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Dinuclear Ni2–Schiff base complex-catalyzed asymmetric 1,4-addition of

b-keto esters to nitroethylene toward c2,2-amino acid synthesisw
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A homodinuclear Ni2–Schiff base 1 complex (1–10 mol%)

promoted the catalytic asymmetric 1,4-addition reactions of

b-keto esters and an N-Boc oxindole to nitroethylene, giving

products in 98–75% ee.

Catalytic asymmetric 1,4-additions of carbon nucleophiles are

highly useful synthetic transformations for the construction of

quaternary carbon stereocenters.1,2 Over recent years, there

has been tremendous progress in both metal catalysis and

organocatalysis for the asymmetric 1,4-additions of b-keto
esters and related compounds.2 b-Substituted nitroalkenes are

most often used as acceptors, giving b-substituted g-nitro
esters with a-quaternary carbon stereocenters.3 The use of a

b-unsubstituted acceptor (nitroethylene), however, is much

less common,4,5 possibly due to potential difficulties of

enantiocontrol and competitive polymerization of nitroethylene.

Gellman et al. and Wennermers et al. independently reported

highly enantioselective organocatalytic asymmetric 1,4-additions

of aldehydes to nitroethylene and their applications to

g2-amino acid synthesis,4 but a,a-disubstituted aldehydes were

not utilized as donors. Barbas was the first to successfully

construct a quaternary carbon stereocenter via catalytic

asymmetric 1,4-addition of an N-Boc oxindole to nitroethylene.5

Because g2-amino acids are potentially useful building blocks

for folder research and the synthesis of biologically active

compounds,6,7 further studies to expand the scope of donors,

especially for the synthesis of adducts with a quaternary

stereocenter adjacent to a carbonyl group g2,2,8,9 are highly

desirable. To address this issue, we herein report the utility of a

homodinuclear Ni2–Schiff base 1 complex (Fig. 1). Ni2–1

(1–10 mol%) promoted the reactions of b-keto esters to

nitroethylene, affording products in 98–75% ee.

As part of our ongoing studies of bifunctional Lewis

acid/Brønsted base catalysis in collaboration with Shibasaki,10

one of authors (S.M.) and Shibasaki recently reported the

utility of dinuclear Schiff base complexes.11–15 Among them,

homodinuclear Co2–1
12a,b and Mn2–1

12c complexes were

suitable for 1,4-additions with b-substituted nitroalkenes.

Thus, we first applied Co2–1 and Mn2–1 complexes for the

reaction of b-keto ester 2a and nitroethylene. Both of

these complexes, however, gave an unsatisfactory yield and

enantioselectivity (Table 1, entries 1 and 2, less than 30%

NMR yield and 67% ee). Among the homodinuclear12,13 and

heterodinuclear14 Schiff base complexes screened, the Ni2–1

catalyst13 afforded promising results. The reaction of b-keto
ester 2a with 1.2 equiv. of nitroethylene in THF at 0 1C gave

product 3a in 75% yield and 97% ee (entry 3). Among the

solvents screened (entry 3–8), AcOEt was the best in terms of

yield and enantioselectivity (entry 8, 96% yield and 98% ee).

We then tried to reduce catalyst loading in entries 9–12. With

2.5 mol% catalyst, reactivity was decreased at 0 1C and the

reaction did not complete after 48 h (entry 10). Raising the

reaction temperature to 40 1C drastically improved the reactivity

and the reaction completed within 5 h with high enantio-

selectivity (entry 12, 93% ee).

Fig. 1 Structures of dinucleating Schiff base 1 and homodinuclear

M2–Schiff base 1 complexes.

Table 1 Optimization of reaction conditionsa

Entry M x Solventb Temp/1C Time/h % Yieldc % ee

1 Co(OAc) 10 THF 0 25 o30 67
2 Mn(OAc) 10 THF 0 25 o20 67
3 Ni 10 THF 0 25 75 97
4 Ni 10 Toluene 0 25 94 68
5 Ni 10 CH2Cl2 0 25 >95 92
6 Ni 10 CHCl3 0 25 >95 90
7 Ni 10 CH3CN 0 25 78 78
8 Ni 10 AcOEt 0 25 95 98
9 Ni 5 AcOEt 0 23 91 96
10 Ni 2.5 AcOEt 0 48 83 89
11 Ni 2.5 AcOEt rt 48 87 92
12 Ni 2.5 AcOEt 40 5 >95 93

a 1.2 equiv. of nitroethylene (in toluene) were used. b Reactions were

run in solvent/toluene = 10 : 1, because nitroethylene stored in

toluene was used. c Yield was determined by 1H NMR analysis of

the crude reaction mixture.
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The substrate scope and limitations of the reaction are

summarized in Table 2.16 Because the reactivity of b-keto
esters 2 depends on the structure, the reaction conditions, such

as catalyst loading and reaction time, were optimized for

each b-keto ester. The best results for each substrate are

summarized in Table 2. Indanone-derived b-keto esters

2b–2d showed good reactivity, and products 3b–3d were

obtained in 92–90% yield and 98–94% ee after 4.5 to 10 h

using 2.5 mol% of Ni2–1 (entries 2, 4–5). In entry 3, the

reaction was performed with 1 mol% Ni2–1 catalyst, but both

the reactivity and enantioselectivity decreased (18 h, 84%

yield, 87% ee). The reactivity of b-keto esters 2e and 2f with

a six-membered ring was lower than that of b-keto ester 2a,

and 10 mol% of Ni2–1 was required to obtain products 3e and

3f in 98–73% yield and 91–75% ee after 24 h (entries 6 and 7).

The reactivity of acyclic b-keto esters 2g and 2h was much

lower than that of cyclic b-keto esters, and products 3g and 3h

were obtained in only 35–51% yield even using 10 mol% of the

catalyst (entries 8–9, 82–85% ee). We are speculating that the

modest to poor reactivity in entries 7–10 is due to poor

nucleophilicity of Ni–enolates. The Ni2–1 catalyst was also

applicable to N-Boc oxindole 2i, giving product 3i in 99%

yield and 80% ee after 24 h. To demonstrate the synthetic

utility of the reaction, transformation of the products was

performed (Scheme 1). Reduction of 3c with RANEYs Ni

under H2 (1 atm) in the presence of Boc2O gave g2,2-amino

ester 4c in 72% yield. Reduction of 3a with Pd/C under H2

(1 atm) in MeOH gave bicyclic amino ester, which was isolated

after Boc-protection in 82% yield (5a, 2 steps).

Table 2 Catalytic asymmetric 1,4-addition of b-keto esters 2 to
nitroethylenea

Entry 2

cat.
(x mol%)

Time/
h

%
Yieldb

%
eec

1 2.5 5 92 93

2 2.5 4.5 92 97

3 1 18 84 87

4 2.5 5 90 98

5 2.5 10 90 94

6 10 18 98 91

7 10 24 73 75

8 10 120 35 85

9 10 126 51 82

10 10 24 99 80

a The reactions were run with 1.2 equiv. of nitroethylene (in toluene).
b Isolated yield after purification by silica gel column chromato-

graphy. c Determined by HPLC analysis.
Fig. 2 Postulated catalytic cycle of Ni2–1-catalyzed 1,4-addition of

b-keto esters to nitroethylene.

Scheme 1 Transformation of 1,4-adducts.
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In the present reaction, we assume that the two Ni centers

function cooperatively as observed in other related reactions

using Ni2–1.
13 The postulated reaction mechanism is summarized

in Fig. 2. One of the Ni–O bonds in the outer O2O2 cavity is

speculated to work as a Brønsted base to generate Ni–enolate

in situ.17 The other Ni in the inner N2O2 cavity functions as a

Lewis acid to control the position of nitroethylene, similar to

conventional metal–salen Lewis acid catalysis. The C–C

bond-formation via the transition state (TS in Fig. 2), followed

by protonation, affords product and regenerates the Ni2–1

catalyst.

In summary, we developed a homodinuclear Ni2–Schiff

base-catalyzed enantioselective 1,4-addition of b-keto esters

to nitroethylene. The reaction proceeded with 1–10 mol%

catalyst, and products bearing a quaternary carbon stereo-

center adjacent to an ester were obtained in 98–75% ee and

99–35% yield (TON = up to 84). Further studies to improve

the poor reactivity for acyclic b-keto esters through ligand

modification are ongoing.
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