and ¹³C NMR spectra are consistent with the formulation of these complexes as being monomeric with C_3 symmetry. The ¹³C NMR spectra show characteristic far downfield chemical shifts and large values of J_{WC} for the alkylidyne carbon atoms (see Table 1). The alkylidyne chemical shifts range from 283.8 to 327.0 ppm; in each case this is about 30 ppm downfield of the corresponding ('BuO)₃WCR complex. Tungsten coupling of 75– 90 Hz is also observed to the carbon atoms of the methylene groups. In the ¹H NMR spectra, small ¹⁸³W–¹H couplings (6–11 Hz) are seen to the hydrogen atoms of the methylene groups.

Molecular structure of (Me₃CCH₂)₃W=CPh(py)

A summary of crystal data is given in Table 2 and selected bond distances and bond angles are given in Table 3. A ball-and-stick drawing of the molecule is shown in Fig. 1.

The central WC₄N core is a distorted trigonal pyramid in which the alkylidyne carbon and pyridine nitrogen occupy trans positions: $N(15)-W-C(21) = 179.5(10)^{\circ}$. The W-C triple bond distance, 1.74(3) Å, and the W-C (neopentyl) distances, 2.13(4) Å, are well within the range expected based on other alkylalkylidyne compounds of tungsten (6+). The W-N (pyridine) distance of 2.575(25) Å is very long, indicative of a relatively weak donor interaction. The alkylidyne-C-W-C (alkyl) angles of ca 100° are similar to those seen in related trigonal bipyramidal $[(^{t}BuO)_{3}W \equiv N]_{\infty}^{3}$ structures such as and $(^{t}BuO)_{3}W(NO)(py)^{4}$ where the equatorial ligands bend away from the multiple bond in one axial site and toward the weak donor ligand in the other axial position.

Concluding remarks

The reported procedure provides a convenient synthesis for a number of trialkylalkylidyne tungsten compounds. Studies of their modes of thermal decomposition are currently underway.

Empirical formula	WC ₂₇ H ₄₃ N
Colour of crystal	Reddish green?
Crystal dimensions (mm)	$0.25 \times 0.25 \times 0.25$
Space group	$P2_{1}2_{1}2_{1}$
Cell dimensions	
Temperature (°C)	-155
a (Å)	13.657(7)
$b(\mathbf{A})$	13.897(9)
$c(\mathbf{A})$	14.115(7)
Z (molecules/cell)	4
Volume (Å ³)	2679.03
Calculated density $(g \text{ cm}^{-3})$	1.402
Wavelength (Å)	0.71069
Molecular weight	565.49
Linear absorption coefficient (cm^{-1})	44.148
Detector to sample distance (cm)	22.5
Sample to source distance (cm)	23.5
Average omega scan width at half height	0.25
Scan speed (deg min^{-1})	4.0
Scan width (deg+dispersion)	1.8
Individual background (s)	8
Aperture size (mm)	3.0×4.0
2θ Range (deg)	6-45
Total number of reflections collected	2744
Number of unique intensities	2000
Number with $F > 0.0$	1896
Number with $F > 2.33\sigma(F)$	1754
R(F)	0.0649
Rw(F)	0.0594
Goodness-of-fit for the last cycle	1.240
Maximum δ/σ for last cycle	0.45

Table 2. Summary of crystal data for (Me₃CCH₂)₃W=CPh(py)

Table 3. Selected bond distances and bond angles for $(Mc_3CCH_2)_3W \equiv CPh(py)$

A B	Distance	
W(1)—N(15)	2.575(26)	
W(1)—C(2)	2.165(26)	
W(1)—C(6)	2.12(3)	
W(1)C(11)	2.101(21)	
W(1)-C(21)	1.74(3)	
A B C	Angle	
N(15)-W(1)-C(2)	80.8(10)	
N(15)-W(1)-C(6)	77.1(10)	
N(15) - W(1) - C(11)	79.7(9)	
N(15)—W(1)—C(21)	179.5(10)	
C(2) - W(1) - C(6)	113.4(13)	
C(2) - W(1) - C(11)	116.8(14)	
C(2) - W(1) - C(21)	99.6(11)	
C(6) - W(1) - C(11)	119.0(14)	
C(6) - W(1) - C(21)	102.7(11)	
C(11) - W(1) - C(21)	100.8(11)	
W(1) - C(2) - C(3)	131.1(20)	
W(1)C(6)C(7)	128.4(23)	
W(1)C(11)-C(12)	131.5(19)	
W(1)-C(21)-C(22)	174.6(20)	

EXPERIMENTAL

General operating procedures and techniques have been given previously.⁵ Elemental analyses were performed by Oneida Research Services, Whitesboro, New York.

Crystallographic studies

General operating procedures and listings of programs have been described previously.⁷ A summary of crystal data is given in Table 2. A suitable crystal was cleaved from a larger multicrystalline conglomerate and transferred to the goniostat using standard inert atmosphere handling techniques employed by the Indiana University Molecule Structure Center and cooled to -155° C for characterization and data collection.

A systematic search of a limited hemisphere of reciprocal space located a set of diffraction maxima with symmetry and systematic absences corresponding to the unique orthorhombic space group $P2_12_12_1$. Subsequent solution and refinement

Fig. 1. A ball-and-stick drawing of the $(Me_3CCH_2)_3$ W=CPh(py) molecule.

of the structure confirmed this choice. There were several weak peaks present which could not be accounted for based on the chosen cell, or a supercell based on the known cell. Some of these were identified as a second well-ordered fragment of ca10% the intensity of the located cell, and other peaks indicated other fragments were possibly present. Examination of the bulk sample indicated that it would be difficult to find a more homogenous sample, so the mounted specimen was utilized.

Data were collected using a continuous θ -2 θ scan with fixed backgrounds and reduced to a unique set of intensities and associated sigmas in the usual manner. The structure was solved by a combination of direct methods (MULTAN78) and Fourier techniques. A difference Fourier synthesis revealed the location of some, but not all, hydrogen atoms. All hydrogen atom positions were therefore calculated using idealized geometries and d(C-H) = 0.95 Å. These calculated positions were fixed for the final cycles of refinement. The data were corrected for absorption based on measurements made on the diffractometer, but use of the absorption corrected data led to non-positive definite thermal parameters for many of the atoms. For the final cycles, the uncorrected data were used. The poor quality of the refinement is partially due to the large thermal motion present, as well as to interference from the fragments known to be present.

Chemicals

The alkylidynes (${}^{1}BuO$)₃WCR were made by the method of Schrock; 6b (CH₃)₃CCH₂Li and Me₃SiCH₂Li were made by published procedures. PhCH₂MgCl and Me₃SiCH₂MgCl were purchased from Aldrich Chemical Co.

Preparation of (PhCH₂)₃WC^tBu

In a 50 cm³ Schlenk flask, ('BuO)₃WC'Bu (1.56 g, 3.3 mmol) was dissolved in Et₂O (20 cm³), the solution was cooled to 0°C and PhCH₂MgCl (3.3 equiv, 2.0 M in THF) was added via syringe. After stirring for 1 h at 0°C, the volatile components were removed *in vacuo* and the residue was extracted with 4×10 cm³ of hexane at room temperature. The combined hexane filtrates were concentrated and cooled to $ca - 20^{\circ}$ C for 2 days to give 1.05 g (60% yield) of (PhCH₂)₃WC'Bu as yellow crystals.

(PhCH₂)₃WC'Bu: ¹H NMR (C₆D₆) δ : C₆H₅7.18 (m, 3H); 6.93 (m, 6H); 6.78 (m, 6H); PhCH₂ 1.95 (s, J_{WC} = 6.5 Hz, I = 20%, 6H); C(CH₃)₃ 1.36 (s, 9H). ¹³C{¹H} NMR (C₆D₆) δ : WCC(CH₃)₃ 297.5 (s); C₆H₅ 131.6(s); 131.1(s); 129.7(s); 127.1(s); PhCH₂ 57.1 (s, J_{WC} = 77.1 Hz, I = 15%); C(CH₃)₃ 38.1 (s); C(CH₃)₃ 30.9 (s). IR (KBr) cm⁻¹: 2960(s); 2940(s); 2900(m); 1580(m); 1485(s); 1450(s); 1155(m); 1030(m); 1005(m); 980(m); 815(m); 800(m); 710(s); 695(s); 515(s). Found: C, 59.5; H, 5.7. Calc. for WC₂₆H₃₀: C, 59.3; H, 5.7%.

Preparation of (Me₃CCH₂)₃WCSiMe₃

A solution of ('BuO)₃WC(SiMe₃) (0.466 g, 0.96 mmol) in Et₂O (10 cm³) was cooled to 0°C and an Et₂O (5 cm³) solution of Me₃CCH₂Li (0.246 g, 3.15 mmol) was added via cannula. The mixture was stirred at 0°C for 1.5 h and the volatile components were removed *in vacuo*. Sublimation of the residue onto a water cooled cold-finger at *ca* 10⁻³ Torr and 50–55°C provided 315 mg (68% yield) of analytically pure (Me₃CCH₂)₃WCSiMe₃.

(Me₃CCH₂)₃WCSiMe₃: ¹H NMR (C₆D₆) δ : C(CH₃)₃ 1.15 (s, 27H); 0.91 (s, $J_{WH} = 11.0$ Hz, I = 20%, 6H); Si(CH₃)₃ 0.44 (s, $J_{SiH} = 6.6$ Hz, I = 8.6%, 9H). ¹³C{¹H} NMR (C₆D₆) δ : CSi (CH₃)₃ 338.3 (s, $J_{WC} = 188.7$ Hz, $J_{SiC} = 42.7$ Hz); ¹BuCH₂ 105.2 (s, $J_{WC} = 91.7$ Hz); C(CH₃)₃ 34.7(s); C(CH₃)₃ 33.9(s); Si(CH₃)₃ 1.95 (s, $J_{SiC} = 41.9$ Hz). IR (KBr) cm⁻¹: 2975(s); 2900(m); 2865(m); 1460(m); 1385(m); 1360(s); 1265(m); 1245(s); 1235(s); 1195(s); 1120(m); 840(s); 755(m). Found: C, 47.0; H, 8.7. Calc. for $WC_{19}H_{42}Si: C, 47.3$; H, 8.8%.

Preparation of (Me₃SiCH₂)₃WCPh

A solution of ('BuO)₃WCPh (0.70 g, 1.4 mmol) in Et₂O (10 cm³) was cooled to 0° C and Me₃SiCH₂MgCl (1.0 M in Et₂O, 4.3 cm³) was added via syringe. The mixture was stirred at 0°C for 1.5 h and the volatile components were removed in vacuo. The residue was extracted with 2×10 cm³ hexane, filtered through a Celite pad and the hexane removed in vacuo to give (Me₃SiCH₂)₃WCPh as a dark red oil. This oil could not be induced to crystallize and decomposed upon attempted sublimation/distillation but was approximately 95% pure as judged by ¹H NMR. The pyridine adduct $(Me_3SiCH_2)_3WCPh \cdot py$ was made by adding 1 cm³ of pyridine and 5 cm³ of DME to the oil obtained above. The dark red solution was reduced in volume by about 1/2 and cooled to -20° C overnight to give 410 mg (48% yield) of yellow-brown $(Me_3SiCH_2)_3WCPh \cdot py as a tacky solid.$

(Me₃SiCH₂)₃WCPh: ¹H NMR (C₆D₆) δ : C₆H₅ 7.44 (m, 2H); 7.29 (m, 2H); 6.93 (m, 1H); CH₂ 0.69 (s, J_{WH} = 9.3 Hz, I = 20%, 6H); Si(CH₃)₃ 0.15 (s, J_{SiH} = 7.6 Hz, I = 8.0%, 27H). ¹³C{¹H} NMR (C₆D₆) δ : C(C₆H₆) 303.6 (s, J_{WC} = 221.0 Hz, I = 14.4%); phenylipso 150.0 (s, J_{WC} = 51.7 Hz, I = 15.1%); C₆H₅ 130.4(s); 126.3(s); CH₂ 76.2 (s, J_{WC} = 76.4 Hz, I = 13.5%; J_{SiC} = 40.0 Hz, I = 6.6%); Si(CH₃)₃ 2.7 (s, J_{SiC} = 51.5 Hz, I = 7.8%). IR (film on NaCl) cm⁻¹; 2980(s); 2900(m); 1360(m); 1245(s); 1195(m); 945(s); 840(s); 750(s); 690(s). No analysis was attempted; compound is an oil.

(Me₃SiCH₂)₃WCPh · py: ¹H NMR (C₆D₆) δ : C₆H₅ and py 8.89 (m, 2H); 7.65 (m, 2H); 7.38 (m, 2H); 6.96 (m, 1H); 6.92 (m, 1H); 6.67 (m, 2H); CH₂1.17 (s, J_{WH} = 9.1 Hz, I = 18%, 6H); Si(CH₃)₃ 0.21 (s, J_{SiH} = 6.0 Hz, I = 8.3%, 27H). ¹³C{¹H} NMR (C₆D₆) δ : C₆H₅ and py 150.5(s); 149.8(br, s); 131.5(s); 125.9(s); 124.5(br, s); CH₂ 72.3 (s, J_{WC} = 81.8 Hz, I = 16%); Si(CH₃)₃ 3.2(s).

Preparation of ((Me₃SiCH₂)₃W=C)₂

An Et₂O (10 cm³) solution of ((^tBuO)₃WC)₂ (0.50 g, 0.60 mmol) was cooled to 0°C and solid Me₃SiCH₂Li (0.34 g, 3.6 mmol) was added from a side arm over about 20 min. The mixture was stirred at 0°C for 3 h, and volatiles removed *in vacuo*, the residue dissolved in *ca* 3 cm³ hexane and placed in a -20°C freezer. After about 24 h black crystals

(290 mg, 52% yield) of $((Me_3SiCH_2)_3WC)_2$ were isolated by filtration and dried *in vacuo*.

((Me₃SiCH₂)₃W=C)₂: ¹H NMR (C₆D₆) δ : CH₂ 1.13 (s, J_{WH} = 7.7 Hz, I = 22%, 12H); (CH₃)₃Si 0.30 (s, J_{SiH} = 6.2 Hz, I = 12%, 54H). ¹³C{¹H} NMR (C₆D₆) δ : W=C- 314.4(s); CH₂ 77.8 (s, J_{WC} = 79.4 Hz, I = 14.6%). IR (KBr) cm⁻¹: 2970(s); 2880(m); 2820(m); 1395(m); 1380(m); 1245(s); 1210(m); 940(s); 840(s); 750(s); 685(s). Found : C, 33.8; H, 7.0. Calc. for W₂C₂₆H₆₆Si₆: C, 34.1; H, 7.2%.

Preparation of (Me₃CCH₂)₃WCPh · py

An Et₂O (10 cm³) solution of (^tBuO)₃WCPh (0.4 g, 0.813 mmol) was cooled to 0°C and solid Me₃C-CH₂Li (0.176 g, 2.26 mmol) was added from a side arm over about 20 min. The mixture was stirred at 0°C for 1 h and the volatile components were removed *in vacuo*. The residue was dissolved in hexane (3 cm³) at 0°C and BF₃·OEt₂ (0.2 cm³, 3.25 mmol) was added via syringe to precipitate BF₃·O^tBu⁻Li⁺ as a light brown solid which was filtered off and discarded. The filtrate was reduced in volume to about 1 cm³ and pyridine (0.2 cm³) was added. Cooling to -20° C overnight caused 244 mg (54% yield) of (Me₃CH₂)₃WCPh· py to precipitate as a light brown solid.

Crystals of $((CH_3)_3CCH_3)_3WCPh \cdot py$ suitable for X-ray diffraction analysis were obtained by cooling a solution of *ca* 250 mg of the compound in *ca* 2 cm³ of 1:1 hexane-pyridine to $-20^{\circ}C$ for several days.

 $(Me_3CCH_2)_3WCPh \cdot py: {}^{1}H NMR (C_6D_6) \delta:$ C_6H_5 and py 8.69 (m, 2H); 7.82 (m, 2H); 7.32 (m, 2H); 7.0 (m, 1H); 6.93 (m, 1H); 6.63 (m, 2H); $C(CH_3)_3 1.28 (s, 27H); CH_2 1.11 (s, J_{WH} = 10.1 Hz,$ $^{13}C{^{1}H}$ NMR (C₆D₆) I = 25%, 6H). δ : $\equiv C(C_6H_5)$ 283.4 (br. s); C_6H_5 and py 150.5(s); 149.8(s); 136.8(s); 132.5(s); 125.6(s); 124.4(s); $CH_2 104.2$ (s, $J_{WC} = 89.2$ Hz, I = 13.7%); $C(CH_3)_3$ 36.4(s); C(CH₃)₃ 34.6(s). IR (KBr) cm⁻¹: 2945(s); 2850(s); 1595(m); 1580(m); 1480(s); 1440(s); 1380(s); 1355(s); 1235(s); 1225(s); 1115(m); 1065(m); 940(m); 750(s); 690(s). Found: C, 57.1; H, 7.5; N, 2.4. Calc. for WC₂₇H₄₃N: C, 57.4; H, 7.6; N, 2.5%.

Preparation of $((Me_3CCH_2)_3WC)_2$ and $((Me_3CCH_2)_3WC)_2 \cdot py_2$

An Et₂O (5 cm³) solution of ((^tBuO)₃WC)₂ (0.875 g, 1.05 mmol) was cooled to 0° C and an Et₂O (5 cm³) solution of Me₃CCH₂Li (0.532 g, 6.82 mmol) added via cannula. The mixture was stirred at 0° C for 1.5 h, the volume of the solution reduced by

about 1/2 and placed in a -20° C freezer. After 2 days 608 mg (71% yield) of dark red ((Me₃ CCH₂)₃WC)₂ was collected by filtration and dried *in vacuo*. The bis-pyridine adduct was formed by addition of excess pyridine to a suspension of ((Me₃CCH₂)₃WC)₂ in toluene and by removing the volatile components *in vacuo*.

((Me₃CCH₂)₃WC)₂: ¹H NMR (C₆D₆) δ : C(CH₃)₃ 1.28 (s, 54H); CH₂ 1.18 (s, J_{WH} = 9.2 Hz, I = 16.6%, 12H). ¹³C{¹H} NMR (C₆D₆) δ : CH₂ 105.5 (s, J_{WC} = 91 Hz, I = 15%); C(CH₃)₃ 35.9(s); C(CH₃) 34.5(s). IR (KBr) cm⁻¹: 2950(s); 2895(s); 2875(s); 2750(m); 1465(m); 1360(s); 1340(s); 1230(s); 1220(m); 1105(m); 750(m); 600(m); 520(m). Satisfactory analysis not obtained.

((Me₃CCH₂)₃WC)₂·py₂: ¹H NMR (C₆D₆) δ : py 8.63 (m, 2H); 6.97 (m, 1H); 6.64 (m, 2H); C(CH₃)₃ 1.43 (s, 27H); CH₂ 1.34 (s, 6H). ¹³C{¹H} NMR (C₆D₆) δ : \equiv C- 305.3(s); py 150.0(s); 136.0(s); 124.0(s); CH₂ 105.3 (s, J_{WC} = 89.8 Hz, I = 12.8%); C(CH₃)₃ 35.9(s); C(CH₃)₃ 34.5(s).

Preparation of (Me₃SiCH₂)₃WC^tBu

An Et₂O (5 cm³) solution of (^tBuO)₃WC^tBu (0.643 g, 1.4 mmol) was cooled to 0°C and Me₃SiCH₂MgCl (5.0 mmol, 1.0 M in Et₂O) was added via syringe. The mixture was stirred at 0°C for 1.75 h and the volatile components were removed *in vacuo*. The residue was extracted with 2×5 cm³ hexane and the solid filtered off and discarded. The volatile components were removed from the filtrate under a dynamic vacuum to leave a red oil that is approximately 95% pure as judged by ¹H NMR. Small amounts can be distilled onto a water cooled cold finger at *ca* 10⁻³ Torr and 55–

 60° C but, attempts to purify (Me₃SiCH₂)₃WC'Bu by short path distillation lead to decomposition.

(Me₃SiCH₂)₃WC'Bu: ¹H NMR (C₆D₆) δ : CMe₃ 1.55 (s, 9H); CH₂ 0.78 (s, J_{WH} = 9.8 Hz, I = 16%, 6H); SiMe₃ 0.14 (s, 27H). ¹³C{¹H} NMR (C₆D₆) δ : WC'Bu 319.5 (s, J_{WC} = 215.0 Hz, I = 15%); CH₂ 74.7 (s, J_{WC} = 78.9 Hz, I = 16%, J_{SiC} = 40.6, I = 11%); C(CH₃)₃ 33.2(s); C(CH₃) 32.5(s): Si(CH₃)₃ 2.9(s).

Acknowledgements—We thank the National Science Foundation for support. J.A.K. acknowledges support as a Chester Davis Fellow for 1988/89.

Supplementary materials. Atomic positional parameters have been deposited with the Cambridge Crystallographic Data Centre.

REFERENCES

- R. K. Viswanadham, D. J. Rowcliffe and J. Gurland (Eds), *Science of Hard Materials*. Plenum Press, New York (1983).
- G. S. Girolami, J. A. Jensen, D. M. Pllina, W. S. Williams, A. E. Kaloyeros and C. M. Alloca, J. Am. Chem. Soc. 1987, 109, 1579.
- 3. R. R. Schrock, Accts Chem. Res. 1986, 19, 342.
- M. H. Chisholm, D. M. Hoffman and J. C. Huffman, *Inorg. Chem.* 1983, 22, 2903.
- M. H. Chisholm, F. A. Cotton, M. W. Extine and R. L. Kelly, *Inorg. Chem.* 1979, 18, 116.
- (a) W₂(O'Bu)₆: M. Akiyama, M. H. Chisholm, F. A. Cotton, M. W. Extine, D. A. Haitko, D. Little and P. E. Fanwick, *Inorg. Chem.* 1979, 18, 2266; (b) ('BuO)₃W≡CR : M. L. Listemann and R. R. Schrock, *Organometalics* 1985, 4, 74.
- M. H. Chisholm, K. Folting, J. C. Huffman and C. C. Kirkpatrick, *Inorg. Chem.* 1984, 23, 1021.