An Improved Sonogashira Coupling Procedure for the Construction of Rigid Aromatic Multifunctional Monomers Bearing 1,3-Substituted Acetylenic Units

Louise Davidson,^a Keith W. Freebairn,^b Andrew T. Russell,^a Harish S. Trivedi,^b Wayne Hayes^{*a}

^a Department of Chemistry, The University of Reading, Whiteknights, Reading, Berkshire, RG6 6AD, UK

^b GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK Fax +44(118)9316331; E-mail: w.c.hayes@reading.ac.uk

Received 4 November 2001

Abstract: The efficient synthesis of rigid multifunctional vinylic monomers **1** and **2** from 3,5-dibromobenzene derivatives and propargyl alcohol via the Sonogashira reaction is reported. For example, a series of 3,5-bis(3-hydroxyprop-1-ynl)benzoate ester derivatives have been prepared efficiently using an improved palladium catalyst system. Subsequent hydrolysis and reaction with 4-vinylaniline afforded a new monomer **2** for use in functional macroporous polymer systems. In addition, Sonogashira and Wittig methodologies have been optimised in order to construct successfully an alternative rigid monomer **1** from 3,5-dibromobenzaldehyde.

Key words: Sonogashira reaction, palladium, cross-coupling, organometallic reagents, tri-2-furylphosphine

The palladium(0)/copper(I) halide catalysed coupling of terminal alkynes with aryl or alkenyl halides, first reported¹ by Sonogashira and co-workers, is a widely used method for the synthesis of arylalkynes and conjugated enynes.² As part of our research towards the synthesis of novel rigid vinylic monomers **1** and **2** (Figure) for use in imprinted polymer systems,³ an efficient and robust procedure for the coupling of propargyl alcohol to a range of 3,5-dibromobenzene derivatives was required. Consequently, use of Sonogashira coupling methodologies was investigated and the results of these studies are reported herein.

Synlett 2002, No. 2, 01 02 2002. Article Identifier: 1437-2096,E;2002,0,02,0251,0254,ftx,en;G32401ST.pdf. © Georg Thieme Verlag Stuttgart · New York ISSN 0936-5214

The synthesis of monomer 1 employed the conditions reported⁴ by Brown et al. for the synthesis of 3,5-dibromobenzaldehyde from 3,5-dibromobenzoic acid via a two step reduction/selective oxidation process (Scheme 1). Employing the original reaction conditions described¹ by Sonogashira and co-workers (0.4 mol% Pd (PPh₃)₂Cl₂, 0.8 mol% CuI, triethylamine, THF) in conjunction with 3,5dibromobenzaldehyde and propargyl alcohol, the key intermediate 3,5-bis(3-hydroxyprop-1-yl)benzaldehyde 3 was constructed in good yield (Table, entry 1). The hydroxyl moieties of **3** were then protected in the form of their corresponding tert-butyldimethylsilyl (TBDMS) ethers. Subsequent conversion of the aldehyde group of the protected diol 4 to the corresponding olefin 5 employing standard Wittig conditions⁵ followed by deprotection of the TBDMS groups afforded the desired monomer 1 in 96% yield.

In addition to monomer 1, novel rigid monomers such as 2 (Figure), comprised of 3,5-bis-acetylenated aromatic units tethered to a polymerisable vinylic group, were also targeted to enable structure-property relationships of the resultant imprinted polymers to be studied. The approach used to obtain monomers such as 2 also involved use of the palladium mediated cross-couplings of propargyl alcohol to 3,5-dibromobenzoic acid ethyl ester (Scheme 2). However, in stark contrast to monomer 1, the synthesis of monomer 2 required significant modification of the Sonogashira-based methodologies.

Under the original coupling conditions (Table, entry 2), the desired bis-acetylenic product 6a was not isolated, only a moderate yield of mono-substituted product 7a was obtained. This effect has also been observed⁶ by Krause and co-workers in the coupling of trimethylsilylacetylene to methyl bromobenzoate derivatives and higher catalyst loadings were found to increase cross-coupling yields.⁶ However, in the case of **6a**, this approach proved ineffective (Table, entry 3). In light of these initial disappointing results, a range of different palladium catalyst and ligand combinations were screened in order to optimise the coupling of propargyl alcohol to 3,5-dibromobenzoic acid ethyl ester (see Table). The catalytic system PdCl₂/PPh₃ reported by Philp et al.⁷ (Table, entry 4) for the successful coupling of propargyl alcohol to 3,5-substituted halogenobenzenes unfortunately failed to yield the desired product 6a. Several reports have detailed the use of

 $Pd_2(dba)_3$ or $Pd(dba)_2$ in the presence of phosphine ligands as effective catalysts in the Sonogashira reaction.^{8–10} However, in the case of **6a**, this catalytic system required extensive heating in order to afford the desired product in moderate yield (Table, entry 5). Reetz et al.¹¹ have reported high catalytic activity from the use of palladium salts such as $Pd(OAc)_2$ in the presence of Ph_4PX (where X = Cl, Br, I) in Heck type arylations of unreactive aryl halides. This catalyst combination proved almost inactive for the Sonogashira coupling of propargyl alcohol to 3,5-dibromobenzoic acid ethyl ester, (Table, entry 6) with only a low yield of the mono-acetylenic ester 7a obtained. Subsequent combination of the catalyst Pd(dba)₂ with Ph₄PCl also proved unsuccessful (Table, entry 7).

The prolonged reaction times of the procedures described above in conjunction with inefficient cross-couplings led the consideration of the use of the tri-2to furylphosphine¹² (TFP) ligand. Farina and co-workers¹³ first reported use of the TFP ligand in Stille cross-coupling reactions, demonstrating an increased rate of reaction that was attributed to the low electron donating ability of the TFP ligand. In addition, Vasella and co-workers have observed¹⁴ that palladium catalysts incorporating the TFP ligand are the most effective systems for the crosscoupling of THP protected propargyl alcohol with iodoalkynes. Therefore, in light of these reports, the efficiency of the TFP ligand was tested in the Sonogashira coupling of propargyl alcohol to 3,5-dibromobenzoic acid ethyl ester. Initial use of the TFP ligand in combination with the $Pd_2(dba)_3$ catalyst (Table, entry 8) was disappointing and afforded poor results. None of the bis-acetylenic ethyl ester 6a was isolated, and a high yield of a by-product incorporating the furyl unit was isolated. Buchwald et al. have reported¹⁵ the successful use of the catalyst system Pd(Ph-CN)₂Cl₂ in the Sonogashira coupling of aryl bromides at room temperature. Consequently, the TFP ligand was utilised in combination with the Pd(PhCN)₂Cl₂ species (Table, entry 9) and delivered an acceptable yield¹⁶ of the desired 3,5-bis(3-hydroxyprop-1-ynl)benzoic acid ethyl ester 6a in a significantly shorter reaction time and a dramatic increase in the yield per coupling (up to 65%). Subsequent hydrolysis of the ethyl ester functionality to the corresponding carboxylic acid, followed by protection of the hydroxyl groups as their corresponding TBDMS

Scheme 2

Synlett 2002, No. 2, 251-254 ISSN 0936-5214 © Thieme Stuttgart · New York

Entry ^a	R	Pd catalyst (mol%)	Ligand (mol%)	CuI (mol%)	Yield ^b (%)	
					6	7
1	СНО	Pd(PPh ₃) ₂ Cl ₂ (0.4)	n/a	0.8	72	21
2	CO ₂ Et	Pd (PPh ₃) ₂ Cl ₂ (0.4)	n/a	0.8	0	54
3	CO ₂ Et	Pd (PPh ₃) ₂ Cl ₂ (1.1) ^c	n/a	4.3	0	42
4	CO ₂ Et	PdCl ₂ (0.5)	$PPh_3(1)$	0.5	0	35
5	CO ₂ Et	$Pd(dba)_2(0.4)$	PPh ₃ (2)	0.4	34	62
6	CO ₂ Et	$Pd(OAc)_2(4)$	Ph ₄ PCl (2.4)	8	0	10
7	CO ₂ Et	$Pd(dba)_2(0.05)$	Ph ₄ PCl (1)	0.4	0	2
8	CO ₂ Et	Pd ₂ (dba) ₃ (0.6)	TFP ^d (1.3)	0.4	0	33
9	CO ₂ Et	Pd(PhCN) ₂ Cl ₂ (0.6)	TFP (1.3)	0.4	42	47
10	CO ₂ Et	Pd(PhCN) ₂ Cl ₂ (0.6)	AsPh ₃ (1.3)	0.4	0	61
11	CO ₂ Me	Pd(PhCN) ₂ Cl ₂ (0.6)	TFP (1.3)	0.4	10	44
12	CO ₂ - <i>i</i> -Pr	Pd(PhCN) ₂ Cl ₂ (0.6)	TFP (1.3)	0.4	22	61
13	CO ₂ - <i>t</i> -Bu	Pd(PhCN) ₂ Cl ₂ (0.6)	TFP (1.3)	0.4	21	52

Table Cross-coupling of Propargyl Alcohol to 3,5-Dibromo-benzene Derivatives

^a In all cases, reactions were performed in refluxing THF with addition of 2.5 equiv triethylamine (distilled from calcium sulfate).

^b Yields refer to compounds isolated by column chromatography on silica gel. All compounds were characterised completely, and were in full agreement with structures.

^c With addition of 2.7 equiv DBU.

^d TFP = tri-2-furylphosphine.

ethers afforded intermediate **8**. EDCI mediated amidation with 4-vinylaniline and subsequent deprotection of the TBDMS groups afforded the required vinylic monomer **2** in an acceptable yield of 72%.

In addition to the TFP ligand, Farina and co-workers have studied the use of other ligands of low donor ability in the Stille reaction, such as the triphenylarsine ligand.¹⁷ Subsequent mixing of this ligand with sources of palladium(0) afforded catalysts that afforded fast coupling rates, but that were relatively unstable during the course of the reaction in comparison to the TFP derived systems. Comparable results were obtained in this study upon examination of the Pd(PhCN)₂Cl₂/triphenylarsine and Pd(PhCN)₂Cl₂/TFP systems. Therefore, although the triphenylarsine ligand did increase the rate of formation of the mono-acetylenic product **7a**, the catalyst appeared to decompose before the desired bis-acetylenic product **6a** could be formed, and thus only product **7a** was isolated (Table, entry 10).

Having uncovered that the enhanced reactivity of the $Pd(PhCN)_2Cl_2/TFP$ catalyst allows formation of the bisacetylenated derivative **6a**, presumably via the intermediacy of the bromide **7a**, we then examined the effect of variations of the ester functionality in the starting material upon the efficiency of this process (Scheme 2). This study proved surprisingly important with a noticeable change in

the yield whichever ester was substituted for the original ethyl moiety. In the case of all the 3,5-dibrominated aromatic esters examined, moderate yields of the required bis-acetylenic esters **6b–d** were obtained (Table, entries 11–13). Only in the case of 3,5-dibromobenzoic acid methyl ester was a low yield of the bis-acetylenic product **6b** observed.

In summary, an improved method for the Sonogashira coupling of acetylenic systems to a range of 3,5-dibromobenzoate ester derivatives has been developed enabling the synthesis of several new rigid functional vinylic monomer systems. The catalyst $Pd(PhCN)_2Cl_2$ in conjunction with tri-2-furylphosphine afforded successfully the desired 3,5-bis(3-hydroxyprop-1-ynl)benzoic acid ethyl ester **6a** from the cross-coupling of propargyl alcohol to the 3,5-dibromobenzoic acid ethyl ester substrate in acceptable yields with concomitant short reaction times. This catalytic combination also proved to be active for the cross coupling of propargyl alcohol to other ester derivatives of 3,5-dibromobenzoic acid.

Acknowledgement

LD would like to thank BBSRC and GlaxoSmithKline for funding. In addition, the authors would like to thank Mr Neil Carter for helpful suggestions at the outset of this work.

References

- (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. *Tetrahedron Lett.* **1975**, 4467. (b) Sonogashira, K. In *Comprehensive Organic Synthesis*, Vol. 3; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: New York, **1991**, 521.
- (2) (a) Nicolaou, K. C.; Hwang, C.-K.; Smith, A. L.; Wendeborn, S. V. *J. Am. Chem. Soc.* **1990**, *112*, 7416.
 (b) Nicolaou, K. C.; Smith, A. L.; Wenderborn, S. V.; Hwang, C.-K. *J. Am. Chem. Soc.* **1991**, *113*, 3106.
- (3) For excellent reviews of molecular imprinted polymers, see:
 (a) Wulff, G. *Angew. Chem., Int. Ed. Engl.* **1995**, *34*, 1812.
 (b) Whitcombe, M. J.; Vulfson, E. N. *Adv. Mater.* **2001**, *13*, 467.
- (4) Brown, H. C.; Gundu Rao, C.; Kulkarni, S. V. Synthesis 1979, 704.
- (5) Clark, R. D.; Jahinger, J. Org. Chem. 1989, 54, 1174.
- (6) Thorand, S.; Krause, N. J. Org. Chem. 1998, 63, 8551.
 (7) Robinson, J. M. A.; Kariuki, B. M.; Harris, D. M.; Philp, D.
- J. Chem. Soc., Perkin Trans. 2 1998, 2459.
 (2) Picker V. D. W. Harrison W. A. Even J. Org. Chem. 2000.
- (8) Böhm, V. P. W.; Hermann, W. A. Eur. J. Org. Chem. 2000, 3679.
- (9) Shen, W.; Thomas, S. A. Org. Lett. 2000, 2, 2857.
- (10) Mori, A.; Kawashima, J.; Shimada, T.; Suguro, M.; Hirabayashi, K.; Nishihara, Y. Org. Lett. 2000, 2, 2935.
- (11) (a) Reetz, M. T.; Lohmer, G.; Schwickardi, R. *Angew. Chem. Int. Ed.* **1998**, *37*, 481. (b) Reetz, M. T.; Wetsermann, E.; Lohmer, R.; Lohmer, G. *Tetrahedron Lett.* **1998**, *39*, 8449.
- (12) For a comprehensive review of the use of 2-furylphosphines as ligands in palladium mediated reactions see: Andersen, N. G.; Keay, B. A. *Chem. Rev.* **2001**, *101*, 997.
- (13) Farina, V.; Baker, S. R.; Benigni, D. A.; Sapino, C. *Tetrahedron Lett.* **1988**, *29*, 5739.
- (14) Cai, C.; Vasella, A. Helv. Chem. Acta 1995, 78, 2053.

- (15) Hundertmark, T.; Littke, A. F.; Buchwald, S. L.; Fu, G. C. *Org. Lett.* **2000**, *2*, 1729.
- **Typical Procedure for the Preparation of 6a:** (16)Bisbenzonitriledichloropalladium (75 mg, 0.20 mmol) and copper iodide (25 mg, 0.10 mmol) were added to a dry round bottomed flask which was purged with argon and filled with dry THF (10 mL). Tri-2-furylphoshine (94 mg, 0.40 mmol) and triethylamine (1.1 mL, 7.80 mmol) were added, followed by 3,5-dibromobenzoic acid ethyl ester (1.01 g, 3.30 mmol). The reaction was stirred at r.t. for 20 min. Propargyl alcohol (0.55 g, 9.80 mmol) was added gradually over 20 min, and the reaction was refluxed under argon for 10 h. The residue of palladium salts was filtered and washed with THF. The combined filtrate and washings were evaporated under reduced pressure. The residue was taken up in chloroform (50 mL) and washed with 1 M hydrochloric acid (20 mL) followed by brine (2×20 mL). The combined organic layers were dried over sodium sulfate, filtered at the pump and concentrated in vacuo to yield a brown oil. Subsequent purification using column chromatography (SiO₂, 6:4 CH₂Cl₂:EtOAc) afforded a white solid (mp 163-164 °C, 0.351 g, 42%).
 - ¹H NMR (250 MHz, CDCl₃): δ = 1.17 (t, 3 H, *J* = 7.1 Hz, CH₃), 4.22 (q, 2 H, *J* = 7.1 Hz, CH₂), 4.42 (s, 4 H, 2 × CH₂), 7.43 (t, 1 H, *J* = 1.6 Hz, ArH), 7.86 (d, 2 H, *J* = 1.6 Hz, ArH). ¹³C NMR (67.5 MHz, CDCl₃): δ = 13.2 (CH₃), 50.2 (2 CH₂), 60.6 (CH₂), 82.5 (2 × C=C), 88.1 (2 × C=C), 122.3 (2 × ArCH), 129.7 (ArCH), 131.3 (2 × ArC-C), 137.3 (ArC-COOEt), 164.4 (C=O); IR: v_{max} 666, 723, 1414, 1462, 1585, 1735, 2354, 2856, 2923 cm⁻¹; *m/z* (TOF MS ES+) mobile phase 70:30 CH₃CN:0.05 M NH₄OAc(aq), flow injection: calculated for C₁₅H₁₄O₄ 258.2732, found 792.3010 [3 M + NH₄]⁺, 534.2120 [2 M + NH₄]⁺, 517.1837 [2 M + H]⁺, 481.1641 [2 M + H – 2 H₂O]⁺, 300.1233 [MH + CH₃CN]⁺, 259.0965 [MH⁺].
- (17) Farina, V.; Krishnan, B. J. Am. Chem. Soc. 1991, 113, 9585.