

A Simple Synthetic Access to Differently 4-Substituted Neu5Ac2en Glycals Combining Elements of Molecules with Anti-Neuraminidase Activity

Pietro Allevi,^[a] Paola Rota,^{*[a]} Irene Sofia Agnolin,^[a] Antonio Gregorio,^[a] and Mario Anastasia^[a]

Keywords: Carbohydrates / Sialic acids / Glycals / Nucleophilic substitution / Rearrangement

A protocol for direct access to C-4-functionalized Neu5Ac2en derivatives by allylic substitution of an α -acetoxy group with various nucleophiles is reported. The DANA acetamido group is exchanged for a trifluoroacetylamido group (as in FANA) to avoid the formation of a stable 4,5-oxazoline. With

Introduction

Various glycals of *N*-acetylated neuraminic acid **1** (Neu5Ac; Figure 1), such as, for example, 5-acetamido-2,6anhydro-3,5-dideoxy-D-*glycero*-D-*galacto*-non-2-enoic acid **2a** (Neu5Ac2en, DANA),^[1–5] its 5-perfluoroacetylated analogue **2b** (FANA),^[6] and the 4-deoxy-4-guanidino congeners of DANA (i.e., Zanamivir, **2c**)^[1–3,7] and of FANA (i.e., **2d**),^[8] are potent inhibitors of sialidases (neuraminidases, NA). Sialidases are important surface glycoproteins of bacterial and viral membranes that play crucial roles in the spreading of infection to new host cells.^[3,7,8] For this reason, much effort has been put into the preparation of various DANA and FANA congeners substituted at C-4, as possible NA inhibitors.^[1,5,6–11]

Figure 1. Structures of Neu5Ac and its glycals.

 [a] Dipartimento di Scienze Biomediche Chirurgiche e Odontoiatriche, University of Milan, via Saldini 50, 20133 Milano, Italy Fax: +39-02-50316040
E-mail: paola.rota@unimi.it Homepage: http://www.unimi.it/
Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201300154. thiols, the reaction involves an initial attack at the anomeric carbon (Ferrier reaction) under kinetic control, followed by an equilibration of the nucleophile to the thermodynamically more stable 4-position.

As a part of our research into C-4-substituted sialic acid glycals combining elements of molecules with anti-NA activity, we have recently reported^[12,13] a simple synthetic strategy for the transformation of DANA and FANA glycals **3** and **4** into the 4 β -acylamidated FANA and DANA glycals, by a Ritter reaction (Scheme 1).^[14] To achieve this, we reversibly transformed peracetylated DANA ester **3**^[15] into peracetylated FANA methyl ester **4**^[16] to avoid the intramolecular β -attack of the 5-acetamido group onto the adjacent 4-position of the DANA glycal, which would inevitably form stable oxazoline^[17] **5** (Scheme 1). This allowed a Ritter reaction to take place to give 4 β -acetamido derivative **6b**, which could be transformed into DANA analogue glycal **7**, by a simple and selective exchange of its 5 β -acylamido group (Scheme 1).

Continuing our interest in NA inhibitors, we searched for a possible extension of the aforementioned Ritter reaction that could be used to insert many other different groups at the 4-position of a fluorinated Neu5Ac glycal. In this paper, we report the successful results obtained with a variety of nucleophiles together with a possible rationalization of the regio- and stereochemical outcomes of the reaction. For thiol nucleophiles, this involved a Ferrier reaction,^[18] a rearrangement that has been almost completely ignored in sialic acid glycal chemistry, apart from a study by K. Ikeda et al. on sialic acid 4,5-oxazoline **5**.^[19]

Results and Discussion

Initially, we verified that our Ritter reaction could be performed using acetonitrile as a reagent, in a different solvent, and in the presence of a Lewis acid promoter. In preliminary experiments, we obtained encouraging results with BF_3 ·Et₂O and with TMSOTf (TMS = trimethylsilyl), operating at 40 °C in dichloromethane or nitromethane

Scheme 1. Avoidance of oxazoline formation, and 4β -acetamidation of Neu5Ac glycals by a Ritter reaction. *Reagents and conditions:* (i) (CF₃CO)₂O, CH₃CN, 135 °C, 15 min; (ii) CH₃CN, H₂SO₄, 50 °C, 30 min; (iii) K₂CO₃, MeOH (aq.), 23 °C, 12 h, then CH₃COCl, MeOH (aq.), 23 °C, 30 min.

(Table 1). Under the best-found conditions, glycals 6a and 6b were formed in satisfactory yields and in very short reaction times (Table 1, entries 1, 2, and 7), although a decrease in the β -stereoselectivity was observed compared to the reactions where acetonitrile was used as the solvent (α/β) 2:3 rather than $\alpha/\beta = 0.10$.^[12,13] The stereoselectivity was not improved by varying the reaction conditions (temperature, solvent, Lewis acid, amount of reagent, etc.; Table 1, entries 3–6, 8, and 9), or even by using H_2SO_4 , the typical protic acid catalyst of the Ritter reaction^[14] (Table 1, entries 10 and 11). Since under milder conditions (lower temperature and less of the Lewis acid), the reaction appeared to take too long without any improvement of the stereoselectivity, we decided to perform our reaction at 40 °C, a temperature that would give convenient reaction times, using BF₃·Et₂O (10 equiv.) as promoter and dichloromethane as solvent. Under these conditions, the reaction worked satisfactory with several nucleophiles (Table 2), including sulfonamides (Table 2, entries 1–3), simple and less simple primary and secondary alcohols (Table 2, entries 4-10), substituted phenols (Table 2, entries 13-14), thiols, thiophenols, and amino acidic thiols (Table 2, entries 15-18), hydrides (Table 2, entry 19), and halogen ions (Table 2, entries 20-21). The results were poor only with tertiary alcohols and simple phenols (Table 2, entries 11-12). In all the successful cases, the formation of a 4-substituted glycal was observed, apart from the reactions with cysteine and triethylsilane (TESH), where an S_N 2-like reaction was observed with a shift of the double bond to give 2-substituted α glycosides 23a and 24a, respectively (Table 2, entries 18 and 19). Such a reaction, known as a Ferrier rearrangement, has been widely studied in neutral carbohydrate chemistry.^[18] where it has also been used to access thioglycopyranoside-containing S-linked disaccharides,^[20] but only recently has it received attention the sialic acid glycal series.[19]

In their pioneering studies on the Ferrier reaction of thiols with neutral hex-2-enopyranosides, A. Zamojski and W. Priebe,^[21] and then other authors,^[20,22,23] observed that, depending on the nature of the nucleophile and the reaction conditions, the rearrangement may result in the formation

Table 1. Ritter reaction conditions using CH₃CN as a reagent.^[a]

	ACO OAC ACO CF ₃ COHN	ÖAc	AcC D ₂ Me CF	AcO 3COHN 6a 4α 6b 4β	OCO ₂ Me
Entry	Lewis acid	Glycal [mmol]	Conditions T [°C] (t [h])	Solvent	Glycal 6 α/β ratio; yield [%]
1	BF ₃ ·Et ₂ O	10	40 (1)	CH ₂ Cl ₂	2:3; 81
2	BF ₃ ·Et ₂ O	10	40 (1)	CH ₃ NO ₂	2:3; 81
3	BF ₃ ·Et ₂ O	1	40 (48)	CH_2Cl_2	2:3; 75
4	BF ₃ ·Et ₂ O	10	25 (48)	CH_2Cl_2	2:3; 52
5	BF ₃ ·Et ₂ O	1	40 (48)	CH ₃ NO ₂	2:3; 68
6	BF ₃ ·Et ₂ O	10	25 (48)	CH ₃ NO ₂	2:3; 70
7	TMSOTf	10	40 (1)	CH_2Cl_2	2:3; 79
8	TMSOTf	1	40 (1)	CH ₃ NO ₂	2:3; 65
9	TMSOTf	10	25 (48)	CH_2Cl_2	2:3; 64
10	H_2SO_4	10	50 (48)	THF	2:3; 27
11	H_2SO_4	10	25 (48)	THF	2:3; 20

[[]a] Experimental conditions: glycal (0.2 mmol) in solvent (1.5 mL), CH₃CN (2 mmol).

of a thioglycoside alone, or together with a 3-thioglycal as a minor regioisomer. The former is the kinetic product of reaction, the latter the thermodynamic product. These authors isolated the rearranged isomer in increased amounts after prolonged treatment of the reaction mixture with the Lewis acid, or even after chromatography of the reaction mixture on silica.^[24,25]

Thus, we considered that the different regiochemistry observed in the reaction with protected cysteine (Table 2, entry 18) and simpler thiols (Table 2, entries 15–17) could signify that, in sialic acid glycals, thiols first attack the anomeric carbon in a kinetically controlled reaction, and then undergo equilibration to thermodynamically more stable glycals with the nucleophile bound to the carbon bearing the leaving group. This is consistent with the well-known ability of sulfides to rearrange under Lewis or Brønsted acidic conditions.^[20–23] The equilibration could be easier for simple thiols and more difficult for cysteine, probably as a Table 2. Intermolecular nucleophilic attack on Neu5-perfluoroacetylated glycals.^[a]

[a] Experimental conditions: glycal (0.2 mmol) in solvent (1.5 mL), CH₃CN (2 mmol).

consequence of the amino acidic functionality, which may coordinate to the acetoxy leaving group, or which, in some way, may cause a major difference in energy between glycoside **23a** and its allylic regioisomer(s).^[26]

In order to ascertain whether cysteine sialoside $23a^{[27]}$ could really be equilibrated to its 4 α -substituted regioisomer, or to a mixture of 4 α and 4 β epimers, we heated it in dichloromethane containing an increased amount (20 equiv.) of BF₃·Et₂O, for 2 h. After this treatment, sialoside **23a** gave 4-substituted glycals **27a** and **27b** (α/β ratio: 2:1; Scheme 2), which suggests that also the 4 α -substituted

thioglycals obtained with simple thiols (Table 2, entries 15– 17) could derive from the equilibration of first-formed 2substituted sialosides.

Scheme 2. Acidic rearrangement of cysteine Ferrier sialoside. *Rea*gents and conditions: (i) BF₃·Et₂O (20 equiv.), CH₂Cl₂, 40 °C, 2 h.

This hypothesis could also explain their α stereochemistry at C-4, opposite to that observed with other nucleophiles that could arise from direct attack at C-4 from the most favoured β face of the molecule.^[12]

To ascertain this, we designed two experiments. The first aimed to trap the possible Ferrier glycosides formed in the reactions, the second to verify the ability of these possible first-formed sialosides to rearrange into their 4-substituted regioisomers. Thus, we first treated FANA glycal 4 with MeOH, MeSO₂NH₂, and EtSH (O, N, and S nucleophiles) under milder conditions (23 °C) in separate experiments, and monitored the course of the reactions by TLC and NMR spectroscopy. In this way, in the first two reactions, we observed only the presence of the 4β -substituted epimers (i.e., 11b or 8b, respectively; Scheme 3, Path A and Path B). They formed after a few minutes and increased until the end of the reaction, i.e., the complete consumption of stating glycal 4.^[28] In contrast, in the reaction of glycal 4 with EtSH, we initially observed the formation of the 2α and 2β isomeric sialosides (i.e., 28a and 28b),^[27] together with the two 4α - and 4β -substituted analogues (i.e., **20a** and **20b**; as shown by ¹H NMR spectroscopy and TLC), all of which remained present until the complete disappearance of the starting glycal. After the reaction was complete, we isolated epimeric thioglycosides 28a and 28b, together with regioisomer **20b**, as an inseparable mixture, and also glycal 20a as a pure compound. Both the pairs of diastereomers showed the prevalence of the α over the β epimer (2:1; see Experimental section). Moreover, after heating the reaction mixture at 40 °C for an additional time (15 min), we isolated only the diastereomeric pair of thioesters 20a and 20b (2:1 ratio) in 80% yield.

These results strongly suggest that the reaction of protected FANA glycal 4 with thiols could follow a different course from that of oxygen or nitrogen nucleophiles, since they first give Ferrier products that are subsequently isomerized to give a pair of glycalic 4-substituted thioethers **20a** and **20b**. Moreover, since thioethers **20a** and **20b** were isolated with the same α/β ratio as the parent sialosides (i.e.,

Scheme 3. Allylic substitution and internal S-rearrangement. *Reagents and conditions:* (i) BF₃·Et₂O (1 equiv.), CH₂Cl₂, 25 °C; (ii) BF₃·Et₂O (10 equiv.), CH₂Cl₂, 40 °C.

28a and **28b**), it appeared to be possible that a concerted mechanism of isomerization could be operating in the equilibration of simpler thiols, probably through two parallel $S_N 2'$ processes (Scheme 4).

Scheme 4. Possible concerted equilibration of thiolic sialosides.

To support or exclude this idea, we *N*-transacylated Ferrier glycosides **29a** and **29b**^[19] to give *O*-sialosides **30a** and **30b**, and subjected these compounds to acidic treatment with BF₃·Et₂O (10 equiv., for 15 min) in dichloromethane in separate experiments (Scheme 5). In neither of the reactions did we obtain any glycal deriving from isomerization of the acetalic groups; we observed only the formation of perfluorinated oxazoline **31**, which was isolated as such or as 4 β -hydroxy FANA glycal **32**.^[13] Clearly, the acidic treatment causes a simple elimination of the 2-methoxy groups, the rearrangement of which is probably hindered by the immediate formation of oxazoline **31**. This result strongly supports the possibility that, in our reaction, alcohols directly attack C-4 of FANA glycal **4**, attacking the molecule from the less hindered β -side (Table 2).^[12]

In a parallel experiment, we prepared thioglycosides **28a** and **28b**,^[27] in pure form, as single isomers, by an independent route, and tested their possible rearrangement into glycals **20a** and **20b** (Scheme 6). For their preparation, we first treated oxazoline **5** with ethanethiol in the presence of Bi-(OTf)₃, and obtained unfluorinated thioglycosides **33a** and

Scheme 5. Synthesis and acidic equilibration of Ferrier sialosides **30a** and **30b**. *Reagents and conditions:* (i) $(CF_3CO)_2O$, Et_3N , CH_3CN , 135 °C, 5 min; (ii) CH_3OH (10 equiv.), $BF_3 \cdot Et_2O$ (10 equiv.), CH_2Cl_2 , 40 °C, 15 min, then Et_3N (0.1 mL), CH_2Cl_2 , H_2O ; (iii) CH_3OH (10 equiv.), $BF_3 \cdot Et_2O$ (10 equiv.), CH_2Cl_2 , 40 °C, 15 min, then H_2O , CH_2Cl_2 .

Scheme 6. Synthesis and acidic equilibration of diastereomerically pure Ferrier thiosialosides **28a** and **28b**. (ii) (CF₃CO)₂O, Et₃N, CH₃CN, 135 °C, 5 min; (iii) EtSH (10 equiv.), BF₃·Et₂O (10 equiv.), CH₂Cl₂, 40 °C, 15 min.

33b,^[27] which could be separated by rapid chromatography and transformed, by direct *N*-transacylation, into the corresponding perfluorinated thioglycosides (i.e., **28a** and **28b**; Scheme 6). Each of them was completely characterized and then subjected to separate treatment with EtSH and BF₃·Et₂O in dichloromethane, for 15 min at 40 °C, a process that transformed them into two very similar mixtures of the 4 α - and 4 β -thioether derivatives (i.e., **20a** and **20b**), which were obtained in comparably high yields and with very close epimeric ratios (α/β : 2.3:1.0).

These results confirm that the 4-substituted glycals formed in the reactions with thiols, can derive from isomerization of first-formed thioglycosides.^[28] Moreover, they also show that the isomerization reactions of the simple thiol derivatives follow a course similar to that of sialosyl cysteine **23a**. A single mechanism has not been identified for this process, but it may involve, in combination, a series

Scheme 7. Possible contributing events resulting in the formation of 4-substituted thioglycals **20a** and **20b**.

of alternative pathways, which we have summarized in Scheme 7. The possibility of an equilibration of the 4a- and 4β -substituted epimers (i.e., **20a** and **20b**) was excluded by an experiment involving the separate acidic treatment of these two thioethers (BF₃·Et₂O for 15 min at 40 °C). In the Scheme, we hypothesized that, under our reaction conditions, different routes can contribute to the final result. We considered a concerted mechanism, and the intermediate formation of a discrete carboxonium ion and/or of a possible transient perfluorinated oxazoline. However, in absence of other evidence, we cannot decide which is the major contributing mechanism.

Conclusions

In conclusion, we have developed a general protocol for the synthesis of 4-substituted 2,3-unsaturated neuraminic acid derivatives (FANA and DANA glycals) containing elements of molecules with anti-NA activity. The protocol involves the reaction of a protected FANA glycal with various nucleophiles in the presence of a Lewis acid. Under our reaction conditions, direct allylic substitution at C-4 occurs with oxygen or nitrogen nucleophiles, while with thiols, the reaction goes through a Ferrier reaction and a subsequent equilibration. Thus, our results expand the applicability of Ferrier reaction to C-4-functionalized sialic acid glycals, highlighting its synthetic utility for the preparation of these highly sought after compounds.

Experimental Section

General Remarks: Nuclear magnetic resonance spectra were recorded at 298 K operating at 500.13 MHz for ¹H and 125.76 MHz for ¹³C. Chemical shifts are reported in parts per million (ppm, δ units). In CDCl₃, chemical shifts were calibrated to the residual CDCl₃ signal (δ = 7.26 ppm for ¹H and at δ = 77.0 ppm for ¹³C spectra). In D₂O spectra, chemical shifts were calibrated to *t*BuOH as an internal standard (δ = 1.24 ppm for ¹H and at δ = 30.29 ppm for ¹³C spectra). Proton and carbon assignments were established, if necessary, using ¹H–¹H and ¹H–¹³C correlated NMR experiments. ¹H NMR spectroscopic data are tabulated in the following order: multiplicity (s, singlet; d, doublet; t, triplet; br. s, broad singlet; m, multiplet), coupling constant(s) in Hertz, number of pro-

tons, assignment of proton(s). Optical rotations were recorded using a polarimeter equipped with a 1 dm cell. $[a]_{D}$ values are given in $10^{-1} \text{deg cm}^2 \text{g}^{-1}$, and the concentrations are given in g100 mL⁻¹. Mass spectrometry was performed using a quadrupole ion trap mass spectrometer equipped with an electrospray (ESI) ion source. The spectra were collected in continuous flow mode by connecting the infusion pump directly to the ESI source. Solutions of compounds were infused at a flow rate of 5 μ L min⁻¹. The spray voltage was set at 5.0 kV in the positive and at 4.5 kV in the negative ion mode, with a capillary temperature of 220 °C. Full-scan mass spectra were recorded by scanning a m/z range of 100–2000. All reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm E. Merck silica gel plates (60F 254), visualized using UV light, 50% sulfuric acid, or 0.2% ninhydrin in ethanol and heat. Usual work-up, unless otherwise indicated, refers to the following sequence: Et₃N (0.1 mL) was added to the reaction mixtures, the solvents were evaporated under a nitrogen flow and reduced pressure, the residue was diluted with EtOAc, and the organic phase was washed with ice-cold NaHCO₃ (saturated aq.). Finally, the organic phase was dried with Na₂SO₄ and filtered, and the solvents were evaporated.

Ritter Reaction Using CH_3CN as a Reagent, with Different Solvents and Lewis Acids

Methyl 7,8,9-Tri-O-acetyl-4-(acetylamino)-2,6-anhydro-3,4,5-trideoxy-5-[(trifluoroacetyl)amino]-D-glycero-D-talo-non-2-enonate (6a) and Methyl 7,8,9-Tri-O-acetyl-4-(acetylamino)-2,6-anhydro-3,4,5-trideoxy-5-[(trifluoroacetyl)amino]-D-glycero-D-galacto-non-2enonate (6b): Glycal 4 was dissolved in the appropriate solvent (1.5 mL) and treated with CH₃CN (2.0 mmol). The parameters that were modified (i.e., temperature, time, and catalyst, as well as the yields) are reported in Table 1. The reaction mixtures were worked up as indicated in the General Remarks to give, after flash chromatography, eluting with EtOAc/hexane (80:20 v/v), the less polar glycal (i.e., 6b), followed by the more polar glycal (i.e., 6a), both in pure form.

Data for Glycal 6b: M.p. $133-135 \,^{\circ}$ C (CH₂Cl₂/diisopropyl ether). C₂₀H₂₅F₃N₂O₁₁ (526.41): calcd. C 45.63, H 4.79, N 5.32; found C 45.56, H 4.67, N 5.30.

Data for Glycal 6a: M.p. 146–148 °C (CH₂Cl₂/diisopropyl ether). $C_{20}H_{25}F_3N_2O_{11}$ (526.41): calcd. C 45.63, H 4.79, N 5.32; found C 45.56, H 4.67, N 5.30. All other physico-chemical properties were practically identical to those previously reported.

Reaction of Perfluorinated Glycal 4 with Different Nucleophiles under BF₃·Et₂O Catalysis: The reactions were performed on starting glycal 4 (0.2 mmol) dissolved in CH₂Cl₂ (1.5 mL), using the appropriate nucleophile (2.0 mmol) and BF₃·Et₂O (246 μ L, 2.0 mmol) at 40 °C for the time indicated in Table 2. Then, the reaction mixtures were worked-up as indicated in the General Remarks to give, after flash chromatography, the appropriate glycal.

In some cases, the reactions were additionally performed on glycal 4 (0.2 mmol) dissolved in CH₂Cl₂ (1.5 mL), with the appropriate nucleophile (2.0 mmol) and BF₃·Et₂O (25 μ L, 0.2 mmol) at 25 °C.

Methyl 7,8,9-Tri-*O*-acetyl-2,6-anhydro-3,4,5-trideoxy-4-[(methyl-sulfonyl)amino]-5-[(trifluoroacetyl)amino]-D-*glycero*-D-*talo*-non-2-enonate (8b)

Method 1: Glycal **8b** (98 mg, 87%) was obtained as a white solid by the reaction of glycal **4** (105 mg, 0.2 mmol) with MeSO₂NH₂ (190 mg), heating for 15 min at 40 °C in CH₂Cl₂, m.p. 155–157 °C (CH₂Cl₂/diisopropyl ether). $[a]_{20}^{20} = -72.8$ (c = 1 in CHCl₃). ¹H NMR (CDCl₃): $\delta = 7.63$ (d, $J_{NH,5} = 10.0$ Hz, 1 H, N-H), 6.09 (d, $J_{3,4} = 5.7$ Hz, 1 H, 3-H), 5.58 (d, $J_{NH,4} = 9.0$ Hz, 1 H, H-NSO₂), 5.48 (dd, $J_{7,6} = 2.2$, $J_{7,8} = 4.1$ Hz, 1 H, 7-H), 5.36 (ddd, $J_{8,9a} = 2.7$, $J_{8,7} = 4.1, J_{8,9b} = 7.9$ Hz, 1 H, 8-H), 4.78 (dd, $J_{9a,8} = 2.7, J_{9a,9b} =$ 12.4 Hz, 1 H, 9a-H), 4.40 (ddd, $J_{5,4} = 4.7$, $J_{5,6} = J_{5,NH} = 10.0$ Hz, 1 H, 5-H), 4.28 (dd, $J_{6,7}$ = 2.2, $J_{6,5}$ = 10.0 Hz, 1 H, 6-H), 4.19–4.10 (overlapping, 2 H, 9b-H and 4-H), 3.81 (s, 3 H, COOCH₃), 3.03 (s, 3 H, NHSO₂CH₃), 2.09 (s, 3 H, OCOCH₃), 2.08 (s, 3 H, OCOCH₃), 2.05 (s, 3 H, OCOCH₃) ppm. ¹³C NMR (CDCl₃): δ =171.0, 170.9 (2 C, OCOCH₃ at C-8 and OCOCH₃ at C-9), 169.8 (OCOCH₃ at C-7), 161.6 (C-1), 157.6 (q, $J_{C,F}$ = 38 Hz, COCF₃), 145.5 (C-2), 119.0-110.0 (CF₃), 106.7 (C-3), 72.9 (C-6), 71.4 (C-8), 67.9 (C-7), 62.2 (C-9), 52.8 (COOCH₃), 47.1 (C-4), 46.3 (C-5), 41.2 (SO₂CH₃), 20.9, 20.7, 20.4 (3C, OCOCH₃) ppm. MS (ESI⁺): m/z = 563.7 [M + H]⁺, 585.5 [M + Na]⁺, 1150.1 [2M + Na]⁺. $C_{19}H_{25}F_3N_2O_{12}S$ (562.47): calcd. C 40.57, H 4.48, N 4.98; found C 40.81, H 4.57, N 5.11.

Method 2: Glycal **8b** was also obtained by treating glycal **4** (105 mg, 0.2 mmol) in CH₂Cl₂ (1.5 mL) with MeSO₂NH₂ (190 mg, 2.0 mmol) and BF₃·Et₂O (25 μ L, 0.2 mmol) at 25 °C for 48 h. Glycal **8b** (62 mg, 55%) was obtained as a white solid together with starting glycal **4** (32 mg, 30%).

Data for 8b: MS (ESI⁺): $m/z = 563.5 [M + H]^+$, 585.2 [M + Na]⁺. C₁₉H₂₅F₃N₂O₁₂S (562.47): calcd. C 40.57, H 4.48, N 4.98; found C 40.68, H 4.51, N 5.01. All other physico-chemical properties were practically identical to those previously reported.

Methyl 7,8,9-Tri-O-acetyl-2,6-anhydro-3,4,5-trideoxy-4-[(phenylsulfonyl)amino]-5-[(trifluoroacetyl)amino]-D-glycero-D-talo-non-2-enonate (9b): Glycal 9b (110 mg, 88%) was obtained as a white solid by the reaction of glycal 4 (105 mg, 0.2 mmol) with PhSO₂NH₂ (314 mg), heating for 15 min at 40 °C in CH₂Cl₂, m.p. 127-129 °C $(CH_2Cl_2/diisopropyl ether)$. $[a]_D^{20} = -15.7 (c = 1 in CHCl_3)$. ¹H NMR (CDCl₃): δ = 7.88–7.83 (overlapping, 2 H, SO₂Ph), 7.75 (d, $J_{\rm NH.5}$ = 9.2 Hz, 1 H, N-H), 7.64–7.57 (m, 1 H, SO₂Ph), 7.55–7.45 (overlapping, 2 H, SO₂Ph), 6.01 (d, J_{NH,4} = 8.5 Hz, 1 H, H-NSO₂), 5.52 (d, $J_{3,4}$ = 5.8 Hz, 1 H, 3-H), 5.49 (dd, $J_{7,6}$ = 1.8, $J_{7,8}$ = 5.0 Hz, 1 H, 7-H), 5.39 (ddd, $J_{8,9a} = 2.7$, $J_{8,7} = 5.0$, $J_{8,9b} = 7.4$ Hz, 1 H, 8-H), 4.66 (dd, $J_{9a,8} = 2.7$, $J_{9a,9b} = 12.4$ Hz, 1 H, 9a-H), 4.36–4.29 (m, 1 H, 5-H), 4.28 (dd, $J_{6,7}$ = 1.8, $J_{6,5}$ = 10.8 Hz, 1 H, 6-H), 4.14 (dd, $J_{9b,8} = 7.4$, $J_{9b,9a} = 12.4$ Hz, 1 H, 9b-H), 3.80–3.85 (m, 1 H, 4-H), 3.71 (s, 3 H, COOCH₃), 2.09 (s, 3 H, OCOCH₃), 2.08 (s, 3 H, OCOCH₃), 2.04 (s, 3 H, OCOCH₃) ppm. $^{13}\mathrm{C}$ NMR (CDCl₃): δ = 170.9, 169.7 (3 C, OCOCH₃), 161.6 (C-1), 157.6 (q, J_{C,F} = 38 Hz, COCF₃), 145.4 (C-2), 139.5, 133.4, 129.5, 126.9 (6 C, Ph), 119.0-110.0 (CF₃), 106.1 (C-3), 72.7 (C-6), 70.8 (C-8), 67.8 (C-7), 62.3 (C-9), 52.6 (COOCH₃), 46.9 (C-4), 46.2 (C-5), 20.7, 20.6, 20.4 (3 C, OCOCH₃) ppm. MS (ESI⁺): $m/z = 625.2 \text{ [M + H]}^+$, 647.3 [M + Na^{+} , 1271.4 $[2M + Na]^{+}$. $C_{24}H_{27}F_3N_2O_{12}S$ (624.54): calcd. C 46.16, H 4.36, N 4.49; found C 45.97, H 4.21, N 4.33.

Methyl 7,8,9-Tri-*O*-acetyl-2,6-anhydro-3,4,5-trideoxy-4-{[(4-methylphenyl)sulfonyl]amino}-5-[(trifluoroacetyl)amino]-D-glycero-Dtalo-non-2-enonate (10b): Glycal 10b (110 mg, 86%) was obtained as a white solid by the reaction of glycal 4 (105 mg, 0.2 mmol) with *p*-toluenesulfonamide (342 mg), heating for 15 min at 40 °C in CH₂Cl₂, m.p. 133–135 °C (CH₂Cl₂/diisopropyl ether). $[a]_{D}^{20} = -21.3$ (*c* = 1 in CHCl₃). ¹H NMR (CDCl₃): $\delta = 7.74-7.69$ (overlapping, 2 H, SO₂PhCH₃), 7.49 (d, $J_{NH,5} = 9.3$ Hz, 1 H, N-H), 7.25–7.30 (overlapping, 2 H, SO₂PhCH₃), 5.61 (d, $J_{NH,4} = 8.0$ Hz, 1 H, H-NSO₂), 5.54 (d, $J_{3,4} = 5.8$ Hz, 1 H, 3-H), 5.48 (dd, $J_{7,6} = 2.0$, $J_{7,8} = 5.1$ Hz, 1 H, 7-H), 5.40 (ddd, $J_{8,9a} = 2.7$, $J_{8,7} = 5.1$, $J_{8,9b} = 7.4$ Hz, 1 H, 8-H), 4.65 (dd, $J_{9a,8} = 2.7$, $J_{9a,9b} = 12.4$ Hz, 1 H, 9a-H), 4.36– 4.30 (m, 1 H, 5-H), 4.23 (dd, $J_{6,7} = 2.0$, $J_{6,5} = 10.9$ Hz, 1 H, 6-H), 4.13 (dd, $J_{9b,8} = 7.4$, $J_{9b,9a} = 12.4$ Hz, 1 H, 9b-H), 3.84 (ddd, $J_{4,5}$

= 4.6, $J_{4,3}$ = 5.8, $J_{4,\text{NH}}$ = 8.0 Hz, 1 H, 4-H), 3.74 (s, 3 H, COOCH₃), 2.44 (s, 3 H, SO₂PhCH₃), 2.08 (s, 3 H, OCOCH₃), 2.06 (s, 3 H, OCOCH₃), 2.03 (s, 3 H, OCOCH₃) ppm. ¹³C NMR (CDCl₃): δ = 170.9, 170.8, 169.7 (3 C, OCOCH₃), 161.6 (C-1), 157.7 (q, $J_{C,F}$ = 38 Hz, COCF₃), 145.6 (C-2), 144.6, 135.2, 130.1, 127.1 (6 C, Ph), 119.0–110.0 (CF₃), 106.0 (C-3), 72.8 (C-6), 70.8 (C-8), 67.7 (C-7), 62.2 (C-9), 52.6 (COOCH₃), 47.0 (C-4), 46.1 (C-5), 21.6 (PhCH₃), 20.8, 20.6, 20.4 (3 C, OCOCH₃) ppm. MS (ESI⁺): m/z = 639.4 [M + H]⁺, 661.3 [M + Na]⁺, 1300.0 [2M + Na]⁺. C₂₅H₂₉F₃N₂O₁₂S (638.56): calcd. C 47.02, H 4.58, N 4.39; found C 47.21, H 4.57, N 4.31.

Methyl 7,8,9-Tri-*O*-acetyl-2,6-anhydro-3,5-dideoxy-4-*O*-methyl-5-[(trifluoroacetyl)amino]-D-*glycero*-D-*talo*-non-2-enonate (11b)

Method 1: Glycal 11b (81 mg, 81%) was obtained as a white solid by the reaction of glycal 4 (105 mg, 0.2 mmol) with MeOH (81 μ L), heating for 15 min at 40 °C in CH₂Cl₂, m.p. 122-124 °C (CH₂Cl₂/ diisopropyl ether). $[a]_D^{20} = -11.3$ (c = 1 in CHCl₃). ¹H NMR (CDCl₃): δ = 6.71 (d, $J_{\rm NH,5}$ = 9.5 Hz, 1 H, N-H), 6.26 (d, $J_{3,4}$ = 5.3 Hz, 1 H, 3-H), 5.39 (dd, $J_{7,6} = 2.1$, $J_{7,8} = 5.0$ Hz, 1 H, 7-H), 5.33 (ddd, $J_{8,9a} = 2.8$, $J_{8,7} = 5.0$, $J_{8,9b} = 6.9$ Hz, 1 H, 8-H), 4.66 (dd, $J_{9a,8} = 2.8$, $J_{9a,9b} = 12.4$ Hz, 1 H, 9a-H), 4.41–4.36 (m, 1 H, 5-H), 4.33 (dd, $J_{6,7} = 2.1$, $J_{6,5} = 10.7$ Hz, 1 H, 6-H), 4.14 (dd, $J_{9b,8}$ = 6.9, $J_{9b,9a}$ = 12.4 Hz, 1 H, 9b-H), 3.82 (s, 3 H, COOCH₃), 3.80 (dd, $J_{4,5} = 3.9$, $J_{4,3} = 5.3$ Hz, 1 H, 4-H), 3.44 (s, 3 H, OCH₃), 2.10 (s, 3 H, OCOCH₃), 2.07 (s, 3 H, OCOCH₃), 2.05 (s, 3 H, OCOCH₃) ppm. ¹³C NMR (CDCl₃): δ = 170.6, 170.1, 169.7 (3 C, OCOCH₃), 161.7 (C-1), 157.0 (q, $J_{C,F}$ = 38 Hz, COCF₃), 145.9 (C-2), 119.0– 110.0 (CF₃), 105.9 (C-3), 73.1 (C-6), 71.0 (C-8), 69.2 (C-4), 67.6 (C-7), 62.1 (C-9), 56.6 (OCH₃), 52.6 (COOCH₃), 46.2 (C-5), 20.9, 20.7, 20.6 (3 C, OCOCH₃) ppm. MS (ESI⁺): m/z = 500.6 [M + H]⁺, 523.5 [M + Na]⁺. C₁₉H₂₄F₃NO₁₁ (499.39): calcd. C 45.70, H 4.84, N 2.80; found C 45.88, H 5.02, N 2.88.

Method 2: Glycal **11b** was also obtained by treating glycal **4** (105 mg, 0.2 mmol) in CH₂Cl₂ (1.5 mL) with MeOH (81 μ L, 2.0 mmol) and BF₃·Et₂O (25 μ L, 0.2 mmol), at 25 °C for 48 h. Glycal **11b** (45 mg, 45%) was obtained as a white solid together with starting glycal **4** (37 mg, 35%).

Data for 11b: MS (ESI⁺): $m/z = 500.1 [M + H]^+$, 523.7 [M + Na]⁺. C₁₉H₂₄F₃NO₁₁ (499.39): calcd. C 45.70, H 4.84, N 2.80; found C 45.93, H 5.00, N 2.79. All other physico-chemical properties were practically identical to those previously reported.

7,8,9-Tri-O-acetyl-2,6-anhydro-3,5-dideoxy-4-O-ethyl-5-Methyl [(trifluoroacetyl)amino]-D-glycero-D-talo-non-2-enonate (12b): Glycal 12b (81 mg, 79%) was obtained as a white solid by the reaction of glycal 4 (105 mg, 0.2 mmol) with EtOH (117 µL), heating for 15 min at 40 °C in CH₂Cl₂, m.p. 135-137 °C (CH₂Cl₂/diisopropyl ether). $[a]_{D}^{20} = -55.3 \ (c = 1 \text{ in CHCl}_{3})$. ¹H NMR (CDCl₃): $\delta = 6.71$ (d, $J_{\rm NH,5}$ = 9.3 Hz, 1 H, N-H), 6.24 (d, $J_{3,4}$ = 5.3 Hz, 1 H, 3-H), 5.41 (dd, $J_{7,6} = 2.1$, $J_{7,8} = 4.9$ Hz, 1 H, 7-H), 5.33 (ddd, $J_{8,9a} = 2.8$, $J_{8,7} = 4.9, J_{8,9b} = 7.1$ Hz, 1 H, 8-H), 4.69 (dd, $J_{9a,8} = 2.8, J_{9a,9b} =$ 12.4 Hz, 1 H, 9a-H), 4.40–4.35 (m, 1 H, 5-H), 4.33 (dd, $J_{6,7} = 2.1$, $J_{6,5} = 10.6$ Hz, 1 H, 6-H), 4.15 (dd, $J_{9b,8} = 7.1$, $J_{9b,9a} = 12.4$ Hz, 1 H, 9b-H), 3.89 (dd, $J_{4,5}$ = 4.0, $J_{4,3}$ = 5.3 Hz, 1 H, 4-H), 3.82 (s, 3 H, COOCH₃), 3.78–3.73 (m, 1 H, OCH₂CH₃), 3.53–3.46 (m, 1 H, OCH₂CH₃), 2.11 (s, 3 H, OCOCH₃), 2.07 (s, 3 H, OCOCH₃), 2.05 (s, 3 H, OCOCH₃), 1.24–1.20 (m, 3 H, OCH₂CH₃) ppm. ¹³C NMR (CDCl₃): δ = 170.6, 170.2, 169.7 (3 C, OCOCH₃), 161.8 (C-1), 157.1 (q, $J_{C,F}$ = 38 Hz, COCF₃), 145.6 (C-2), 119.0–110.0 (CF₃), 106.8 (C-3), 73.1 (C-6), 71.1 (C-8), 67.7 (C-4), 67.6 (C-7), 64.8 (OCH₂CH₃), 62.1 (C-9), 52.6 (COOCH₃), 46.2 (C-5), 20.9, 20.7, 20.6 (3 C, OCOCH₃), 15.3 (OCH₂CH₃) ppm. MS (ESI⁺): m/z =

514.5 $[M + H]^+$, 536.4 $[M + Na]^+$. $C_{20}H_{26}F_3NO_{11}$ (513.42): calcd. C 46.79, H 5.10, N 2.73; found C 46.51, H 5.01, N 2.50.

Methyl 7,8,9-Tri-O-acetyl-2,6-anhydro-3,5-dideoxy-4-O-propyl-5-[(trifluoroacetyl)amino]-D-glycero-D-talo-non-2-enonate (13b): Glycal 13b (75 mg, 71%) was obtained as a white solid by the reaction of glycal 4 (105 mg, 0.2 mmol) with *n*PrOH (150 μ L), heating for 30 min at 40 °C in CH₂Cl₂, m.p. 124-127 °C (CH₂Cl₂/diisopropyl ether). $[a]_{D}^{20} = -38.2 \ (c = 1 \text{ in CHCl}_{3})$. ¹H NMR (CDCl₃): $\delta = 6.71$ (d, $J_{NH,5} = 9.5$ Hz, 1 H, N-H), 6.24 (d, $J_{3,4} = 5.3$ Hz, 1 H, 3-H), 5.41 (dd, $J_{7,6} = 2.2$, $J_{7,8} = 5.0$ Hz, 1 H, 7-H), 5.35 (ddd, $J_{8,9a} = 2.8$, $J_{8,7} = 5.0, J_{8,9b} = 6.9$ Hz, 1 H, 8-H), 4.68 (dd, $J_{9a,8} = 2.8, J_{9a,9b} =$ 12.4 Hz, 1 H, 9a-H), 4.40–4.35 (m, 1 H, 5-H), 4.32 (dd, $J_{6.7} = 2.2$, $J_{6.5} = 10.6$ Hz, 1 H, 6-H), 4.15 (dd, $J_{9b.8} = 6.9$, $J_{9b.9a} = 12.4$ Hz, 1 H, 9b-H), 3.88 (dd, $J_{4,5}$ = 4.0, $J_{4,3}$ = 5.3 Hz, 1 H, 4-H), 3.81 (s, 3 H, COOCH₃), 3.69–3.63 (m, 1 H, OCH_{2a}CH₂CH₃), 3.41–3.34 (m, 1 H, OCH_{2b}CH₂CH₃), 2.10 (s, 3 H, OCOCH₃), 2.07 (s, 3 H, OC-OCH₃), 2.05 (s, 3 H, OCOCH₃), 1.67-1.54 (overlapping, 2 H, OCH₂CH₂CH₃), 0.92 (m, 3 H, OCH₂CH₂CH₃) ppm. ¹³C NMR (CDCl₃): δ = 170.6, 170.1, 169.7 (3 C, OCOCH₃), 161.8 (C-1), 157.0 (q, $J_{C,F}$ = 38 Hz, COCF₃), 145.6 (C-2), 119.0–110.0 (CF₃), 106.8 (C-3), 73.1 (C-6), 71.0 (C-8), 70.9 (OCH₂CH₂), 67.8 (C-7), $(OCH_2CH_2CH_3)$ ppm. MS (ESI⁺): m/z = 528.4 [M + H]⁺, 551.4 $[M + Na]^+$. C₂₁H₂₈F₃NO₁₁ (527.44): calcd. C 47.82, H 5.35, N 2.66; found C 47.69, H 5.40, N 2.62.

7,8,9-Tri-O-acetyl-2,6-anhydro-4-O-butyl-3,5-dideoxy-5-Methyl [(trifluoroacetyl)amino]-D-glycero-D-talo-non-2-enonate (14b): Glycal 14b was obtained as a white solid (80 mg, 74%) by the reaction of glycal 4 (105 mg, 0.2 mmol) with *n*BuOH (183 μ L), heating for 30 min at 40 °C in CH₂Cl₂, m.p. 118-121 °C (CH₂Cl₂/diisopropyl ether). $[a]_{D}^{20} = -36.1$ (*c* = 1 in CHCl₃). ¹H NMR (CDCl₃): $\delta = 6.72$ (d, $J_{\rm NH,5}$ = 9.5 Hz, 1 H, N-H), 6.24 (d, $J_{3,4}$ = 5.3 Hz, 1 H, 3-H), 5.41 (dd, $J_{7,6} = 2.2$, $J_{7,8} = 4.9$ Hz, 1 H, 7-H), 5.34 (ddd, $J_{8,9a} = 2.8$, $J_{8,7} = 4.9, J_{8,9b} = 7.0$ Hz, 1 H, 8-H), 4.69 (dd, $J_{9a,8} = 2.8, J_{9a,9b} =$ 12.4 Hz, 1 H, 9a-H), 4.40–4.34 (m, 5-H), 4.32 (dd, $J_{6,7} = 2.2$, $J_{6,5}$ = 10.6 Hz, 1 H, 6-H), 4.16 (dd, $J_{9b,8}$ = 7.0, $J_{9b,9a}$ = 12.4 Hz, 1 H, 9b-H), 3.87 (dd, $J_{4,5}$ = 4.0, $J_{4,3}$ = 5.3 Hz, 1 H, 4-H), 3.82 (s, 3 H, COOCH₃), 3.73-3.67 [m, 1 H, OCH_{2a}(CH₂)₂CH₃], 3.45-3.38 [m, 1 H, OCH_{2b}(CH₂)₂CH₃], 2.11 (s, 3 H, OCOCH₃), 2.07 (s, 3 H, OC-OCH3), 2.05 (s, 3 H, OCOCH3), 1.60-1.52 (overlapping, 2 H, OCH₂CH₂CH₂CH₃), 1.42-1.31 [overlapping, 2 H, O(CH₂)₂-CH₂CH₃], 0.93 (m, 3 H, OCH₂CH₂CH₃) ppm. ¹³C NMR (CDCl₃): δ = 170.6, 170.2, 169.7 (3 C, OCOCH₃), 161.8 (C-1), 157.0 (q, J_{C,F}) = 38 Hz, COCF₃), 145.6 (C-2), 119.0–110.0 (CF₃), 106.8 (C-3), 73.2 (C-6), 71.1 (C-8), 69.1 [OCH₂(CH₂)₂CH₃], 67.8 (C-7), 67.6 (C-4), 62.1 (C-9), 52.6 (COOCH₃), 46.3 (C-5), 31.7 (OCH₂CH₂CH₂CH₃), 20.9, 20.7, 20.6 (3 C, OCOCH₃), 19.2 [O(CH₂)₂CH₂CH₃], 13.7 $[O(CH_2)_3CH_3]$ ppm. MS (ESI⁺): $m/z = 542.4 [M + H]^+$, 564.5 [M + Na]⁺. $C_{22}H_{30}F_{3}NO_{11}$ (541.47): calcd. C 48.80, H 5.58, N 2.59; found C 48.98, H 5.48, N 2.43.

Methyl 7,8,9-Tri-*O*-acetyl-2,6-anhydro-3,5-dideoxy-4-*O*-isopropyl-5-[(trifluoroacetyl)amino]-D-glycero-D-galacto-non-2-enonate (15a) and Methyl 7,8,9-Tri-*O*-acetyl-2,6-anhydro-3,5-dideoxy-4-*O*-isopropyl-5-[(trifluoroacetyl)amino]-D-glycero-D-talo-non-2-enonate (15b): Starting from glycal 4 (105 mg, 0.2 mmol) and *i*PrOH (153 μ L), after heating for 60 min at 40 °C in CH₂Cl₂, a mixture of glycals 15b and 15a was obtained. This mixture was separated by rapid chromatography, eluting with hexane/EtOAc (80:20 v/v), to give less polar glycal 15b (53 mg, 50%), followed by more polar glycal 15a (26 mg, 25%), both in pure form.

Data for Glycal 15a: M.p. 136–138 °C (CH₂Cl₂/diisopropyl ether). $[a]_{D}^{20} = +33.1 (c = 1 \text{ in CHCl}_3).$ ¹H NMR (CDCl₃): $\delta = 6.65 (d, d)$

FULL PAPER

 $J_{\text{NH},5} = 8.0 \text{ Hz}, 1 \text{ H}, \text{ N-H}$), 6.10 (d, $J_{3,4} = 3.3 \text{ Hz}, 1 \text{ H}, 3 \text{-H}$), 5.48 (dd, $J_{7,6} = J_{7,8} = 4.7$ Hz, 1 H, 7-H), 5.39 (ddd, $J_{8,9a} = 3.9$, $J_{8,7} =$ 4.7, $J_{8.9b} = 5.6$ Hz, 1 H, 8-H), 4.56 (dd, $J_{6.7} = 4.7$, $J_{6.5} = 7.7$ Hz, 1 H, 6-H), 4.49 (dd, $J_{9a,8} = 3.9$, $J_{9a,9b} = 12.2$ Hz, 1 H, 9a-H), 4.33 (dd, $J_{4,3} = 3.3$, $J_{4,5} = 6.3$ Hz, 1 H, 4-H), 4.20 (dd, $J_{9b,8} = 5.6$, $J_{9b,9a} = 12.2 \text{ Hz}, 1 \text{ H}, 9b\text{-H}), 4.00\text{--}3.93 \text{ (m, 1 H, 5-H)}, 3.84\text{--}3.77$ [overlapping, 4 H, COOCH₃ and OCH(CH₃)₂], 2.12 (s, 3 H, OC-OCH₃), 2.06 (s, 3 H, OCOCH₃), 2.03 (s, 3 H, OCOCH₃), 1.18 [d, $J_{CH,(CH3)2a} = 6.1 \text{ Hz}, 3 \text{ H}, \text{ OCH}(CH_3)_{2a}], 1.15 \text{ [d}, J_{CH,(CH3)2b} =$ 6.1 Hz, 3 H, OCH(CH₃)_{2b}] ppm. ¹³C NMR (CDCl₃): δ = 170.5, 170.2, 169.7 (3 C, OCOCH₃), 161.8 (C-1), 157.1 (q, $J_{C,F}$ = 38 Hz, COCF₃), 143.2 (C-2), 119.0–105.5 (CF₃), 109.8 (C-3), 74.5 (C-6), 71.7 [OCH(CH₃)₂], 69.7 (C-8), 68.8 (C-4), 67.9 (C-7), 61.6 (C-9), 52.5 (COOCH₃), 50.1 (C-5), 22.9 [OCH(CH₃)_{2a}], 21.7 [OCH- $(CH_3)_{2b}$, 20.8, 20.7, 20.5 (3 C, OCOCH₃) ppm. MS (ESI⁺): m/z = 528.3 $[M + H]^+$, 551.4 $[M + Na]^+$. $C_{21}H_{28}F_3NO_{11}$ (527.44): calcd. C 47.82, H 5.35, N 2.66; found C 47.62, H 5.48, N 2.53.

Data for 15b: M.p. 141–143 °C. $[a]_D = 24.2$ (c = 1 in CHCl₃). ¹H NMR (CDCl₃): δ = 6.70 (d, $J_{\text{NH},5}$ = 9.4 Hz, 1 H, N-H), 6.17 (d, $J_{3,4} = 5.3$ Hz, 1 H, 3-H), 5.41 (dd, $J_{7,6} = 2.2$, $J_{7,8} = 4.8$ Hz, 1 H, 7-H), 5.34 (ddd, $J_{8,9a} = 2.8$, $J_{8,7} = 4.8$, $J_{8,9b} = 7.1$ Hz, 1 H, 8-H), 4.70 (dd, $J_{9a,8} = 2.8$, $J_{9a,9b} = 12.4$ Hz, 1 H, 9a-H), 4.37–4.31 (m, 1 H, 5-H), 4.29 (dd, $J_{6,7}$ = 2.2, $J_{6,5}$ = 10.6 Hz, 1 H, 6-H), 4.16 (dd, $J_{9b,8}$ = 7.1, $J_{9b,9a}$ = 12.4 Hz, 1 H, 9b-H), 3.95 (dd, $J_{4,5}$ = 4.0, $J_{4,3}$ = 5.3 Hz, 1 H, 4-H), 3.84–3.75 [overlapping, 4 H, COOCH₃ and OCH(CH₃)₂], 2.10 (s, 3 H, OCOCH₃), 2.07 (s, 3 H, OCOCH₃), 2.05 (s, 3 H, OCOCH₃), 1.20 [d, $J_{CH,(CH3)2a}$ = 6.1 Hz, 3 H, OCH- $(CH_3)_{2a}$], 1.16 [d, $J_{CH,(CH_3)_{2b}}$ = 6.1 Hz, 3 H, $OCH(CH_3)_{2b}$] ppm. ¹³C NMR (CDCl₃): δ = 170.6, 170.2, 169.7 (3 C, OCOCH₃), 161.9 (C-1), 157.0 (q, $J_{C,F}$ = 38 Hz, COCF₃), 145.3 (C-2), 119.0–105.5 (CF₃), 107.8 (C-3), 73.1 (C-6), 71.4 [OCH(CH₃)₂], 71.2 (C-8), 67.6 (C-7), 65.8 (C-4), 62.1 (C-9), 52.6 (COOCH₃), 46.3 (C-5), 23.3 [OCH(CH₃)_{2a}], 21.7 [OCH(CH₃)_{2b}], 20.9, 20.7, 20.6 (3 C, OC-OCH₃) ppm. MS (ESI⁺): $m/z = 528.3 [M + H]^+$, 551.4 [M + Na]⁺. $C_{21}H_{28}F_3NO_{11}$ (527.44): calcd. C 47.82, H 5.35, N 2.66; found C 47.62, H 5.48, N 2.49.

Methyl 7,8,9-Tri-O-acetyl-2,6-anhydro-4-O-benzyl-3,5-dideoxy-5-[(trifluoroacetyl)amino]-D-glycero-D-talo-non-2-enonate (16b): Glycal 16b (96 mg, 83%) was obtained as a white solid by the reaction of glycal 4 (105 mg, 0.2 mmol) with BnOH (207 µL), heating for 60 min at 40 °C in CH2Cl2, m.p. 119-121 °C (CH2Cl2/diisopropyl ether). $[a]_{D}^{20} = -31.1$ (*c* = 1 in CHCl₃). ¹H NMR (CDCl₃): $\delta = 7.43$ -7.27 (overlapping, 5 H, Ph), 6.75 (d, $J_{\rm NH,5}$ = 8.0 Hz, 1 H, N-H), 6.28 (d, $J_{3,4}$ = 5.3 Hz, 1 H, 3-H), 5.42 (dd, $J_{7,6}$ = 1.4, $J_{7,8}$ = 5.2 Hz, 1 H, 7-H), 5.37 (ddd, $J_{8,9a} = 2.8$, $J_{8,7} = 5.2$, $J_{8,9b} = 6.8$ Hz, 1 H, 8-H), 4.76 (d, $J_{CH2a,CH2b}$ = 11.4 Hz, 1 H, OC H_{2a} Ph), 4.70 (dd, $J_{9a,8}$ = 2.8, $J_{9a,9b}$ = 12.5 Hz, 1 H, 9a-H), 4.49 (d, $J_{CH2b,CH2a}$ = 11.4 Hz, 1 H, OCH_{2b}Ph), 4.42–4.38 (overlapping, 2 H, 5-H and 6-H), 4.17 (dd, $J_{9b,8} = 6.8$, $J_{9b,9a} = 12.5$ Hz, 1 H, 9b-H), 4.00–3.98 (m, 1 H, 4-H), 3.85 (s, 3 H, COOCH₃), 2.12 (s, 3 H, OCOCH₃), 2.09 (s, 3 H, OCOCH₃), 2.07 (s, 3 H, OCOCH₃) ppm. ¹³C NMR (CDCl₃): δ = 170.6, 170.1, 169.7 (3 C, OCOCH₃), 161.8 (C-1), 157.0 (q, $J_{C,F}$ $= 38 \text{ Hz}, COCF_3$, 145.9 (C-2), 136.6, 128.8, 128.6, 128.2 (6 C, Ph), 119.0-110.0 (CF₃), 106.2 (C-3), 73.1 (C-6), 71.1 (OCH₂Ph), 70.9 (C-8), 67.5 (C-7), 66.9 (C-4), 62.1 (C-9), 52.6 (COOCH₃), 46.2 (C-5), 20.9, 20.7, 20.6 (3 C, OCOCH₃) ppm. MS (ESI⁺): m/z = 576.4 $[M + H]^+$, 598.5 $[M + Na]^+$. $C_{25}H_{28}F_3NO_{11}$ (575.49): calcd. C 52.18, H 4.90, N 2.43; found C 52.07, H 5.00, N 2.32.

Methyl 7,8,9-Tri-*O*-acetyl-2,6-anhydro-3,5-dideoxy-4-*O*-[*N*-acetyl-2',3'-*O*-(1-methylethylidene)-cytidinyl]-5-[(trifluoroacetyl)amino]-Dglycero-D-talo-non-2-enonate (17b):

Glycal 17b (92 mg, 58%) was obtained as a white solid by the reaction of glycal 4 (105 mg, 0.2 mmol) with protected cytidine (130 mg, 0.4 mmol), heating for 120 min at 40 °C in CH₂Cl₂, m.p. 129–131 °C (CH₂Cl₂/diisopropyl ether). $[a]_{D}^{20} = -63.1$ (c = 1 in CHCl₃). ¹H NMR (CDCl₃): δ = 9.67 (br. s, 1 H, NHAc), 9.29 (br. s, 1 H, NHCOCF₃), 7.52 (d, $J_{6.5}$ = 7.4 Hz, 1 H, 6-H), 7.46 (d, $J_{5.6}$ = 7.4 Hz, 1 H, 5-H), 6.19 (d, $J_{3'',4''}$ = 5.3 Hz, 1 H, 3''-H), 5.67– 5.61 (overlapping, 2 H, 7''-H and 8''-H), 5.54 (d, $J_{2',3'}$ = 6.3 Hz, 1 H, 2'-H), 5.36 (s, 1 H, 1'-H), 5.20-5.15 (m, 1 H, 3'-H), 5.11 (dd, $J_{9a'',8''} = 1.6, J_{9a'',9b''} = 12.1$ Hz, 1 H, 9a''-H), 4.43–4.31 (overlapping, 2 H, 5''-H and 6''-H), 4.20-4.14 (overlapping, 2 H, 4'-H and 9b''-H), 4.01 (dd, $J_{5a',4'} = 1.8$, $J_{5a',5b'} = 10.3$ Hz, 1 H, 5a'-H), 3.86 (dd, $J_{4'',5''}$ = 3.8, $J_{4'',3''}$ = 5.3 Hz, 1 H, 4''-H), 3.79 (s, 3 H, CO-OCH₃), 3.48 (dd, $J_{5b',4'} = 1.1$, $J_{5b',5a'} = 10.3$ Hz, 1 H, 5b'-H), 2.22 (s, 3 H, NHCOCH₃), 2.13 (s, 3 H, OCOCH₃), 2.11 (s, 3 H, OC-OCH₃), 2.0 (s, 3 H, OCOCH₃), 1.54 [s, 3 H, C(CH₃)_a], 1.34 [s, 3 H, C(CH₃)_b] ppm. ¹³C NMR (CDCl₃): δ = 171.4 (NHCOCH₃ at C-4), 170.8 (CH₃COO at C-9''), 170.5 (CH₃COO at C-8''), 169.5 (CH₃COO at C-7''), 163.9 (C-4), 161.9 (C-1''), 157.3 (q, $J_{C,F}$ = 38 Hz, COCF₃), 154.4 (C-2), 148.8 (C-6), 145.5 (C-2"), 119.0-110.0 (CF₃), 114.1 [C(CH₃)₂], 106.3 (C-3''), 99.3 (C-5), 97.1 (C-1'), 88.0 (C-4'), 83.8 (C-2'), 80.0 (C-3'), 72.8 (C-6''), 72.5 (C-8''), 69.0 (C-7''), 68.7 (C-5'), 67.1 (C-4''), 62.9 (C-9'), 52.5 (COOCH₃), 46.7 (C-5''), 27.2 [C(CH₃)₂], 24.8 [C(CH₃)₂], 24.6 (NHCOCH₃ at C-4), 21.3, 20.8, 20.6 (3 C, OCOCH₃) ppm. MS (ESI⁺): m/z = 793.7 [M + H]⁺, 816.6 [M + Na]⁺. $C_{32}H_{39}F_3N_4O_{16}$ (792.66): calcd. C 48.49, H 4.96, N 7.07; found C 48.71, H 4.70, N 6.98.

Methyl 7,8,9-Tri-O-acetyl-2,6-anhydro-4-O-(4-chlorophenyl)-3,5-dideoxy-5-[(trifluoroacetyl)amino]-D-glycero-D-talo-non-2-enonate (18b): 18b (80 mg, 67%) was obtained as a white solid by the reaction of glycal 4 (105 mg, 0.2 mmol) with 4-chlorophenol (347 μ L), heating for 60 min at 40 °C in CH₂Cl₂, m.p. 129-131 °C (CH₂Cl₂/ diisopropyl ether). $[a]_D^{20} = -63.1$ (c = 1 in CHCl₃). ¹H NMR (CDCl₃): δ = 7.33–7.28 (overlapping, 2 H, Ph), 6.91–6.87 (overlapping, 2 H, Ph), 6.84 (d, $J_{\rm NH,5}$ = 9.0 Hz, 1 H, N-H), 6.25 (d, $J_{3,4}$ = 5.3 Hz, 1 H, 3-H), 5.54 (dd, $J_{7,6} = 2.0$, $J_{7,8} = 4.8$ Hz, 1 H, 7-H), 5.40 (ddd, $J_{8,9a} = 2.8$, $J_{8,7} = 4.8$, $J_{8,9b} = 6.9$ Hz, 1 H, 8-H), 4.78 (dd, $J_{4,5} = 3.7$, $J_{4,3} = 5.3$ Hz, 1 H, 4-H), 4.75 (dd, $J_{9a,8} = 2.8$, $J_{9a,9b}$ = 12.5 Hz, 1 H, 9a-H), 4.65–4.56 (overlapping, 2 H, 5-H and 6-H), 4.21 (dd, $J_{9b,8} = 6.9$, $J_{9b,9a} = 12.5$ Hz, 1 H, 9b-H), 3.83 (s, 3 H, COOCH₃), 2.14 (s, 3 H, OCOCH₃), 2.12 (s, 3 H, OCOCH₃), 2.09 (s, 3 H, OCOCH₃) ppm. ¹³C NMR (CDCl₃): δ = 170.6, 170.3, 169.7 (3 C, OCOCH₃), 161.4 (C-1), 157.2 (q, $J_{C,F} = 38$ Hz, COCF₃), 154.9 (Ph), 146.5 (C-2), 129.9, 117.5 (5 C, Ph), 119.0-105.5 (CF₃), 104.9 (C-3), 73.0 (C-6), 71.2 (C-8), 67.9 (C-7), 67.5 (C-4), 62.0 (C-9), 52.8 (COOCH₃), 46.2 (C-5), 20.9, 20.7, 20.5 (3 C, CH₃COO) ppm. MS (ESI⁺): $m/z = 596.4 [M + H]^+$, $618.6 [M + Na]^+$. C₂₄H₂₅ClF₃NO₁₁ (595.90): calcd. C 48.37, H 4.23, N 2.35; found C 48.41, H 4.20, N 2.61.

Methyl 7,8,9-Tri-O-acetyl-2,6-anhydro-3,5-dideoxy-4-O-(4-methoxyphenyl)-5-[(trifluoroacetyl)amino]-D-glycero-D-galacto-non-2-enonate (19a): Glycal 19a (66 mg, 56%) was obtained as a white solid by the reaction of glycal 4 (105 mg, 0.2 mmol) with 4-chlorophenol (347 µL), heating for 60 min at 40 °C in CH₂Cl₂, m.p. 116–118 °C. $[a]_{D}^{20} = +21.7 \ (c = 1 \text{ in CHCl}_3).$ ¹H NMR (CDCl₃): $\delta = 6.93-6.86$ (overlapping, 4 H, Ph), 6.66 (d, $J_{NH.5} = 7.9$ Hz, 1 H, N-H), 6.10 (d, $J_{3,4} = 2.5$ Hz, 1 H, 3-H), 5.43 (dd, $J_{7,6} = 2.1$, $J_{7,8} = 4.5$ Hz, 1 H, 7-H), 5.35 (ddd, $J_{8,9a} = 2.7$, $J_{8,7} = 4.5$, $J_{8,9b} = 7.2$ Hz, 1 H, 8-H), 4.77 (dd, $J_{9a,8} = 2.7$, $J_{9a,9b} = 12.4$ Hz, 1 H, 9a-H), 4.58 (dd, $J_{6,7}$ = 2.1, $J_{6,5}$ = 9.7 Hz, 1 H, 6-H), 4.35 (dd, $J_{4,3}$ = 2.5, $J_{4,5}$ = 10.1 Hz, 1 H, 4-H), 4.19 (dd, $J_{9b,8} = 7.2$, $J_{9b,9a} = 12.4$ Hz, 1 H, 9b-H), 4.08– 4.01 (m, 1 H, 5-H), 3.81 (s, 3 H, COOCH₃), 2.23 (s, 3 H, PhCH₃), 2.09 (s, 3 H, OCOCH₃), 2.07 (s, 3 H, OCOCH₃), 2.05 (s, 3 H, OCOCH₃) ppm. ¹³C NMR (CDCl₃): δ = 170.8, 170.6, 170.2 (3 C, OCOCH₃), 162.2 (C-1), 157.5 (q, J_{C,F} = 38 Hz, COCF₃), 151.4 (Ph), 144.2 (C-2), 130.7, 129.5, 128.9, 124.6, 115.2 (5 C, Ph), 119.0-105.5 (CF₃), 113.4 (C-3), 76.9 (C-6), 71.5 (C-8), 68.2 (C-7), 62.3 (C-9), 52.4 (COOCH₃), 51.0 (C-5), 37.2 (C-4), 20.9 (PhCH₃), 20.7, 20.5 (3 C, CH_3COO) ppm. MS (ESI⁺): $m/z = 592.5 [M + H]^+$, 514.5 $[M + Na]^+$. C₂₅H₂₈F₃NO₁₂ (575.49): calcd. C 50.18, H 4.90, N 2.43; found C 50.11, H 4.84, N 2.39.

Methyl 7,8,9-Tri-*O*-acetyl-2,6-anhydro-3,5-dideoxy-4-*S*-ethyl-4thio-5-[(trifluoroacetyl)amino]-D-*glycero*-D-*galacto*-non-2-enonate (20a) and Methyl 7,8,9-Tri-*O*-acetyl-2,6-anhydro-3,5-dideoxy-4-*S*ethyl-4-thio-5-[(trifluoroacetyl)amino]-D-*glycero*-D-*talo*-non-2-enonate (20b)

Method 1: Starting from glycal 4 (105 mg, 0.2 mmol) and EtSH (148 μ L), and heating for 15 min at 40 °C in CH₂Cl₂, a mixture of glycals **20a** and **20b** was obtained. This mixture was separated by flash chromatography, eluting with hexane/EtOAc (80:20 v/v), to give less polar glycal **20b** (30 mg, 28%), followed by more polar glycal **20a** (60 mg, 57%), both in pure form.

Data for Glycal 20a: M.p. 121–123 °C. $[a]_D^{20} = +33.5$ (c = 1 in CHCl₃). ¹H NMR (CDCl₃): δ = 6.70 (d, $J_{\text{NH},5}$ = 9.0 Hz, 1 H, N-H), 6.13 (d, $J_{3,4}$ = 3.0 Hz, 1 H, 3-H), 5.45 (dd, $J_{7,6}$ = 2.8, $J_{7,8}$ = 5.6 Hz, 1 H, 7-H), 5.37 (ddd, $J_{8,9a} = 2.9$, $J_{8,7} = 5.6$, $J_{8,9b} = 6.3$ Hz, 1 H, 8-H), 4.63 (dd, $J_{9a,8} = 2.9$, $J_{9a,9b} = 12.4$ Hz, 1 H, 9a-H), 4.39 (dd, $J_{6,7} = 2.8$, $J_{6,5} = 6.4$ Hz, 1 H, 6-H), 4.19 (dd, $J_{9b,8} = 6.3$, $J_{9b,9a} = 12.4$ Hz, 1 H, 9b-H), 4.02–3.94 (m, 1 H, 5-H), 3.81 (s, 3 H, COOCH₃), 3.70 (dd, *J*_{4,3} = 3.0, *J*_{4,5} = 9.0 Hz, 1 H, 4-H), 2.64–2.55 (overlapping, 2 H, SCH₂CH₃), 2.14 (s, 3 H, OCOCH₃), 2.07 (s, 3 H, OCOCH₃), 2.05 (s, 3 H, OCOCH₃), 1.25 (t, J_{CH3,CH2S} = 7.4 Hz, 3 H, SCH₂CH₃) ppm. ¹³C NMR (CDCl₃): δ = 170.6, 170.3, 170.0 (3 C, OCOCH₃), 161.6 (C-1), 157.4 (q, $J_{C,F} = 38$ Hz, COCF₂), 144.0 (C-2), 119.0-110.0 (CF₃), 112.1 (C-3), 75.7 (C-6), 70.4 (C-8), 68.0 (C-7), 61.8 (C-9), 52.5 (COOCH₃), 49.0 (C-5), 42.1 (C-4), 23.9 (SCH₂CH₃), 20.8, 20.6 (3 C, OCOCH₃), 14.5 (SCH₂CH₃) ppm. MS (ESI⁺): $m/z = 530.6 [M + H]^+$, 552.5 [M + Na]⁺. $C_{20}H_{26}F_3NO_{10}S$ (529.48): calcd. C 45.37, H 4.95, N 2.65; found C 45.51, H 5.05, N 2.77.

Data for Glycal 20b: M.p. 133–135 °C. $[a]_{D}^{20} = -29.9$ (*c* = 1 in CHCl₃). ¹H NMR (CDCl₃): $\delta = 6.85$ (d, $J_{NH,5} = 10.0$ Hz, 1 H, N-H), 6.20 (d, $J_{3,4} = 5.4$ Hz, 1 H, 3-H), 5.46 (dd, $J_{7,6} = 2.8$, $J_{7,8} = 5.0$ Hz, 1 H, 7-H), 5.32 (ddd, $J_{8,9a} = 3.0$, $J_{8,7} = 5.0$, $J_{8,9b} = 6.7$ Hz, 1 H, 8-H), 4.65 (dd, $J_{9a,8} = 3.0$, $J_{9a,9b} = 12.4$ Hz, 1 H, 9a-H), 4.62–4.56 (m, 1 H, 5-H), 4.19–4.13 (overlapping, 2 H, 9b-H and 6-H), 3.80 (s, 3 H, COOCH₃), 3.54 (dd, $J_{4,3} = J_{4,5} = 5.4$ Hz, 1 H, 4-H), 2.67–2.54 (overlapping, 2 H, SCH₂CH₃), 2.10 (s, 3 H, OCOCH₃), 2.08 (s, 3 H, OCOCH₃), 2.06 (s, 3 H, OCOCH₃), 1.29 (t, $J_{CH3,CH2S} = 7.4$ Hz, 3 H, SCH₂CH₃) ppm. ¹³C NMR (CDCl₃): $\delta = 170.6$, 170.1, 169.7 (3 C, OCOCH₃), 161.6 (C-1), 156.8 (q, $J_{C,F} = 38$ Hz,

COCF₃), 143.0 (C-2), 119.0–110.0 (CF₃), 109.6 (C-3), 73.8 (C-6), 70.8 (C-8), 67.6 (C-7), 61.9 (C-9), 52.5 (COOCH₃), 45.9 (C-5), 42.2 (C-4), 28.7 (SCH₂CH₃), 20.9, 20.7, 20.5 (3 C, OCOCH₃), 15.1 (SCH₂CH₃) ppm. MS (ESI⁺): m/z = 530.8 [M + H]⁺, 552.1 [M + Na]⁺. C₂₀H₂₆F₃NO₁₀S (529.48): calcd. C 45.37, H 4.95, N 2.65; found C 45.21, H 5.01, N 2.73.

Method 2: Glycals 20a and 20b were also obtained by treating glycal 4 (105 mg, 0.2 mmol) in CH₂Cl₂ (1.5 mL) with EtSH (148 μ L) and BF₃·Et₂O (25 μ L, 0.2 mmol), at 25 °C for 48 h. After this time, the starting glycal had completely disappeared, and after general work-up, ¹H NMR spectroscopic analysis of the crude product showed a mixture of the major regioisomers as a pair of diastereomers (i.e., 20a and 20b; α/β , 2.3:1) and of their parent sialosides, the minor regioisomers, as a pair of diastereomers (i.e., 28a and 28b; α/β , 2.3:1). The crude mixture of thioglycoside 28a, 28b, 30a, and 30b showed: MS (ESI⁺): m/z = 530.6 [M + H]⁺, 552.8 [M + Na]⁺.

i) Flash chromatography, eluting with hexane/EtOAc (80:20 v/v), first gave less polar glycal **20b** as an inseparable mixture together with parent sialosides **28a** and **28b** (46 mg, 43%; based on ¹H NMR spectroscopy), then more polar glycal **20a** (39 mg, 37%), in pure form, as a white solid.

Data for Glycal 20a: MS (ESI⁺): $m/z = 530.5 [M + H]^+$, 552.2 [M + Na]⁺. C₂₀H₂₆F₃NO₁₀S (529.48): calcd. C 45.37, H 4.95, N 2.65; found C 45.45, H 5.01, N 2.74. All other physico-chemical properties were practically identical to those previously reported.

ii) Alternatively, on heating the reaction mixture of thioglycosides **28a**, **28b**, **30a**, and **30b** for 15 min at 40 °C in CH₂Cl₂, a mixture of glycals **20a** and **20b** was obtained that, after flash chromatography, eluting with hexane/EtOAc (80:20 v/v), gave less polar glycal **20b** (27 mg, 26%), followed by more polar glycal **20a** (55 mg, 54%), both in pure form.

Data for Glycal 20a: MS (ESI⁺): $m/z = 530.3 \text{ [M + H]}^+$, 552.26 [M + Na]⁺. C₂₀H₂₆F₃NO₁₀S (529.48): calcd. C 45.37, H 4.95, N 2.65; found C 45.40, H 4.87, N 2.60.

Data for Glycal 20b: MS (ESI⁺): $m/z = 530.0 \text{ [M + H]}^+$, 552.23 [M + Na]⁺. C₂₀H₂₆F₃NO₁₀S (529.48): calcd. C 45.37, H 4.95, N 2.65; found C 45.45, H 4.99, N 2.62. All other physico-chemical properties were practically identical to those previously reported.

Methyl 7,8,9-Tri-O-acetyl-2,6-anhydro-3,5-dideoxy-4-S-octyl-4thio-5-[(trifluoroacetyl)amino]-D-glycero-D-galacto-non-2-enonate (21a): Glycal 21a (75 mg, 61%) was obtained as a white solid by the reaction of glycal 4 (105 mg, 0.2 mmol) with 1-octanethiol (347 µL), heating for 30 min at 40 °C in CH₂Cl₂, m.p. 109-111 °C. $[a]_{D}^{20} = +46.1$ (c = 1 in CHCl₃). ¹H NMR (CDCl₃): $\delta = 6.86$ (d, $J_{\rm NH,5}$ = 9.1 Hz, 1 H, N-H), 6.11 (d, $J_{3,4}$ = 2.9 Hz, 1 H, 3-H), 5.45 (dd, $J_{7,6} = 2.6$, $J_{7,8} = 5.2$ Hz, 1 H, 7-H), 5.33 (ddd, $J_{8,9a} = 2.9$, $J_{8,7}$ = 5.2, $J_{8,9b}$ = 6.7 Hz, 1 H, 8-H), 4.67 (dd, $J_{9a,8}$ = 2.9, $J_{9a,9b}$ = 12.4 Hz, 1 H, 9a-H), 4.37 (dd, J_{6,7} = 2.6, J_{6,5} = 9.3 Hz, 1 H, 6-H), 4.17 (dd, $J_{9b,8} = 6.7$, $J_{9b,9a} = 12.4$ Hz, 1 H, 9b-H), 4.00–3.95 (m, 1 H, 5-H), 3.81 (s, 3 H, COOCH₃), 3.66 (dd, $J_{4,3} = 2.9$, $J_{4,5} = 9.3$ Hz, 1 H, 4-H), 2.60-2.47 [overlapping, 2 H, SCH₂(CH₂)₆CH₃], 2.13 (s, 3 H, OCOCH₃), 2.06 (s, 3 H, OCOCH₃), 2.04 (s, 3 H, OCOCH₃), 1.58-1.50 [overlapping, 2 H, SCH₂CH₂(CH₂)₅CH₃], 1.38-1.22 [overlapping, 10 H, SCH₂CH₂(CH₂)₅CH₃], 0.87 [t, J_{CH3,CH2(CH2)68} = 7.4 Hz, 3 H, S(CH₂)₇CH₃] ppm. ¹³C NMR (CDCl₃): δ = 170.8, 170.3, 170.2 (3 C, OCOCH₃), 161.6 (C-1), 157.4 (q, J_{C,F} = 38 Hz, COCF₃), 144.0 (C-2), 119.0-110.0 (CF₃), 112.4 (C-3), 75.9 (C-6), 70.7 (C-8), 68.0 (C-7), 61.9 (C-9), 52.5 (COOCH₃), 48.7 (C-5), 42.4 (C-4), 31.8 [SCH₂(CH₂)₆CH₃], 29.6, 29.4, 29.1, 28.8, 22.6 [6 C, SCH₂(CH₂)₆CH₃], 20.8, 20.6, (3 C, OCOCH₃), 14.0 [S(CH₂)₇CH₃]

FULL PAPER

ppm. MS (ESI⁺): $m/z = 614.5 [M + H]^+$, 636.6 [M + Na]⁺. C₂₆H₃₈F₃NO₁₀S (613.64): calcd. C 50.89, H 6.24, N 2.28; found C 50.01, H 6.13, N 2.17.

Methyl 7,8,9-Tri-*O*-acetyl-2,6-anhydro-3,5-dideoxy-4-*S*-phenyl-4thio-5-[(trifluoroacetyl)amino]-D-glycero-D-galacto-non-2-enonate (22a) and Methyl 7,8,9-Tri-*O*-acetyl-2,6-anhydro-3,5-dideoxy-4-*S*phenyl-4-thio-5-[(trifluoroacetyl)amino]-D-glycero-D-talo-non-2-enonate (22b): Starting from glycal 4 (105 mg, 0.2 mmol) and PhSH (205 μ L), after heating for 15 min at 40 °C in CH₂Cl₂, a mixture of glycals 22a and 22b was obtained. This was separated by flash chromatography, eluting with hexane/EtOAc (80:20 v/v), to give less polar glycal 22b (16 mg, 14%), followed by more polar glycal 22a (81 mg, 70%), both in pure form.

Data for Glycal 22a: M.p. 111–112 °C. $[a]_{D}^{20} = +44.1$ (c = 1 in CHCl₃). ¹H NMR (CDCl₃): δ = 7.51–7.46 (overlapping, 2 H, SPh), 7.35–7.29 (overlapping, 3 H, SPh), 7.12 (d, $J_{\rm NH,5}$ = 9.1 Hz, 1 H, N-H), 6.15 (d, $J_{3,4} = 2.7$ Hz, 1 H, 3-H), 5.36 (dd, $J_{7,6} = 1.8$, $J_{7,8} =$ 5.1 Hz, 1 H, 7-H), 5.24 (ddd, $J_{8.9a} = 2.6$, $J_{8.7} = 5.1$, $J_{8.9b} = 7.0$ Hz, 1 H, 8-H), 4.68 (dd, $J_{9a,8} = 2.6$, $J_{9a,9b} = 12.4$ Hz, 1 H, 9a-H), 4.32 $(dd, J_{6,7} = 1.8, J_{6,5} = 10.0 \text{ Hz}, 1 \text{ H}, 6\text{-H}), 4.12 (dd, J_{9b,8} = 7.0, J_{9b,9a})$ = 12.4 Hz, 1 H, 9b-H), 4.02 (dd, $J_{4,3}$ = 2.7, $J_{4,5}$ = 9.6 Hz, 1 H, 4-H), 3.94–3.87 (m, 1 H, 5-H), 3.76 (s, 3 H, COOCH₃), 2.07 (s, 3 H, OCOCH₃), 2.02 (overlapping, 6 H, 2 OCOCH₃) ppm. ¹³C NMR $(CDCl_3): \delta = 170.9, 170.4 (3 C, OCOCH_3), 161.6 (C-1), 157.4 (q, C)$ $J_{C,F} = 38$ Hz, COCF₃), 144.1 (C-2), 134.7, 129.2, 129.0 (6 C, SPh), 119.0-110.0 (CF₃), 111.8 (C-3), 75.6 (C-6), 70.9 (C-8), 67.8 (C-7), 61.9 (C-9), 52.5 (COOCH₃), 48.9 (C-4), 46.0 (C-5), 20.8, 20.6 (3 C, OCOCH₃) ppm. MS (ESI⁺): $m/z = 578.3 \text{ [M + H]}^+$, 600.5 [M + Na]⁺. C₂₄H₂₆F₃NO₁₀S (577.52): calcd. C 49.91, H 4.54, N 2.43; found C 50.07, H 4.63, N 2.53.

Data for Glycal 22b: M.p. 144–146 °C. $[a]_{D}^{20} = -35.3$ (c = 1 in CHCl₃). ¹H NMR (CDCl₃): δ = 7.41–7.28 (5 H, overlapping, SPh), 6.71 (d, $J_{\text{NH},5}$ = 10.1 Hz, 1 H, N-H), 6.30 (d, $J_{3,4}$ = 5.6 Hz, 1 H, 3-H), 5.47 (dd, $J_{7.6} = 2.6$, $J_{7.8} = 5.1$ Hz, 1 H, 7-H), 5.33 (ddd, $J_{8.9a}$) = 3.0, $J_{8,7}$ = 5.1, $J_{8,9b}$ = 6.7 Hz, 1 H, 8-H), 4.68–4.62 (overlapping, 2 H, 9a-H and 5-H), 4.31 (dd, $J_{6.7}$ = 2.6, $J_{6.5}$ = 9.8 Hz, 1 H, 6-H), 4.19-4.12 (overlapping, 2 H, 9b-H and 4-H), 3.81 (s, 3 H, CO-OCH₃), 2.08 (s, 3 H, OCOCH₃), 2.06 (s, 3 H, OCOCH₃), 2.05 (s, 3 H, OCOCH₃) ppm. ¹³C NMR (CDCl₃): δ = 170.6, 170.1, 169.7 (3 C, OCOCH₃), 161.5 (C-1), 157.0 (q, $J_{C,F}$ = 38 Hz, COCF₃), 144.0 (C-2), 130.9, 129.8, 128.3 (6 C, SPh), 119.0-105.0 (CF₃), 108.3 (C-3), 73.6 (C-6), 70.8 (C-8), 67.5 (C-7), 61.9 (C-9), 52.6 (CO-OCH₃), 46.7 (C-5), 45.8 (C-4), 20.9, 20.7, 20.5 (3 C, OCOCH₃) ppm. MS (ESI⁺): $m/z = 578.2 [M + H]^+$, 600.5 [M + Na]⁺. C₂₄H₂₆F₃NO₁₀S (577.52): calcd. C 49.91, H 4.54, N 2.43; found C 49.52, H 4.41, N 2.33.

Methyl 2-(S-2-Acetylamino-2-methoxycarbonylethyl)-7,8,9-tri-Oacetyl-3,4,5-trideoxy-5-[(trifluoroacetyl)amino]-2-thio-a-D-mannonon-3-en-2-ulopyranosidonate (23a): Thioglycoside 23a (102 mg, 79%) was obtained as a white solid by the reaction of glycal 4 (105 mg, 0.2 mmol) with N-acetyl-L-cysteine methyl ester (71 mg, 0.4 mmol), heating for 60 min at 40 °C in CH₂Cl₂, m.p. 141-143 °C $(CH_2Cl_2/diisopropyl ether)$. $[a]_D^{20} = +19.4$ (c = 1 in CHCl_3). ¹H NMR (CDCl₃): δ = 7.81 (d, $J_{NH,5}$ = 9.1 Hz, 1 H, 1 H, N-H), 6.37– 6.29 (overlapping, 2 H, 3-H and CHNHAc), 5.91 (dd, $J_{4,5} = 2.0$, $J_{4,3} = 10.2$ Hz, 1 H, 4-H), 5.33–5.28 (overlapping, 2 H, 7-H and 8-H), 4.94 (ddd, $J_{CH,CH2a}$ = 3.7, $J_{CH,CH2b}$ = $J_{CH,NH}$ = 9.6 Hz, 1 H, CH₂CHNHAc), 4.75–4.69 (m, 1 H, 5-H), 4.55 (dd, $J_{9a,8} = 2.3$, $J_{9a,9b} = 12.5$ Hz, 1 H, 9a-H), 4.48 (dd, $J_{6,7} = 1.8$, $J_{6,5} = 10.0$ Hz, 1 H, 6-H), 4.19 (dd, $J_{9b,8} = 6.2$, $J_{9b,9a} = 12.5$ Hz, 1 H, 9b-H), 3.84 (s, 3 H, COOCH₃), 3.78 (s, 3 H, COOCH₃), 3.28 (dd, J_{CHa,CH} = 3.7, $J_{CHa,CHb}$ = 14.4 Hz, 1 H, SC H_{2a} CH), 2.84 (dd, $J_{CHb,CH}$ = 9.6,

 $J_{\rm CHb,CHa} = 14.4 \, {\rm Hz}, 1 \, {\rm H}, {\rm SC}H_{2b}{\rm CH}), 2.14 \, ({\rm s}, 3 \, {\rm H}, {\rm OCOCH}_3), 2.10 \\ ({\rm overlapping}, 6 \, {\rm H}, 2 \, {\rm OCOCH}_3), 2.05 \, ({\rm s}, 3 \, {\rm H}, \, {\rm OCOCH}_3) \, {\rm ppm}. {}^{13}{\rm C} \\ {\rm NMR} \, ({\rm CDCl}_3): \delta = 170.8 \, ({\rm NHCOCH}_3), 170.7 \, ({\rm COOMe}), 170.7, \\ 170.3, 169.8 \, (3 \, {\rm C}, \, {\rm OCOCH}_3), 167.7 \, ({\rm C}-1), 157.4 \, ({\rm q}, \, J_{\rm C,F} = 38 \, {\rm Hz}, \\ {\rm COCF}_3), 130.1 \, ({\rm C}-4), 126.4 \, ({\rm C}-3), 119.0-110.0 \, ({\rm CF}_3), 84.2 \, ({\rm C}-2), \\ 70.6 \, ({\rm C}-6), 70.2 \, ({\rm C}-8), 68.4 \, ({\rm C}-7), 62.4 \, ({\rm C}-9), 53.3 \, ({\rm CHCOOCH}_3), \\ 52.8 \, ({\rm COOCH}_3), 51.2 \, ({\rm CHCOOCH}_3), 43.3 \, ({\rm C}-5), 33.6 \, ({\rm SCH}_2{\rm CH}), \\ 23.0 \, ({\rm CH}_3{\rm CONH}), 21.0, 20.7, 20.5 \, (3 \, {\rm C}, \, {\rm OCOCH}_3) \, {\rm ppm}. \, {\rm MS} \\ ({\rm ESI}^+): \, m/z = 645.5 \, [{\rm M} + {\rm H}]^+, \, 667.5 \, [{\rm M} + {\rm Na}]^+. \, {\rm C}_{24}{\rm H}_{31}{\rm F}_3{\rm N}_2{\rm O}_{13}{\rm S} \\ (644.57): {\rm calcd.} \, {\rm C} \, 44.72, \, {\rm H} \, 4.85, \, {\rm N} \, 4.35; \, {\rm found} \, {\rm C} \, 44.15, \, {\rm H} \, 4.32, \, {\rm N} \\ 4.09. \end{array}$

Methyl 7,8,9-Tri-O-acetyl-2,6-anhydro-3,4,5-trideoxy-5-[(trifluoroacetyl)amino]-D-glycero-D-galacto-non-3-enonate (24a): Cyclic ether 24a (81 mg, 86%) was obtained as a white solid by the reaction of glycal 4 (105 mg, 0.2 mmol) with triethylsilane (319 µL), heating for 15 min at 40 °C in CH₂Cl₂, m.p. 108-110 °C (CH₂Cl₂/ diisopropyl ether). $[a]_{D}^{20} = +34.2$ (c = 1 in CHCl₃). ¹H NMR (CDCl₃): δ = 6.89 (d, $J_{\text{NH},5}$ = 8.6 Hz, 1 H, N-H), 6.04 (ddd, $J_{3,5}$ = $J_{3,2} = 2.2, J_{3,4} = 10.3$ Hz, 1 H, 3-H), 5.82 (ddd, $J_{4,5} = J_{4,2} = 2.5$, $J_{4,3} = 10.3$ Hz, 1 H, 4-H), 5.41 (ddd, $J_{8,9a} = 2.3$, $J_{8,7} = J_{8,9b} =$ 6.2 Hz, 1 H, 8-H), 5.25 (dd, $J_{7,6} = 2.0$, $J_{7,8} = 6.2$ Hz, 1 H, 7-H), 4.82–4.78 (m, 1 H, 2-H), 4.50 (dd, $J_{9a,8} = 2.3$, $J_{9a,9b} = 12.5$ Hz, 1 H, 9a-H), 4.45–4.39 (m, 1 H, 5-H), 4.21 (dd, J_{9b,8} = 6.2, J_{9b,9a} = 12.5 Hz, 1 H, 9b-H), 3.92 (dd, *J*_{6,7} = 2.0, *J*_{6,5} = 9.3 Hz, 1 H, 6-H), 3.77 (s, 3 H, COOCH₃), 2.13 (s, 3 H, OCOCH₃), 2.07 (s, 3 H, OCOCH₃), 2.02 (s, 3 H, OCOCH₃) ppm. ¹³C NMR (CDCl₃): δ = 170.6, 170.1 (3 C, OCOCH₃), 168.4 (C-1), 157.1 (q, J_{C,F} = 38 Hz, COCF₃), 127.6 (C-4), 126.3 (C-3), 119.0–110.0 (CF₃), 74.8 (C-2), 73.8 (C-6), 70.1 (C-8), 68.4 (C-7), 62.3 (C-9), 52.6 (COOCH₃), 44.6 (C-5), 20.8, 20.6 (3 C, OCOCH₃) ppm. MS (ESI⁺): *m*/*z* = 470.4 [M + H]⁺, 492.3 [M + Na]⁺. $C_{18}H_{22}F_3NO_{10}$ (469.36): calcd. C 46.06, H 4.72, N 2.98; found C 46.18, H 4.22, N 3.00.

Methyl 7,8,9-Tri-O-acetyl-2,6-anhydro-4-chloro-3,4,5-trideoxy-5-[(trifluoroacetyl)amino]-D-glycero-D-galacto-non-2-enonate (25a) and Methyl 7,8,9-Tri-O-acetyl-2,6-anhydro-4-chloro-3,4,5-trideoxy-5-[(trifluoroacetyl)amino]-D-glycero-D-talo-non-2-enonate (25b): Starting from glycal 4 (105 mg, 0.2 mmol) and TMSCI (254 μ L, 2.0 mmol), heating for 15 min at 40 °C in CH₂Cl₂, a mixture of glycals 25b and 25a was obtained. This was separated by rapid chromatography, eluting with hexane/EtOAc (80:20 v/v), to give less polar glycal 25b (55 mg, 19.5%), followed by more polar glycal 25a (18 mg, 58.5%), both in pure form.

Data for Glycal 25a: M.p. 115–117 °C (CH₂Cl₂/diisopropyl ether). $[a]_{D}^{20} = +51.2$ (c = 1 in CHCl₃). ¹H NMR (CDCl₃): $\delta = 7.18$ (d, $J_{\rm NH,5}$ = 8.6 Hz, 1 H, N-H), 6.07 (d, $J_{3,4}$ = 2.5 Hz, 1 H, 3-H), 5.39 (dd, $J_{7,6} = 1.6$, $J_{7,8} = 5.6$ Hz, 1 H, 7-H), 5.31 (ddd, $J_{8,9a} = 2.6$, $J_{8,7}$ = $J_{8,9b}$ = 6.0 Hz, 1 H, 8-H), 4.99 (dd, $J_{4,3}$ = 2.5, $J_{4,5}$ = 8.9 Hz, 1 H, 4-H), 4.65 (dd, $J_{9a,8} = 2.6$, $J_{9a,9b} = 12.5$ Hz, 1 H, 9a-H), 4.53 (dd, $J_{6,7} = 1.6$, $J_{6,5} = 10.4$ Hz, 1 H, 6-H), 4.18 (dd, $J_{9b,8} = 6.0$, J_{9b,9a} = 12.5 Hz, 1 H, 9b-H), 4.07–4.00 (m, 1 H, 5-H), 3.82 (s, 3 H, COOCH₃), 2.15 (s, 3 H, OCOCH₃), 2.06 (s, 3 H, OCOCH₃), 2.04 (s, 3 H, OCO CH₃), ppm. ¹³C NMR (CDCl₃): δ = 170.8, 170.5, 170.2 (3 C, OCOCH₃), 161.2 (C-1), 157.5 (q, $J_{C,F}$ = 38 Hz, COCF₃), 144.3 (C-2), 119.0–110.0 (CF₃), 110.1 (C-3), 75.3 (C-6), 70.4 (C-8), 67.6 (C-7), 61.7 (C-9), 52.9 (C-4), 52.7 (COOCH₃), 52.5 (C-5), 20.8, 20.6 (3 C, OCOCH₃) ppm. MS (ESI⁺): m/z = 504.7 [M + H]⁺, 526.7 [M + Na]⁺. C₁₈H₂₁ClF₃NO₁₀ (503.81): calcd. C 42.91, H 4.20, N 2.78; found C 42.11, H 4.01, N 2.47.

Data for Glycal 25b: M.p. 109–111 °C (CH₂Cl₂/diisopropyl ether). $[a]_{20}^{20} = -19.3$ (c = 1 in CHCl₃). ¹H NMR (CDCl₃): $\delta = 6.71$ (d, $J_{\rm NH,5} = 9.6$ Hz, 1 H, N-H), 6.23 (d, $J_{3,4} = 5.6$ Hz, 1 H, 3-H), 5.47 (dd, $J_{7,6} = 2.1$, $J_{7,8} = 5.4$ Hz, 1 H, 7-H), 5.36 (ddd, $J_{8,9a} = 2.8$, $J_{8,7}$

= 5.4, $J_{8,9b}$ = 6.4 Hz, 1 H, 8-H), 4.74 (dd, $J_{4,5}$ = 4.0, $J_{4,3}$ = 5.6 Hz, 1 H, 4-H), 4.73–4.67 (m, 1 H, 5-H), 4.66 (dd, $J_{9a,8}$ = 2.8, $J_{9a,9b}$ = 12.5 Hz, 1 H, 9a-H), 4.52 (dd, $J_{6,7}$ = 2.1, $J_{6,5}$ = 10.0 Hz, 1 H, 6-H), 4.15 (dd, $J_{9b,8}$ = 6.4, $J_{9b,9a}$ = 12.5 Hz, 1 H, 9b-H), 3.83 (s, 3 H, COOCH₃), 2.10 (s, 3 H, OCOCH₃), 2.09 (s, 3 H, OCOCH₃), 2.06 (s, 3 H, OCOCH₃) ppm. ¹³C NMR (CDCl₃): δ = 170.6, 170.1, 169.6 (3 C, OCOCH₃), 161.2 (C-1), 157.0 (q, $J_{C,F}$ = 38 Hz, COCF₃), 145.3 (C-2), 119.0–110.0 (CF₃), 107.8 (C-3), 72.6 (C-6), 70.7 (C-8), 67.2 (C-7), 61.8 (C-9), 53.8 (C-4), 52.8 (COOCH₃), 46.4 (C-5), 20.8, 20.7, 20.5 (3 C, OCOCH₃) ppm. MS (ESI⁺): m/z = 504.8 [M + H]⁺, 526.7 [M + Na]⁺. C₁₈H₂₁ClF₃NO₁₀ (503.81): calcd. C 42.91, H 4.20, N 2.78; found C 42.01, H 3.98, N 2.42.

Methyl 7,8,9-Tri-O-acetyl-2,6-anhydro-4-bromo-3,4,5-trideoxy-5-[(trifluoroacetyl)amino]-D-glycero-D-talo-non-2-enonate (26b): Glycal 26b (80 mg, 73%) was obtained as a white solid by the reaction of glycal 4 (105 mg, 0.2 mmol) with bromotrimethylsilane (319 μ L), heating for 30 min at 40 °C in CH2Cl2, m.p. 103-105 °C (CH2Cl2/ diisopropyl ether). $[a]_D^{20} = -23.4$ (c = 1 in CHCl₃). ¹H NMR (CDCl₃): δ = 6.75 (d, $J_{\rm NH,5}$ = 9.6 Hz, 1 H, N-H), 6.31 (d, $J_{3,4}$ = 5.9 Hz, 1 H, 3-H), 5.47 (dd, $J_{7,6} = 2.0$, $J_{7,8} = 6.0$ Hz, 1 H, 7-H), 5.37 (ddd, $J_{8,9a} = 2.6$, $J_{8,7} = J_{8,9b} = 6.0$ Hz, 1 H, 8-H), 4.91 (dd, $J_{4,5} = 4.0, J_{4,3} = 5.9$ Hz, 1 H, 4-H), 4.69–4.61 (overlapping, 2 H, 9a-H and 6-H), 4.55-4.49 (m, 1 H, 5-H), 4.15 (dd, $J_{9b.8} = 6.0$, $J_{9b,9a} = 12.5 \text{ Hz}, 1 \text{ H}, 9b\text{-H}), 3.82 \text{ (s, 3 H, COOCH}_3), 2.10 \text{ (s, 3 H,}$ OCOCH₃), 2.09 (s, 3 H, OCOCH₃), 2.06 (s, 3 H, OCOCH₃) ppm. ¹³C NMR (CDCl₃): δ = 170.7, 170.1, 169.6 (3 C, OCOCH₃), 161.1 (C-1), 157.0 (q, $J_{C,F}$ = 38 Hz, COCF₃), 144.7 (C-2), 119.0–110.0 (CF₃), 109.1 (C-3), 73.4 (C-6), 70.7 (C-8), 67.3 (C-7), 61.9 (C-9), 52.8 (COOCH₃), 47.2 (C-4), 45.8 (C-5), 20.8, 20.7, 20.5 (3 C, O $COCH_3$) ppm. MS (ESI⁺): $m/z = 549.3 [M + H]^+$, 571.2 [M + Na]⁺. C₁₈H₂₁BrF₃NO₁₀ (548.26): calcd. C 39.43, H 3.86, N 2.55; found C 38.88, H 3.56, N 2.31.

Methyl 7,8,9-Tri-*O*-acetyl-2,6-anhydro-3,5-dideoxy-4-*S*-(*S*-2-acetylamino-2-methoxycarbonylethyl)-4-thio-5-[(trifluoroacetyl)amino]-D-glycero-D-galacto-non-2-enonate (27a) and Methyl 7,8,9-Tri-*O*-acetyl-2,6-anhydro-3,5-dideoxy-4-*S*-(S-2-acetylamino-2-methoxy-carbonylethyl)-4-thio-5-[(trifluoroacetyl)amino]-D-glycero-D-talo-non-2-enonate (27b): Starting from glycal 23a (50 mg, 0.08 mmol) in CH₂Cl₂, and treating with BF₃·Et₂O (492 μ L, 4.0 mmol) for 2 h at 40 °C, a mixture of glycals 27b and 27a was obtained. It was separated by flash chromatography, eluting with hexane/EtOAc (50:50 v/v), to give less polar glycal 27b (27 mg, 53%), followed by more polar glycal 27a (14 mg, 27%), both in pure form.

Data for Glycal 27a: M.p. 160-162 °C (CH₂Cl₂/diisopropyl ether). $[a]_{D}^{20} = +42.7 \ (c = 1 \text{ in CHCl}_3).$ ¹H NMR (CDCl₃): $\delta = 7.68 \ (br. s, br. s)$ 1 H, N-H), 6.33 (d, $J_{\rm NH,CH}$ = 9.0 Hz, 1 H, CHNHAc), 6.04 (d, $J_{3,4}$ = 1.8 Hz, 1 H, 3-H), 5.45 (dd, $J_{7,6}$ = 2.3, $J_{7,8}$ = 5.9 Hz, 1 H, 7-H), 5.37 (ddd, $J_{8,9a} = 2.7$, $J_{8,7} = J_{8,9b} = 5.9$ Hz, 1 H, 8-H), 4.76 (ddd, $J_{\rm CH,CHa}$ = 4.8, $J_{\rm CH,CHb}$ = 7.6 $J_{\rm CH,NH}$ = 9.0 Hz, 1 H, CH₂CHNHAc), 4.60–4.53 (overlapping, 2 H, 9a-H and 6-H), 4.18 (dd, $J_{9b,8} = 5.9$, $J_{9b,9a} = 12.4$ Hz, 1 H, 9b-H), 3.89–3.83 (overlapping, 2 H, 5-H and 4-H), 3.82 (s, 3 H, COOCH₃), 3.77 (s, 3 H, COOCH₃), 3.03 (dd, $J_{CH2a,CH} = 4.8$, $J_{CH2a,CH2b} = 14.2$ Hz, 1 H, SCH_{2a}CH), 2.84 (dd, J_{CH2b,CH} = 7.6, J_{CH2b,CH2a} = 14.2 Hz, 1 H, SCH_{2b}CH), 2.13 (s, 3 H, OCOCH₃), 2.07 (s, 3 H, OCO CH₃), 2.06 (s, 3 H, OCOCH₃), 2.05 (s, 3 H, NHCOCH₃) ppm. ¹³C NMR (CDCl₃): δ = 170.9 (NHCOCH₃), 170.8 (COOMe), 170.7, 170.1, 170.0 (3 C, OCOCH₃), 161.6 (C-1), 157.9 (q, J_{C,F} = 38 Hz, COCF₃), 145.5 (C-2), 119.0-110.0 (CF₃), 111.2 (C-3), 75.9 (C-6), 70.2 (C-8), 67.7 (C-7), 61.9 (C-9), 53.0 (CHCOOCH₃), 52.6 (CO-OCH₃), 51.9 (CHCOOCH₃), 49.9 (C-5), 42.6 (C-4), 31.8 (SCH₂CH), 23.1 (CH₃CONH), 20.9, 20.7, 20.6 (3 C, CH₃COO) ppm. MS (ESI⁺): $m/z = 645.6 [M + H]^+$, $668.5 [M + Na]^+$. C₂₄H₃₁F₃N₂O₁₃S (644.57): calcd. C 44.72, H 4.85, N 4.35; found C 45.31, H 4.78, N 4.37.

Data for Glycal 27b: M.p. 156–158 °C (CH₂Cl₂/diisopropyl ether). $[a]_{D}^{20} = -38.1$ (c = 1 in CHCl₃). ¹H NMR (CDCl₃): $\delta = 7.75$ (d, $J_{\rm NH,5}$ = 9.6 Hz, 1 H, N-H), 6.33 (d, $J_{\rm NH,CH}$ = 7.6 Hz, 1 H, CHNHAc), 6.10 (d, $J_{3,4}$ = 5.3 Hz, 1 H, 3-H), 5.48 (dd, $J_{7,6}$ = 2.8, $J_{7,8} = 4.8$ Hz, 1 H, 7-H), 5.35 (ddd, $J_{8,9a} = 3.1$, $J_{8,7} = 4.8$, $J_{8,9b} =$ 6.9 Hz, 1 H, 8-H), 4.84 (ddd, $J_{CH,CH2a}$ = 4.9, $J_{CH,CH2b}$ = 6.3, $J_{\text{CH,NH}}$ = 7.6 Hz, 1 H, CH₂CHNHAc), 4.66–4.58 (overlapping, 2 H, 9a-H and 5-H), 4.26 (dd, $J_{6,7} = 2.8$, $J_{6,5} = 9.7$ Hz, 1 H, 6-H), 4.17 (dd, $J_{9b,8} = 6.9$, $J_{9b,9a} = 12.4$ Hz, 1 H, 9b-H), 3.80 (overlapping, 6 H, 2 COOCH₃), 3.66 (dd, $J_{4,3} = J_{4,5} = 5.3$ Hz, 1 H, 4-H), 3.14 (dd, $J_{CH2a,CH}$ = 4.8, $J_{CH2a,CH2b}$ = 14.1 Hz, 1 H, SC H_{2a} CH), 2.97 (dd, $J_{CHb,CH} = 6.3$, $J_{CHb,CHa} = 14.1$ Hz, 1 H, SC H_{2b} CH), 2.09 (s, 3 H, OCOCH₃), 2.08 (s, 3 H, OCOCH₃), 2.07 (s, 3 H, OC-OCH₃), 2.06 (s, 3 H, NHCOCH₃) ppm. ¹³C NMR (CDCl₃): δ = 170.6 (2 C, NHCOCH₃ and COOMe), 170.4, 170.1, 169.7 (3 C, OCOCH₃), 161.5 (C-1), 157.4 (q, J_{C,F} = 38 Hz, COCF₃), 143.4 (C-2), 119.0-110.0 (CF₃), 108.4 (C-3), 73.5 (C-6), 70.7 (C-8), 67.8 (C-7), 61.9 (C-9), 53.0 (CHCOOCH₃), 52.6 (COOCH₃), 52.4 (CHCOOCH₃), 46.4 (C-5), 44.0 (C-4), 36.9 (SCH₂CH), 23.0 (NHCOCH₃), 20.9, 20.7, 20.5 (3 C, OCOCH₃) ppm. MS (ESI⁺): $m/z = 645.6 [M + H]^+, 668.5 [M + Na]^+. C_{24}H_{31}F_3N_2O_{13}S (644.57):$ calcd. C 44.72, H 4.85, N 4.35; found C 45.05, H 4.44, N 4.02.

Dimethyl 7,8,9-tri-*O*-acetyl-3,4,5-trideoxy-5-[(trifluoroacetyl)amino]-*a*-D-*manno*-non-3-en-2-ulopyranosidonate (30a) and Dimethyl 7,8,9-tri-*O*-acetyl-3,4,5-trideoxy-5-[(trifluoroacetyl)amino]*a*-D-*manno*-non-3-en-2-ulopyranosidonate (30b)

Method 1: Methyl ketoside 29b (90 mg, 0.2 mmol), obtained according to the procedure of Ikeda et al.,^[19] was N-transacylated in CH₃CN (0.6 mL) with TFAA (142 µL, 1.0 mmol) containing Et₃N (306 µL, 2.2 mmol)^[16] to give sialoside **30b** (75 mg, 61 %) in pure form as a white solid, m.p. 111-112 °C (CH₂Cl₂/diisopropyl ether). $[a]_{D}^{20} = -36.1$ (c = 1 in CHCl₃). ¹H NMR (CDCl₃): $\delta = 5.95$ (d, $J_{\rm NH,5}$ = 9.0 Hz, 1 H, N-H), 5.93 (dd, $J_{4,5}$ = 2.5, $J_{4,3}$ = 10.1 Hz, 1 H, 3-H), 5.91 (dd, J_{4,5} = 1.7, J_{4,3} = 10.1 Hz, 1 H, 4-H), 5.35–5.30 (overlapping, 2 H, 7-H and 8-H), 4.58-4.52 (overlapping, 2 H, 9a-H and 5-H), 4.24 (dd, $J_{9b,8} = 5.3$, $J_{9b,9a} = 12.5$ Hz, 1 H, 9b-H), 4.19 (dd, $J_{6,7} = 2.0$, $J_{6,5} = 10.3$ Hz, 1 H, 6-H), 3.81 (s, 3 H, CO-OCH₃), 3.29 (s, 3 H, OCH₃), 2.15 (s, 3 H, OCOCH₃), 2.09 (s, 3 H, OCOCH₃), 2.04 (s, 3 H, OCOCH₃) ppm. ¹³C NMR (CDCl₃): δ = 170.6, 170.3, 170.1 (3 C, OCOCH₃), 167.2 (C-1), 157.2 (q, $J_{C,F}$ = 38 Hz, COCF₃), 131.3 (C-4), 126.9 (C-3), 119.0-110.0 (CF₃), 96.5 (C-2), 70.3 (C-6), 69.3 (C-8), 68.1 (C-7), 62.0 (C-9), 52.9 (CO-OCH₃), 51.1 (OCH₃), 44.2 (C-5), 20.8, 20.6, 20.5 (3 C, OCOCH₃) ppm. MS (ESI⁺): $m/z = 500.4 [M + H]^+$, 522.4 [M + Na]⁺. $C_{19}H_{24}F_3NO_{11}$ (499.39): calcd. C 45.70, H 4.84, N 2.80; found C 45.76, H 4.92, N 2.93.

Method 2: A mixture of methyl ketosides **29a** and **29b** (1:1.3 ratio; 90 mg, 0.2 mmol), obtained according to the procedure of Ikeda et al.,^[19] was *N*-transacylated in CH₃CN (0.6 mL) with TFAA (142 μ L, 1.0 mmol) containing Et₃N (306 μ L, 2.2 mmol)^[16] to give an inseparable mixture of glycosides **30a** and **30b** (1:1.3 ratio; 75 mg, 75%) in pure form as a white solid.

Data for Glycoside 30a, Minor Compound: ¹H NMR (CDCl₃): δ = 6.65 (d, $J_{\text{NH},5}$ = 8.0 Hz, 1 H, N-H), 6.10 (dd, J = 2.0, J = 10.1 Hz, 1 H, 3-H or 4-H), 5.91 (dd, J = 2.5, J = 10.1 Hz, 1 H, 3-H or 4-H), 5.44 (ddd, $J_{8,9a}$ = 2.3, $J_{8,9b}$ = 4.9, $J_{8,7}$ = 7.5 Hz, 1 H, 1 H, 8-H), 5.27 (dd, $J_{7,6}$ = 2.0, $J_{7,8}$ = 7.5 Hz, 1 H, 7-H), 4.45–4.40 (overlapping, 2 H, 9a-H and 6-H), 4.38–4.27 (m, 1 H, 5-H), 4.24 (dd, $J_{9b,8}$ = 4.9, $J_{9b,9a}$ = 12.5 Hz, 1 H, 9b-H), 3.79 (s, 3 H, COOCH₃), 3.35

FULL PAPER

(s, 3 H, OCH₃), 2.14 (s, 3 H, OCOCH₃), 2.08 (s, 3 H, OCOCH₃), 2.04 (s, 3 H, OCOCH₃) ppm. The NMR signals of compound **30b** were practically identical to those above previously reported. Data for the mixture of glycosides **30a** and **30b**: MS (ESI⁺): m/z = 522.4[M + Na]⁺, 1020.5 [M + Na]⁺. C₁₉H₂₄F₃NO₁₁ (499.39): calcd. C 45.70, H 4.84, N 2.80; found C 45.70, H 4.95, N 2.90.

Methyl Oxazolo[5,4]-Fused 7,8,9-Tri-*O*-acetyl-2,3,4,5-tetradeoxy-2,3-didehydro-2,3-trideoxy-4,5-dihydro-2-trifluoromethyl-D-*glycero*-D-*talo*-non-2-enoate (31) and Methyl 7,8,9-Tri-*O*-acetyl-2,6-anhy-dro-3,5-diideoxy-5-[(trifluoroacetyl)amino]-D-*glycero*-D-*talo*-non-2-enoate (32)

BF₃·Et₂O Treatment of the Pure Glycoside 29b and of 29a and 29b Mixture: The reactions were performed separately on sialoside 29b or on an inseparable mixture of glycosides 29a and 29b (100 mg, 0.2 mmol), dissolved in CH₂Cl₂ (1.5 mL), using MeOH (81 μ L, 2.0 mmol) and BF₃·Et₂O (246 μ L, 2.0 mmol) at 40 °C for 15 min. Then, the reaction mixtures were worked up:

i) as indicated in the General Remarks to give, after flash chromatography (EtOAc/hexane, 1:1 v/v), methyl oxazolo[5,4]-fused **31** (17 mg, 18%) together with compound **32** (31 mg, 58%).

Data for 31: MS (ESI⁺): $m/z = 568.7 [M + H]^+$, 590.2 [M + Na]⁺. C₁₈H₂₀F₃NO₁₀ (467.35): calcd. C 46.26, H 4.31, N 3.00; found C 46.32, H 4.40, N 2.92. All other physico-chemical properties were practically identical to those previously reported.

Data for 32: MS (ESI⁺): $m/z = 486.0 [M + H]^+$, 508.4 [M + Na]⁺. C₁₈H₂₂F₃NO₁₁ (485.37): calcd. C 44.54, H 4.57, N 2.89; found C 44.08, H 4.20, N 2.70. All other physico-chemical properties were practically identical to those previously reported.

ii) by the addition of water and extraction of the mixture with CH₂Cl₂ to give, after subsequent washing with ice-cold NaCl (aq.), drying, and solvent evaporation, a crude residue. Rapid chromatography (EtOAc/hexane, 1:1 v/v) gave compound **32** (76 mg, 78%). MS (ESI⁺): m/z = 486.4 [M + H]⁺, 508.7 [M + Na]⁺, 1194.1 [2M + Na]⁺. MS [ESI]: m/z = 484.1 [M - H]. C₁₈H₂₂F₃NO₁₁ (485.37): calcd. C 44.54, H 4.57, N 2.89; found C 44.11, H 4.23, N 2.76. All other physico-chemical properties were practically identical to those previously reported.

Ethyl Methyl 7,8,9-Tri-*O*-acetyl-3,4,5-trideoxy-2-thio-5-[(trifluoroacetyl)amino]-α-D-*manno*-non-3-en-2-ulopyranosidonate (28a) and Ethyl Methyl 7,8,9-Tri-*O*-acetyl-3,4,5-trideoxy-2-thio-5-](trifluoroacetyl)amino]-β-D-*manno*-non-3-en-2-ulopyranosidonate (28b): A solution of oxazoline 5 (100 mg, 0.24 mmol) in CH₃CN (0.2 mL) was treated with EtSH (100 µL, 1.4 mmol) and Bi(OTf)₃ (5 mg, 0.07 mmol), following the procedure of Ikeda et al.,^[19] to give a mixture of thioglycosides **33a** and **33b**. This was separated by rapid chromatography, eluting with hexane/EtOAc (80:20 v/v), to give less polar thioglycoside **33a** (38 mg, 33%), then more polar thioglycoside **33b** (59 mg, 52%).

Data for Thioglycosides 33a: M.p. 123–124 °C. $[a]_{D}^{20} = -30.1$ (c = 1 in CHCl₃). ¹H NMR (CDCl₃): $\delta = 6.15$ (dd, J = 2.4, J = 10.1 Hz, 1 H, 3-H or 4-H), 5.78 (dd, J = 1.8, J = 10.1 Hz, 1 H, 3-H or 4-H), 5.44 (d, $J_{\text{NH},5} = 9.6$ Hz, 1 H, N-H), 5.40 (dd, $J_{7,6} = 2.4$, $J_{7,8} = 4.9$ Hz, 1 H, 7-H), 5.25 (ddd, $J_{8,9a} = 2.4$, $J_{8,7} = 4.9$, $J_{8,9b} = 6.8$ Hz, 1 H, 8-H), 4.68–4.58 (overlapping, 2 H, 9a-H and 5-H), 4.37 (dd, $J_{6,7} = 2.4$, $J_{6,5} = 10.0$ Hz, 1 H, 6-H), 4.28 (dd, $J_{9b,8} = 6.8$, $J_{9b,9a} = 12.4$ Hz, 1 H, 9b-H), 3.83 (s, 3 H, COOCH₃), 2.70–2.55 (overlapping, 2 H, SCH₂CH₃), 2.13 (s, 3 H, OCOCH₃), 2.08 (s, 3 H, OCOCH₃), 2.03 (s, 3 H, OCOCH₃), 1.96 (s, 3 H, CH₃CONH), 1.16 (t, 3 H, SCH₂CH₃) ppm. ¹³C NMR (CDCl₃): $\delta = 170.5$ (CH₃CONH), 170.4, 170.2, 169.8 (3 C, OCOCH₃), 167.3 (C-1), 130.7 (C-4 or C-

3), 126.4 (C-4 or C-3), 85.7 (C-2), 71.4 (C-8), 70.7 (C-6), 68.5 (C-7), 62.5 (C-9), 52.8 (COOCH₃), 43.1 (C-5), 24.4 (SCH₂CH₃), 23.3 (NHCOCH₃), 21.0, 20.7 (3 C, OCOCH₃), 14.1 (SCH₂CH₃) ppm. MS (ESI⁺): $m/z = 476.1 [M + H]^+$, 498.5 [M + Na]⁺. C₂₀H₂₉NO₁₀S (475.51): calcd. C 50.52, H 6.15, N 2.95; found C 50.41, H 6.03, N 2.70.

Data for Thioglycoside 33b: M.p. 120–124 °C. $[a]_D^{20} = -14.1$ (c = 1 in CHCl₃). ¹H NMR (CDCl₃): δ = 5.93 (dd, J = 2.5, J = 10.1 Hz, 1 H, 3-H or 4-H), 5.86 (dd, J = 1.6, J = 10.1 Hz, 1 H, 3-H or 4-H), 5.47–5.41 (overlapping, N-H and 8-H), 5.40 (dd, $J_{7.6} = 2.0, J_{7.8}$ = 6.3 Hz, 1 H, 7-H), 4.54 (dd, $J_{9a,8}$ = 2.4, $J_{9a,9b}$ = 12.4 Hz, 1 H, 9a-H), 4.48–4.42 (m, 1 H, 5-H), 4.28 (dd, $J_{9b,8} = 5.9$, $J_{9b,9a} =$ 12.4 Hz, 1 H, 9b-H), 3.94 (dd, $J_{6,7} = 1.9$, $J_{6,5} = 9.8$ Hz, 1 H, 6-H), 3.76 (s, 3 H, COOCH₃), 2.75–2.58 (overlapping, 2 H, SCH₂CH₃), 2.13 (s, 3 H, OCOCH₃), 2.11 (s, 3 H, OCOCH₃), 2.05 (s, 3 H, OCOCH₃), 1.97 (s, 3 H, CH₃CONH), 1.25 (t, 3 H, SCH₂CH₃) ppm. ¹³C NMR (CDCl₃): δ = 170.7 (CH₃CONH), 170.5, 170.2, 169.8 (3 C, OCOCH₃), 168.8 (C-1), 131.4 (C-4 or C-3), 126.5 (C-4 or C-3), 84.6 (C-2), 74.2 (C-8), 70.4 (C-6), 68.0 (C-7), 62.2 (C-9), 52.9 (COOCH₃), 43.2 (C-5), 23.4 (2 C, NHCOCH₃ and SCH₂CH₃), 21.2, 20.8, 20.7 (3 C, OCOCH₃), 14.5 (SCH₂CH₃) ppm. MS (ESI⁺): $m/z = 476.4 [M + H]^+, 498.7 [M + Na]^+. C_{20}H_{29}NO_{10}S (475.51):$ calcd. C 50.52, H 6.15, N 2.95; found C 50.410, H 6.00, N 2.85.

Next, in separate experiments, methyl ketosides **33a** and **33b** (95 mg, 0.2 mmol) were *N*-transacylated in CH₃CN (0.6 mL) with TFAA (142 μ L, 1.0 mmol) containing Et₃N (306 μ L, 2.2 mmol),^[16] to give thioglycosides **28a** (83 mg, 78%) and **28b** (85 mg, 81%), respectively, both in pure form as white solids.

Data for Thioglycoside 28a: M.p. 119–122 °C. $[a]_{D}^{20} = -18.1$ (c = 1 in CHCl₃). ¹H NMR (CDCl₃): δ = 6.54 (br. s, 1 H, N-H), 6.21 (dd, $J_{3,5} = 1.5, J_{3,4} = 10.1$ Hz, 1 H, 3-H), 5.78 (dd, $J_{4,5} = 1.1, J_{4,3} =$ 10.1 Hz, 1 H, 4-H), 5.31 (dd, $J_{7,6} = 1.3$, $J_{7,8} = 6.1$ Hz, 1 H, 7-H), 5.30–5.27 (m, 1 H, 8-H), 4.55 (dd, $J_{9a,8} = 2.4$, $J_{9a,9b} = 12.6$ Hz, 1 H, 9a-H), 4.50-4.47 (overlapping, 2 H, 5-H and 6-H), 4.28 (dd, $J_{9b,8} = 5.5, J_{9b,9a} = 12.6$ Hz, 1 H, 9b-H), 3.83 (s, 3 H, COOCH₃), 2.68-2.54 (overlapping, 2 H, SCH2CH3), 2.14 (s, 3 H, OCOCH3), 2.11 (s, 3 H, OCOCH₃), 2.04 (s, 3 H, OCOCH₃), 1.18 (t, J_{CH3,CH2S} = 7.4 Hz, 3 H, SCH₂CH₃) ppm. ¹³C NMR (CDCl₃): δ = 170.5, 170.4, 170.2 (3 C, OCOCH₃), 167.1 (C-1), 157.1 (q, $J_{C,F}$ = 38 Hz, COCF₃), 128.2 (C-4), 127.7 (C-3), 119.0-110.0 (CF₃), 85.9 (C-2), 70.4, (C-6), 69.3 (C-8), 68.3 (C-7), 62.1 (C-9), 53.0 (COOCH₃), 44.5 (C-5), 24.6 (SCH₂CH₃), 21.0, 20.7 (3 C, OCOCH₃), 14.0 (SCH_2CH_3) ppm. MS (ESI^+) : $m/z = 530.4 [M + H]^+$, 552.5 [M + Na]⁺. C₂₀H₂₆F₃NO₁₀S (529.48): calcd. C 45.37, H 4.95, N 2.65; found C 45.31, H 4.90, N 2.60.

Data for Thioglycoside 28b: ¹H NMR (CDCl₃): $\delta = 6.56$ (d, $J_{\text{NH},5}$) = 8.5 Hz, 1 H, N-H), 6.07 (dd, J = 2.6, J = 10.1 Hz, 1 H, 3-H or 4-H), 5.93 (dd, J = 1.7, J = 10.1 Hz, 1 H, 3-H or 4-H), 5.47 (ddd, $J_{8,9a} = 2.4, J_{8,9b} = 4.8, J_{8,7} = 7.3$ Hz, 1 H, 8-H), 5.30 (dd, $J_{7,6} =$ 1.8, $J_{7,8} = 7.3$ Hz, 1 H, 7-H), 4.55 (dd, $J_{9a,8} = 2.4$, $J_{9a,9b} = 12.6$ Hz, 1 H, 9a-H), 4.35-4.29 (overlapping, 2 H, 9b-H and 5-H), 4.11 (dd, $J_{6,7} = 1.8$, $J_{6,5} = 9.8$ Hz, 1 H, 6-H), 3.81 (s, 3 H, COOCH₃), 2.79– 2.58 (overlapping, 2 H, SCH₂CH₃), 2.18 (s, 3 H, OCOCH₃), 2.16 (s, 3 H, OCOCH₃), 2.07 (s, 3 H, OCOCH₃), 1.28 (t, $J_{CH3,CH2S}$ = 7.4 Hz, 3 H, SCH₂CH₃) ppm. ¹³C NMR (CDCl₃): δ = 170.7, 170.4 (3 C, OCOCH₃), 168.3 (C-1), 157.1 (q, $J_{C,F} = 38$ Hz, $COCF_3$), 128.8 (C-3 or C-4), 127.7 (C-3 or C-4), 119.0-110.0 (CF₃), 84.9 (C-2), 72.7 (C-6), 69.4 (C-8), 67.9 (C-7), 61.9 (C-9), 53.1 (COOCH₃), 44.4 (C-5), 23.5 (SCH₂CH₃), 21.2, 20.7 (3 C, OCOCH₃), 14.5 (SCH_2CH_3) ppm. MS (ESI^+) : $m/z = 530.1 [M + H]^+$, 552.0 [M + Na]⁺. C₂₀H₂₆F₃NO₁₀S (529.48): calcd. C 45.37, H 4.95, N 2.65; found C 45.31, H 4.90, N 2.60.

BF₃·Et₂O Equilibration of Pure Sialosides 28b and of 28a: The reactions were performed separately on starting sialosides 28a and 28b (105 mg, 0.2 mmol), dissolved in CH₂Cl₂ (1.5 mL), using EtSH (148 μ L, 2.0 mmol) and BF₃·Et₂O (246 μ L, 2.0 mmol) at 40 °C for 15 min. Then, the reaction mixtures were worked up as indicated in the General Remarks to give, after flash chromatography eluting with hexane/EtOAc (80:20 v/v), less polar glycal 20b (28–34 mg, 26–30%), followed by more polar glycal 20a (58–64 mg, 55–60%). both in pure form.

Data for Glycal 20a: MS (ESI⁺): $m/z = 530.2 [M + H]^+$, 552.3 [M + Na]⁺. C₂₀H₂₆F₃NO₁₀S (529.48): calcd. C 45.37, H 4.95, N 2.65; found C 45.52, H 5.00, N 2.73. All other physico-chemical properties were practically identical to those previously reported.

Data for Glycal 20b: MS (ESI⁺): $m/z = 530.7 [M + H]^+$, 552.9 [M + Na]⁺. C₂₀H₂₆F₃NO₁₀S (529.48): calcd. C 45.37, H 4.95, N 2.65; found C 45.30, H 4.83, N 2.60. All other physico-chemical properties were practically identical to those previously reported.

BF₃·Et₂O Equilibration of Pure Glycals 20b and 20a: The reactions were performed separately on the starting sialosides 20a and 20b (105 mg, 0.2 mmol), dissolved in CH₂Cl₂ (1.5 mL), using EtSH (148 μ L, 2.0 mmol) and BF₃·Et₂O (246 μ L, 2.0 mmol) at 40 °C for 15 min. Then, the reaction mixtures were worked up as indicated in the General Remarks to give, after flash chromatography eluting with hexane/EtOAc (80:20 v/v), only the starting material, unchanged and in pure form, with all the physico-chemical properties practically identical to those previously reported.

Supporting Information (see footnote on the first page of this article): ¹H and ¹³C NMR spectra.

Acknowledgments

The authors gratefully acknowledge Miss Irene Delcarro for her skilled technical assistance. A part of this work was supported by the Grant "Dote ricerca" from the Fondo Sociale Europeo (FSE), Regione Lombardia.

- a) J. Magano, Chem. Rev. 2009, 109, 4398–4438; b) H. P. Hsieh, J. T. A. Hsu, Curr. Pharm. Des. 2007, 13, 3531–3542.
- [2] M. C. Mann, T. Islam, J. C. Dyason, P. Florio, C. J. Trower, R. J. Thomson, M. von Itzstein, *Glycoconjugate J.* 2006, 23, 127–133.
- [3] P. Meindl, H. Tuppy, Hoppe-Seyler's Z. Physiol. Chem. 1969, 350, 1088–1092.
- [4] H. P. Hsieh, J. T. Hsu, Curr. Pharm. Des. 2007, 13, 3531-3542.
- [5] S. Kawamura, I. Sato, T. Wada, K. Yamaguchi, Y. Li, D. Li, X. Zhao, S. Ueno, H. Aoki, T. Tochigi, M. Kuwahara, T. Kitamura, K. Takahashi, S. Moriya, T. Miyagi, *Cell Death Differ*. 2012, 19, 170–179.
- [6] L. M. von Itzstein, W. Y. Wu, B. Jin, WO 95/20583, 1995.
- [7] M. von Itzstein, W. Y. Wu, G. B. Kok, M. S. Pegg, J. C. Dyason, B. Jin, T. Van Phan, M. L. Smythe, H. F. White, S. W. Oliver, P. M. Colman, J. N. Varghese, D. M. Ryan, J. M. Woods, R. C. Bethell, V. J. Hotham, J. M. Cameron, C. R. Penn, *Nature* 1993, 363, 418–423.
- [8] P. W. Smith, I. D. Starkey, P. D. Howes, S. L. Sollis, S. P. Keeling, P. C. Cherry, M. von Itzstein, W. Y. Wu, B. Jin, *Eur. J. Med. Chem.* **1996**, *31*, 143–150.

- [9] J. C. Wilson, R. J. Thomson, J. C. Dyason, P. Florio, K. J. Quelch, S. Abo, M. von Itzstein, *Tetrahedron: Asymmetry* 2000, 11, 53–73.
- [10] A. J. Humphrey, C. Fremann, P. Critchley, Y. Malykh, R. Schauer, T. D. H. Bugg, *Bioorg. Med. Chem.* 2002, 10, 3175–3185.
- [11] M. von Itzstein, J. C. Dyason, S. W. Oliver, H. F. White, W. Y. Wu, G. B. Kok, M. S. Pegg, J. Med. Chem. 1996, 39, 388–391.
- [12] For a discussion of the less hindered side of the sialoglycals, see: P. Rota, I. S. Agnolin, P. Allevi, M. Anastasia, *Eur. J. Org. Chem.* 2012, 2508–2510.
- [13] I. S. Agnolin, P. Rota, P. Allevi, A. Gregorio, M. Anastasia, *Eur. J. Org. Chem.* 2012, 6537–6547.
- [14] L. I. Krimen, D. J. Cota, J. Donald, *The Ritter Reaction*, in: *Organic Reactions*, John Wiley & Sons, **2011**.
- [15] A. Marra, P. Sinay, Carbohydr. Res. 1989, 190, 317-322.
- [16] P. Rota, P. Allevi, R. Colombo, M. L. Costa, M. Anastasia, Angew. Chem. 2010, 122, 1894–1897; Angew. Chem. Int. Ed. 2010, 49, 1850–1853.
- [17] G. B. Kok, D. R. Groves, M. von Itzstein, *Chem. Commun.* 1996, 2017–2018.
- [18] R. J. Ferrier, O. A. Zubkov, Transformation of Glycals into 2,3-Unsaturated Glycosyl Derivatives, in: Organic Reactions, John Wiley & Sons, 2004, pp. 569–736.
- [19] K. Ikeda, Y. Ueno, S. Kitani, R. Nishino, M. Sato, Synlett 2008, 1027–1030.
- [20] D. Ellis, S. E. Norman, H. M. I. Osborn, *Tetrahedron* 2008, 64, 2832–2854.
- [21] W. Priebe, A. Zamojski, Tetrahedron 1980, 36, 289-297.
- [22] L. V. Dunkerton, N. K. Adair, J. M. Euske, K. T. Brady, P. D. Robinson, J. Org. Chem. 1988, 53, 845–850.
- [23] P. Nagaraj, N. G. Ramesh, Tetrahedron 2011, 67, 9322-9328.
- [24] Zamojski and Priebe^[21] suggest a rationalization of their results on the basis of Pearson's hard and soft acids and bases (HSBA) principle. However, a recent review by H. M. Mayer et al.^[25] demonstrates that the HSBA principle is contradicted by several experiment findings, and appears to be misleading rather than a useful guide. We avoided any speculation using the HSBA principle.
- [25] H. Mayr, M. Breugst, A. R. Ofial, Angew. Chem. 2011, 123, 6598–6634; Angew. Chem. Int. Ed. 2011, 50, 6470–6505.
- [26] The hydride ion (a soft nucleophile; Table 2, entry 19), on the basis of the HSBA hypothesis, should attack C-4 of the sialic acid glycal or equilibrate to this, but it appeared to be difficult for cyclic allyl ether 24a to undergo a rearrangement under our relatively weakly acidic reaction conditions.
- [27] The 2α or 2β stereochemistry of the Ferrier products was assigned taking into account the correct assignment of 2α and 2β methyl ketosides **29a** and **29b** in: J. Maudrin, B. Barrere, B. Chantegrel, C. Deshayes, G. Quash, A. Doutheau, *Bull. Soc. Chim. Fr.* **1994**, *131*, 400–406, confirmed by K. Ikeda et al.^[19] The assignment of the anomeric configuration was also supported by the values of the chemical shift difference between the two protons at C-3 and at C-4 $\Delta\delta$ {3-H–4-H}, which were around 0.3 ppm for α -glycosides, larger than suggested for β -glycosides. The assignment was also supported by a comparison of the chemical shift values of the proton at C-6, which was around 4.4 ppm for α -glycosides and around 4.0 ppm for β -glycosides.
- [28] However, attempts to monitor or isolate possible N-glycoside intermediates by conducting the reaction of glycals **6a** or **6b** at lower temperature (23 °C) were unsuccessful.

Received: January 29, 2013 Published Online: May 7, 2013