Cubane derivatives 10*. Synthesis and molecular structures of nitroxymethylcubanes

L. B. Romanova,^a* L. S. Barinova,^a V. V. Zakharov,^a L. T. Eremenko[†], G. G. Aleksandrov,^b and I. L. Eremenko^b

 ^aInstitute of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Moscow Region, Russian Federation. Fax: +7 (496) 515 3588. E-mail: lbr@icp.ac.ru
^bN. S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 31 Leninsky prosp., 119991 Moscow, Russian Federation. Fax: +7 (495) 952 1279. E-mail: ilerem@igic.ras.ru

The reactions of hydroxymethylcubanes with nitric acid result in the respective nitroxymethylcubanes.

Key words: cubane derivatives, nitroxymethylcubanes, nitroesters, X-ray diffraction analysis, cardiac pharmacological activity, nitric acid.

The search for the drugs to treat cardiovascular and oncological diseases is currently highly topical. The preparation of new polyfunctional compounds, study of their structures and properties will allow expansion of the spectrum of exogenous NO donors as potential drugs.

Nitrates (or nitroesters) are a well-known class of organic substances the pharmacological activity of which is determined by their metabolism with NO liberation (see Ref. 2). They include such compounds as Nitroglycerin, Nitrosorbide, Erinite, and others, which are commonly

* For Part 9, see Ref. 1.

[†] Deceased.

used to treat ischemic cardiovascular diseases, for example, stenocardia. It is known that cubane derivatives also show rather high anti-ischemic activity.^{3,4}

With the aim of search for new anti-ischemic drugs, we performed the synthesis of nitroesters of the cubane series.

Previously,^{5,6} it has been shown that the reduction of dimethyl cubane-1,4-dicarboxylate (1a) and methyl 4-bromocubane-1-carboxylate (2) afforded 1,4-bis-(hydroxymethyl)cubane (3) and 4-bromo-1-hydroxymethylcubane (4). In the present work, 1,4-bis(nitroxymethyl)cubane (5) and 4-bromo-1-nitroxymethylcubane

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1026-1030, May, 2010.

1066-5285/10/5905-1051 © 2010 Springer Science+Business Media, Inc.

^{*} D

(6) (Scheme 1) were synthesized for the first time and characterized.

The presence of different pharmacophoric groups in a molecule is valuable as regards the biological activity.^{2,7,8} Therefore, the preparation of cubane derivatives bearing both nitroxymethyl and nitroxyethylamide moiety was of great interest. The anti-ischemic activity of the nitroxy-ethylamide group has been demonstrated by us previously.^{3,4}

The reduction of 4-methoxycarbonylcubane-1-carboxylic acid (1b) with sodium borohydride led to 4-hydroxymethylcubane-1-carboxylic acid (7) in 88–90% yield, the nitration of that resulted in 4-nitroxymethylcubane-1-carboxylic acid (8) (Scheme 2). The choice of a nitration system and reaction conditions was problematic due to intermolecular hydrogen bonds in compound 7 caused by the presence of the carboxylic groups. Good yield of compound 8 (93%) was achieved in the reaction performed at -20 °C with the use of 90–95% nitric acid. Coupling of methyl 4-nitroxymethylcubane-1-carboxylate (9) with aminoethanol afforded N-(2-hydroxyethyl)-4-nitroxymethylcubane-1-carboxamide (10), subsequent nitration of which with 90–95% nitric acid at -10÷-15 °C resulted in the target N-(2-nitroxyethyl)-4-nitroxymethylcubane-1-carboxamide (11) in 85–90% yield (see Scheme 2).

The structures of the new compounds were established by elemental analysis, IR and NMR spectroscopy and by X-ray diiffraction analysis (compounds 5, 6, and 8).

Scheme 2

C(O)OMe CH₂OH HNO₃ NaBH₄ H₂O ćоон COOH 7 1b CH₂ONO₂ CH₂ONO₂ 1) SOCl₂ 2) MeOH COOH C(O)OMe 9 8 CH2ONO2 CH2ONO2 H2N(CH2)2OH HNO₃ Ć(O)NH(CH₂)₂OH C(O)NH(CH₂)₂ONO₂ 10 11

The presence of substitutents in positions 1 and 4 of the cubane fragments practically does not affect their geometry, in all four structures it is virtually identical. Molecule 5 (see Fig. 1) has 2/m symmetry, in other compounds (see Fig. 2–5) the molecules are located in general position. In the structure of 8 (see Fig. 3), the

Fig. 1. The structure of compound 5.

Fig. 2. The structure of compound 6.

Fig. 3. The structure of compound 8.

Fig. 4. H-bonded dimers in structure 8.

Fig. 5. The structure of compound 11.

molecules are linked to each other by strong intermolecular hydrogen bonds (O(1)–H...O(2), angle 167°, O...O 2.671(5) Å, H...O 1.76(3) Å) with formation of centrosymmetric dimers (see Fig. 4). In molecule **11** (see Fig. 5), the disordered nitro group N(2)O(3) is linked with the atom C(11) and occupies two equivalent positions with ~0.5 population for the O atoms (O(2)–O(4); O(2a)–O(4a)), and the orientation of these positions is characterized by the torsion angles N(2)–O(2A)–C(11)–C(10) 107.8(12)°; N(2)–O(2)–C(11)–C(10) 168.4(7)°.

Compounds 5, 6, and 11 were investigated for antiischemic activity at the National Research Center for the Safety of Biologically Active Compounds (NRC BAC) and showed significant coronary-dilatatory activity. The activity of compound 5 appeared to be equal to that of the well-known cardioprotective drug nicorandil, compound 6 was 2 times as potent as nicorandil, and compound 11 was 5 times as potent as nicorandil.

Experimental

¹H (200.13 MHz) and ¹³C (50.3 MHz) NMR spectra were recorded on a Bruker DPX-200 spectrometer using Me₄Si as the internal standard. IR spectra were recorded on a Specord M 82 spectrometer (KBr pellets).

Compounds 1a,b and 2–4 were prepared according to decribed methods.^{4–6,9} The characteristics of the newly prepared compounds was given in Tables 1 and 2.

Table 1. Elementa	l analysis data	of nitroxymethylcubanes	5-11
-------------------	-----------------	-------------------------	------

Com- pound	Molecular formula	Found Calculated (%)			
		С	Н	Ν	Br
5	$C_{10}H_{10}N_2O_6$	<u>47.13</u> 47.25	<u>3.80</u> 3.97	<u>11.00</u> 11.02	_
6	$C_9H_8O_3BrN$	<u>41.93</u> 40.80	<u>3.27</u> 3.12	<u>5.60</u> 5.43	<u>31.77</u> 30.96
7	$C_{10}H_{10}O_3$	<u>66.90</u> 67.41	<u>5.75</u> 5.66	_	_
8	$C_{10}H_9NO_5$	<u>52.75</u> 53.82	<u>3.97</u> 4.06	<u>6.10</u> 6.28	_
9	$\mathrm{C}_{11}\mathrm{H}_{11}\mathrm{NO}_5$	<u>55.40</u> 55.70	<u>4.60</u> 4.67	<u>5.90</u> 5.90	_
10	$C_{12}H_{14}N_2O_5$	<u>54.40</u> 54.13	<u>5.10</u> 5.30	$\frac{10.50}{10.52}$	_
11	$C_{12}H_{13} N_3 O_7$	<u>47.00</u> 46.31	<u>4.10</u> 4.21	<u>13.56</u> 13.50	_

1,4-Bis(nitroxymethyl)cubane (5). 1,4-Bis(hydroxymethyl)cubane (3) (1 g, 6 mmol) was slowly added to a cooled (0 °C) mixture of 99% HNO₃ (3.8 g, 60 mmol) and Ac₂O (6.1 g, 60 mmol), and the reaction mixture was stirred at this temperature for 30 min. Then it was poured onto crushed ice. The precipitate was filtered off, washed with cold water and 1% NaHCO₃ until neutral, dried over P₂O₅, and recrystallized from CCl₄. Yield 1.2 g (80%), m.p. 123–124 °C (decomp.).

Table 2. The spectral characteristics of nitroxymethylcubanes 5-11

Com-		¹ H NMR	¹³ C { ¹ H} NMR	IR, ν/cm^{-1}	
pound [·]	Solvent	δ (<i>J</i> /Hz)	(DMSO-d ₆ -CCl ₄), δ		
5	CD ₂ Cl ₂	3.89 (s, 6 H, CH); 4.61 (s, 4 H, CH ₂ ONO ₂)	_	1611, 1279, 1274, 883 (ONO ₂); 3007, 1325 (CH _{cub}); 2949, 2867, 1377 (CH ₂)	
6	CDCl ₃	~4.08 (m, 3 H, <u>CH</u> CCH ₂ ONO ₂ , A-part AA'A"BB'B", $\Delta v \approx 28$); ~4.21 (m, 3 H, <u>CH</u> CBr, B-part AA'A"BB'B"); 4.65 (s, 2 H, CH ₂ ONO ₂); 3.76 (s, 4 H, CH ₂ CCl); 3.79 (s, 6 H, CH)	72.81 (s, 1 C, CH ₂ ONO ₂); 63.83 (s, 1 C, <u>C</u> CBr); 54.26 (s, 3 C, <u>CH</u> CBr); 45.83 (s, 3 C, <u>CH</u> CCH ₂ ONO ₂)*	1624, 1612, 1279, 885 (ONO ₂); 820 (C—Br); 2999, 2990, 1318 (CH _{cub}); 2946, 2883, 1448 (CH ₂)	
7	DMSO-d ₆ -CCl ₄	3.28 (br.s, C(O)OH); 3.50 (d, 2 H, <u>CH</u> ₂ OH, ${}^{3}J_{CH_{2}OH} \approx 4.0$); 3.76 (m, 3 H, <u>CH</u> CCH ₂ OH, B-part AA'A"BB'B", $\Delta v_{A,B} = 45$); 4.00 (m, 3 H, <u>CH</u> CC(O), A-part AA'A"BB'B"); 4.46 (br.t, 1 H, CH ₂ OH, ${}^{3}J_{CH}$ OH ≈ 4.0)	_	3252, 1000 (OH); 2569, 2511, 1662, 1306, 1226 (COOH); 2990, 1321 (CH _{cub}); 2914, 2861, 1457 (CH ₂)	
8	DMSO-d ₆ —CCl ₄	~3.93 (m, 3 H, <u>CH</u> CC(0), A-part AA'A"BB'B", $\Delta v_{A,B} \approx 30.0$; ~4.08 (m, 3 H, <u>CH</u> CCH ₂ ONO ₂ , B-part AA'A"BB'B", $\Delta v_{A,B} \approx 30.0$); 4,72 (s, 2 H, CH ₂ ONO ₂); ~7.00 (br.s, 1 H, C(O)OH)	172.44 (s, 1 C, C(O)); 73.30 (s, 1 C, <u>CH</u> ₂ ONO ₂); 55.87 (s, 1 C, <u>C</u> CH ₂ ONO ₂); 53.56 (s, 1 C, <u>C</u> C(O)); 45.89 (s, 3 C, <u>CH</u> CCH ₂ ONO ₂); 44.15 (s, 3 C, <u>CH</u> CC(O)	2900, 2705, 2596, 1678, 1418, 1222 (COOH); 1629, 1274, 865 (ONO ₂); 3002, 1315 (CH _{cub}); 2944, 2888, 1456 (CH ₂)	

(to be continued)

Таблица 2 (continued)

Com-	¹ H NMR		¹³ C { ¹ H} NMR	IR, v/cm ⁻¹	
pound	Solvent	δ (<i>J</i> /Hz)	(DMSO-d ₆ -CCl ₄), δ		
9	DMSO-d ₆ —CCl ₄	3.62 (s, 3 H, OCH ₃); 4.03 (m, 6 H, CH, AA'A"BB'B", $\Delta v_{A,B} \approx 37.0$); 4.72 (s, 2 H, CH ₂ ONO ₂)	~170 (s, 1 C, C(O)); 73.13 (s, 1 C, \underline{CH}_2ONO_2); 65.36 (s, 1 C, $\underline{C}CH_2ONO_2$); 53.53 (s, 1 C, $\underline{C}C(O)$); 51.06 (s, 1 C, $O\underline{CH}_3$); 45.91 (s, 3 C, $\underline{CH}CCH_2ONO_2$); 44.49 (s, 3 C, CHCC(O))	1716, 1209, 1088 [C(O)O]; 1618, 1274, 955, 867 (ONO ₂); 3001, 1328 (CH _{cub}); 2949, 2884, 2849, 1451, 1436 (CH ₃ , CH ₂)	
10	DMSO-d ₆ —CCl ₄	3.11 (dt, 2 H, NH <u>CH</u> ₂ CH ₂ , ${}^{3}J_{CH_{2}CH_{2}} \approx {}^{3}J_{CH_{2}NH} \approx 6.0$); 3.39 (t, 2 H, <u>CH</u> ₂ OH, ${}^{3}J_{CH_{2}CH_{2}} \approx 6.0$); ~3.87 (m, 3H, CH, A-part AA'A"BB'B", $\Delta v_{A,B} \approx 37.0$); ~4.06 (m, 3H, CH, B-part AA'A"BB'B", $\Delta v_{A,B} \approx 37.0$); ~4.59 (br.s, 1 H, OH); 4.71 (s, 2 H, CH ₂ ONO ₂); 7.61 (br.t, 1 H, O(2)) ${}^{2}J_{2}$	$\begin{array}{l} (5,0.5,\underline{O},\underline{O},\underline{O},\underline{O},\underline{O},\underline{O},\underline{O},\underline{O}$	3380, 1070 (OH); 3344 pl, 1621, 1534 [C(O)NH]; 1630 pl, 1276, 957, 870, 757 (ONO ₂); 3001, 1325 (CH _{cub}); 2949, 2884, 2848, 1433 (CH ₂)	
11	DMSO-d ₆ —CCl ₄	C(O)NH, ${}^{3}J_{NHCH_{2}} \approx 6.0$) 3.41 (dt, 2 H, NH <u>CH_2</u> CH ₂ , ${}^{3}J_{CH_{2}CH_{2}} \approx {}^{3}J_{CH_{2}NH} \approx 5.5$); ~ 3.89 (m, 3 H, <u>CH</u> CC(O), A-part AA'A"BB'B", $\Delta v_{A,B} \approx 34.0$); ~ 4.06 (m, 3 H, <u>CH</u> CCH ₂ ONO ₂ , B-part AA'A"BB'B", $\Delta v_{A,B} \approx 34.0$); 4.52 (t, 2 H, CH ₂ ONO ₂ , ${}^{3}J_{CH_{2}CH_{2}} = 5.5$); 4.71 (s, 2 H, CH ₂ ONO ₂); 7.99 (br.t, 1 H, C(O)NH, ${}^{3}J_{NHCH_{2}} \approx 5.5$)	170.29 (s, 1 C, C(O)); 73.37 (s, 1 C, \underline{CH}_2ONO_2); 72.01 (s, 1 C, \underline{CH}_2ONO_2); 57.31 (s, 1 C, \underline{CCH}_2ONO_2); 53.34 (s, 1 C, $\underline{CC}(O)$); 45.88 (s, 3 C, $\underline{CH}CCH_2ONO_2$); 44.12 (s, 3 C, $\underline{CH}CC(O)$); 35.93 (s, 1 C, N \underline{CH}_2)	1630 pl, 1277, 869 (ONO ₂); 3360, 1620, 1522 [C(O)NH]; 3000, 1327 (CH _{cub}); 2944, 2886, 1457, 1417 (CH ₂)	

* Solvent CDCl₃.

4-Bromo-1-nitroxymethylcubane (6). 4-Bromo-1-hydroxymethylcubane (4) (2.1 g, 10 mmol) was slowly added to a cooled (0 °C) mixture of 99% HNO₃ (3.2 g, 50 mmol) and Ac₂O (5.1 g, 50 mmol), the mixture was stirred at this temperature for 30 min. Then it was poured onto crushed ice. The precipitate was filtered off, washed with cold water and 1% NaHCO₃ until neutral, dried over P₂O₅, and recrystallized from methanol. Yield 2.2 g (87%), m.p. 108–109 °C (decomp.).

4-Hydroxymethylcubane-1-carboxylic acid (7). A suspension of 4-methoxycarbonylcubane-1-carboxylic acid (1.02 g, 5 mmol) (**1b**) in 15 mL of water was added with stirring over 30 min to a cooled (0 °C) solution of NaBH₄ (0.84 g, 22 mmol) in 18 mL of water. The reaction mixture was stirred at room temperature for 2 h. The solution was cooled to 0 °C and 3 *M* HCl (7.0 mL) was slowly added with stirring. The precipitate was filtered off, washed with cold water, cold methanol, dried over P₂O₅, and recrystallized from a mixture methanol—ether. Yield 0.78 g (89%), m.p. 200–201 °C (decomp.).

4-Nitroxymethylcubane-1-carboxylic acid (8). Conpound 7 (1 g, 5.6 mmol) was slowly added to a cooled (-20 °C) 91% HNO₃ (8 mL) and the mixture was stirred at this temperature for 30 min. Then the reaction mass was poured onto crushed ice. The precipitate was filtered off, washed with cold water, dried over P₂O₅, and recrystallized from dichloroethane. Yield 0.93 g (93%), m.p. 140 °C (decomp.).

Methyl 4-nitroxymethylcubane-1-carboxylate (9). Compound 8 (1.1 g, 5 mmol) was treated with $SOCl_2$ (10 mL) for 1 h at -20 °C. The excess of $SOCl_2$ was evaporated *in vacuo*. Methanol (10 mL) was added to the freshly prepared acid chloride and the mixture was stirred for 2 h at room temperature. The solvent was evaporated, the solid residue was recrystallized from CCl₄. Yield 1.1 g (94%), m.p. 102–104 °C.

N-(2-Hydroxyethyl)-4-nitroxymethylcubane-1-carboxamide (10). A mixture of compound 9 (1.2 g, 5 mmol) and monoethanolamine (1.5 g) in methanol (20 mL) was stirred at 50 °C for 6 h, then the reaction mixture was cooled to room temperature, methanol and the excess of monoethnolamine was evaporated under reduced pressure. The solid residue was recrystallized from ethanol. Yield 1.0 g (73%), m.p. 124–125 °C.

N-(2-Nitroxyethyl)-4-nitroxymethylcubane-1-carboxamide (11). Compound 10 (0.8 g, 3 mmol) was slowly added to a cooled ($-10 \,^{\circ}$ C) 91% HNO₃ (5 mL). The reaction mixture was stirred at this temperature for 30 min and poured onto crushed ice. The precipitate was filtered off, washed with cold water and 1% NaHCO₃ until neutral, dried, and recrystallized from CH₂Cl₂. Yield 0.6 g (64%), m.p. 102.5–103 °C (decomp.).

X-ray diffraction study. The experimental X-ray diffraction data for compounds 5 and 8 were collected on an automated Enraf-Nonius Cad-4 diffractometer (graphite monochromator, ω -scanning technique), and for compounds 6 and 11 on an

Parameter	5	6	8	11
Molecular formula	$C_{10}H_8N_2O_6$	C ₉ H ₈ BrNO ₃	C ₁₀ H ₉ NO ₅	C ₁₂ H ₁₃ N ₃ O ₇
Molecular weight	252.18	258.07	223.18	311.25
<i>Т</i> /К	296(2)	110(2)	296(2)	296(2)
Crystal system	Rhombic	Monoclinic	Monoclinic	Monoclinic
Space group	Cmca	P2(1)/n	P2(1)/c	P2/c
a/Å	6.178(3)	8.5212(19)	5.9760(10)	15.9757(12)
b/Å	10.362(4)	11.462(3)	9.995(2)	5.2872(4)
c/Å	17.307(8)	9.867(2)	16.517(3)	16.3633(12)
α/deg	90	90	90	90
β/deg	90	109.846(5)	100.07(3)	101.794(2)
γ/deg	90	90	90	90
$V/Å^3$	1107.9(9)	906.5(4)	971.4(3)	1352.97(18)
Ζ	4	4	4	4
$d_{\rm calc}/{\rm g~cm^{-3}}$	1.512	1.891	1.526	1.528
μ/mm^{-1}	0.128	4.512	0.125	0.128
Radiation λ (MoK α)	0.71073	0.71073	0.71073	0.71073
Number of measured reflections	882	4854	3086	2437
Number of reflections with $I > 2\sigma(I)$	605	1853	1990	1721
R_1	0.0483	0.0381	0.0543	0.0584
wR_2	0.2059	0.0954	0.2072	0.1923

Table 3. Crystallographic parameters of compounds 5, 6, 8, 11

automated Bruker AXS SMART diffractometer equipped with a CCD detector (graphite monochromator, ω -scanning technique with a step of 0.3°, exposure time per frame was 30 s) using a standard procedure.¹⁰ The structures of compounds were solved by direct method and refined by the full-matrix least-squares method with anisotropic displacement parameters for all non-hydrogen atoms. The hydrogen atoms were located in the difference Fourier maps and refined isotropically using the riding model. The calculations were carried out using the program package.^{11,12}

The crystallographic parameters and the main refinement statistics for compounds 5, 6, 8, 11 are given in Table 3.

Authors are grateful to V. P. Lodygina and G. V. Lagodzinskaya for the help in the confirmation of the structures.

This work was financially supported by the Russian Foundation for Basic Research (Project No. 06-03-32482).

References

- L. T. Eremenko, L. B. Romanova, V. S. Malygina, L. S. Barinova, *Izv. Akad. Nauk, Ser. Khim.*, 2008, 396 [*Russ. Chem. Bull., Int. Ed.*, 2008, 57, 406].
- V. G. Granik, N. B. Grigoriev, Oksid azota [NO]. Novyi put' k poisku lekarstv [Nitric oxide [NO]. New way to drug searching, Vuzovskaya kniga, Moskva], HEI's book, Moscow, 2004, 360 p (in Russian).
- L. T. Eremenko, L. B. Romanova, M. E. Ivanova, D. A. Nesterenko, V. S. Malygina, A. B. Eremeev, G. V. Lagodzinskaya, V. P. Lodygina, *Izv. Akad. Nauk, Ser. Khim.*, 1998, 1169 [*Russ. Chem. Bull. (Engl. Transl.*), 1998, **47**, 1137].

- 4. L. T. Eremenko, L. B. Romanova, M. E. Ivanova, V. S. Malygina, L. S. Barinova, G. V. Lagodzinskaya, V. P. Lodygina, I. L. Eremenko, G. G. Aleksandrov, *Izv. Akad. Nauk, Ser. Khim.*, 2007, 1359 [*Russ. Chem. Bull., Int. Ed.*, 2007, 56, 1408].
- V. V. Zakharov, G. P. Bugaeva, M. E. Ivanova, L. B. Romanova, L. T. Eremenko, S. E. Nefedov, I. L. Eremenko, *Izv. Akad. Nauk, Ser. Khim.*, 1998, 1387 [*Russ. Chem. Bull.* (*Engl. Transl.*), 1998, **47**, 1349].
- 6. V. V. Zakharov, G. P. Bugaeva, L. S. Barinova, G. V. Lagodzinskaya, L. B. Romanova, G. G. Aleksandrov, I. L. Eremenko, L. T. Eremenko, *Izv. Akad. Nauk, Ser. Khim.*, 2005, 1461 [*Russ. Chem. Bull., Int. Ed.*, 2005, 54, 1505].
- 7. A. Bashir-Hashemi, S. Iyer, J. Alster, N. Slagg, *Chem. Ind.* 1995, **14**, 551.
- C.-Y. Cheng, L.-W. Hsin, Y.-P. Lin, P.L. Tao, T.-T. Jong, Bioorg. Med. Chem., 1996, 4, 73.
- 9. P. E. Eaton, N. Nordari, J. Tsanaktsidis, S. P. Upadhyaya, *Synthesis*, 1995, 501.
- SMART (Control) and SAINT (Integration) Software, Version 5.0, Bruker AXS Inc., Madison, WI, 1997.
- SHELXTL v. 5.10, Structure Determination Software Suite, Bruker AXS, Madison, Wisconsin, USA, 1998.
- 12. APEX2 Softwarwe Package, Bruker AXS Inc., 5465, East Cheryl Parkway, Madison, Wisconsin, USA, 2005.

Received October 20, 2009; in revised form March 4, 2010