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Abstract: Aryl ketones possessing methylsulfonyl and hydroxyl
substituents, that induce stereocontrol, selectively afford Z-olefins
using a Zn–TiCl4 catalyzed McMurry reaction.
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Condensation of carbonyl compounds as a method to syn-
thesize olefins using the McMurry reaction is a useful
transformation in organic synthesis.1 In this regard, mech-
anistic aspects2–5 of the McMurry reaction were studied in
considerable detail. Coe and Scriven6 reported a low va-
lent titanium-mediated McMurry reaction which afforded
(Z)-tamoxifen as the predominant stereoisomer (ratio
Z:E = 9:1). Other studies subsequently showed that steric
hindrance seems to be an important factor that affects the
stereoselectivity of the McMurry reaction since deoxy-
genation of the pinacolic intermediate results in preferen-
tial formation of the olefin in which the bulkier and
smaller substituents are cis to each other.7 We now report
a practical stereocontrol approach involving a McMurry
reaction using functionalized aryl ketones that coordinate
with metallic titanium to induce a high level of Z-selectiv-
ity. 

As a part of our ongoing program to develop novel and
highly selective COX-2 inhibitors,8–10 we required a
method to prepare (Z)-monoacetoxyphenyl analogs of the
very potent and highly selective COX-2 inhibitor 1,1-
diphenyl-2-(4-methylsulfonyl)hex-1-ene.11 In this regard,
carbonyl compounds 1 (R1 = SO2Me, R2 = H, Me, Et, n-
Pr, n-pentyl, n-hexyl, n-nonyl) required for these synthe-
ses were prepared in 85–92% yield by oxidation of the re-
spective methylthio compounds11–13 using either MCPBA
or Oxone®.14

The intermediate Z-olefin products 3 (R1 = SO2Me,
R2 = H, Me, Et, n-Pr, n-pentyl, n-hexyl, n-nonyl, R3 = 4-
hydroxyphenyl, R4 = Ph) were generated in situ using a
McMurry olefination reaction15 by Zn–TiCl4 catalyzed re-
ductive cross-coupling of compounds 1 (R1 = SO2Me,
R2 = H, Me, Et, n-Pr, n-pentyl, n-hexyl, n-nonyl) with 4-
hydroxybenzophenone (2, R3 = 4-hydroxyphenyl, R4 =
Ph). Subsequent acetylation of intermediates 316 afforded
the target (Z)-acetoxyphenyl products 4 (R2 = H, Me, Et,

n-Pr, n-pentyl, n-hexyl, n-nonyl) in 63–72% overall yield
(Scheme 1).17

Accordingly, we are pleased to report that the cross-cou-
pling reaction of two aryl ketones functionalized by a sul-
fonyl and a hydroxyl group, proceeds in a stereocontrolled
manner to afford the target Z-olefinic products 4
(Table 1). The structure of the starting materials 1, the
isolated intermediates 3, and the final products 4 were
consistent with their spectral (IR, 1H NMR, 13C NMR) and
microanalytical data. The absolute stereochemistry of (Z)-
4l (R2 = n-Pr) was unambiguously confirmed by a single
crystal X-ray analysis (Figure 1).

The stereocontrol achieved in this McMurry olefination
reaction is attributed to a polydentate transient pinacolic
intermediate which is formed by homolytic coupling of a
radical anion species generated from reduction of the car-
bonyl compounds 1 (R1 = SO2Me, R2 = H, Me, Et, n-Pr,
n-pentyl, n-hexyl, n-nonyl) and 2 (R3 = 4-hydroxyphenyl,
R4 = Ph) by Ti0.1 The Z-conformer likely arises from a
consecutive surface induction of active Ti0 to the polyden-
tate pinacolic intermediate, that is followed by subsequent
demetallation and deoxygenation reactions.4 In this re-
gard, the ‘phenoxy-Ti-sulfone’ induction plays an impor-
tant role for Z-stereoselection by forcing the sulfonyl and
phenoxy moieties to be positioned on the same side
(Figure 2). This explanation depicting the stereochemical
role of phenoxy and sulfone groups is consistent with the
stereochemical outcome observed for a set of control
reactions (see Table 1). For example, irrespective of

Scheme 1 Reagents and conditions: (a) Zn, TiCl4, THF, reflux 4.5
h; (b) AcCl, TEA, Et2O, 25 °C, 1.5 h.
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whether the ketones 1 possessed a R1 SO2Me or SMe
substituent, the cross-coupled reaction with ketones 2
(R3 = 4-bromophenyl, 4-methylphenyl, napthyl or phe-
nyl; R4 = H or Ph) all afforded a mixture of stereoisomers
3 in which the E:Z ratio was about 2:3 (see products 3a–g
in Table 1). A similar reaction of ketone 1 (R1 = SMe;
R2 = H) with ketone 2 (R3 = 4-hydroxyphenyl; R4 = Ph)
furnished 3h with a E:Z ratio of about 1:1. In contrast, the
cross-coupled reaction of the ketone 1 (R1 = SO2Me;
R2 = Et) with the ketone 2 (R3 = 4-hydroxyphenyl,
R4 = phenyl) afforded the Z-olefin 3i exclusively (>99%)
since none of the E-stereoisomer was detected in the prod-
uct. These data indicate that a sulfonyl moiety in one car-
bonyl compound 1 and a hydroxyl moiety in the other
carbonyl compound 2 is a requirement for high Z-stereo-
selectivity [see Z-products 4i–o that were isolated after
acetylation of the corresponding R3 hydroxyphenyl com-
pounds 3]. Further studies are currently in progress utiliz-
ing this stereocontrolled McMurry olefination reaction.

In conclusion, a new methodology has been developed to
control the stereochemistry of the McMurry olefination
reaction that will have a wide range of synthetic applica-
tions.

Table 1 Stereoselective Synthesis of Z-Olefins Using a McMurry Reaction

No. R1 R2 R3 R4 Yield (%) Z (%)a

3a SO2Me H (4-Br)Ph Ph 64 <56

3b SMe Me (4-Me)Ph Ph 65 <65

3c SO2Me Me (4-Me)Ph Ph 64 <66

3d SMe Et (4-Me)Ph Ph 60 <60

3e SO2Me H Naphthyl Ph 68 <53

3f SO2Me n-Pentyl Naphthyl Ph 68 <61

3g SMe n-Heptyl Ph H 61 <65

3h SMe H (4-OH)Ph Ph 63 <51

3i SO2Me Et (4-OH)Ph Ph 75 >99

4i SO2Me Et (4-OAc)Ph Ph 72 >99

4j SO2Me Me (4-OAc)Ph Ph 67 >90

4k SO2Me H (4-OAc)Ph Ph 67 >90

4l SO2Me n-Pr (4-OAc)Ph Ph 68 >99

4m SO2Me n-Pentyl (4-OAc)Ph Ph 70 >99

4n SO2Me n-Hexyl (4-OAc)Ph Ph 70 >99

4o SO2Me n-Nonyl (4-OAc)Ph Ph 63 >99

a Determined by 1H NMR.
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Figure 1 X-Ray crystal structure of (Z)-4l.18
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Figure 2 Proposed mechanism for stereoselective Z-olefin formati-
on as illustrated for (Z)-1-(4-hydroxyphenyl)-1-phenyl-2-(4-methyl-
sulfonylphenyl)pent-1-ene: A surface induction pattern involving
metallic titanium and the polydentate pinacolic intermediate.1,4

O O

O
S

O O

Ti

D
ow

nl
oa

de
d 

by
: U

ni
ve

rs
ity

 o
f P

itt
sb

ur
gh

. C
op

yr
ig

ht
ed

 m
at

er
ia

l.



1516 Md. J. Uddin et al. LETTER

Synlett 2004, No. 9, 1513–1516 © Thieme Stuttgart · New York

(18) Crystal data for (Z)-4l: Molecular formula: C26H26O4S, 
formula weight: 434.53, crystal system: monoclinic, space 
group: P21/c(14) with unit cell dimensions a = 8.0403 (6) Å, 
b = 14.5485 (12) Å, c = 19.9285 (16) Å, b = 101.4182 (15)º, 
V = 2285.0 (3) Å3, Z = 4, = 1.263 gcm–3, m = 0.171 mm–1. A 
crystal fragment of approximate dimensions(mm3) 0.73 × 
0.40 × 0.04 was mounted in a nonspecific orientation on 
Bruker PLATFORM/SMART 1000 CCD diffractometer. 
All intensity measurements were performed using Mo Ka 
radiation (l = 0.71073 Å) with a graphite crystal incident 
beam monochromator. The intensity data were collected at 
–80 °C using an w scan (0.3º) (10 s exposures). A total 4675 

independent reflections were collected to a maximum 2q 
limit at 52.9°. The structure was solved by direct methods. 
Refinement of atomic parameters was carried out by using 
full-matrix least-squares on F2 (SHELXL-93), giving final 
agreement factor (R indices) of R1 = 0.0484 and 
wR2 = 0.1116. Crystallographic data (excluding structure 
factors) have been deposited at the Cambridge 
Crystallographic Data Centre as supplementary publication 
number CCDC 228635. Copies of the data can be obtained 
free of charge by application to CCDC, 12 Union Road, 
Cambridge CB2 1EZ, UK (fax: 44(1223)336033 or e-mail: 
deposit@ccdc.cam.ac.uk).
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