



## **Accepted Article**

Title: (Thio)etherification of Quinoxalinones under Visible-Light Photoredox Catalysis

Authors: Jiadi Zhou, Peng Zhou, Tingting Zhao, Quanlei Ren, and Jianjun Li

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Adv. Synth. Catal. 10.1002/adsc.201901008

Link to VoR: http://dx.doi.org/10.1002/adsc.201901008

# (Thio)etherification of Quinoxalinones under Visible-Light Photoredox Catalysis

Jiadi Zhou,<sup>a</sup> Peng Zhou,<sup>b</sup> Tingting Zhao,<sup>b</sup> Quanlei Ren,<sup>b</sup> and Jianjun Li<sup>a,b\*</sup>

- <sup>a</sup> Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China.
- <sup>b</sup> College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China. E-mail: lijianjun@zjut.edu.cn

Received: ((will be filled in by the editorial staff))

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/adsc.201#######.((Please delete if not appropriate))

**Abstract.** An efficient visible-light-induced (thio)etherification of quinoxalin-2(1H)-ones with divergent aliphatic alcohols and thiols (primary, secondary, and tertiary) at room temperature in air has been developed. This protocol was highlighted by its mild conditions, readily available starting materials, operational simplicity, and wide functional group tolerance.

**Keywords:** Quinoxalin-2(1H)-ones; (Thio)etherification; Visible-light-induced; Alcohols; Thiols

### Introduction

The construction of the C–O and C-S bond has long been a fundamentally important pursuit in the synthetic community. Over the years, typical methodologies for aryl (thio)etherification have been well established, such as the Cu-based,<sup>[1]</sup> Pd-based,<sup>[2]</sup> Fe-based<sup>[3]</sup> and Ni-based<sup>[4]</sup> coupling reactions. However, the routine use of the prefunctionalized substrate precursors and often harsh reaction conditions limits their potential application. From a synthetic point of view, the (thio)etherification via cross-dehydrogenative coupling (CDC) represents one of the most straightforward and efficient approaches for the construction of the C-O and C-S bond due to its high atom and step economy. Nevertheless, direct C-H/O(S)-H (thio)etherification with aliphatic alcohols and thiols still remains challenging since many methods for their functionalizations lead to carbon-carbon bond formation adjacent to the oxygen atom,<sup>[5]</sup> and the thiols can be easily overoxidized to generate sulfoxides and sulfones.<sup>[6]</sup> In the past few years, a few examples of aryl (thio)etherification of simple arenes with  $alcohols^{[7]}$  or aryl thiols<sup>[8]</sup> were successfully demonstrated by the utilization of CDC strategy. However, in most C-H/O-H etherifications, metal catalysts and stoichiometric chemical oxidants were used, and the direct C-H/S-H thioetherifications with aliphatic thiols were rarely explored.

Quinoxalin-2(1H)-ones represent a valuable class of structural features that are extensively utilized in synthetic chemistry, materials, and pharmaceuticals (Figure 1).<sup>[9]</sup> Recently, various C3–H functionalization strategies<sup>[10]</sup> including arylation,<sup>[11]</sup> alkylation,<sup>[12]</sup> acylation,<sup>[13]</sup> phosphonation,<sup>[14]</sup> trifluoromethylation,<sup>[15]</sup> difluoroarylmethylation,<sup>[16]</sup> and amination<sup>[17]</sup> of quinoxalin-2(1H)-ones have been reported. Very recently, the oxidative C-H fluoroalkoxylation<sup>[18a]</sup> alkoxylation<sup>[18b]</sup> of quinoxalinones or with alcohols has been reported, however, the method needs stoichiometric PhI(OTFA)<sub>2</sub>. For a long period of time, we have been focusing on the  $C(sp^2)$ -H alkylation of various N- Heteroarenes pyridines, (quinolines, isoquinolins, benzooxazole and benzothiazole)<sup>[19a]</sup> and the C-O bond construction by CDC.<sup>[19b,19c]</sup> Herein, we describe a O2-mediated CDC approach for  $C(sp^2)$ -H photocatalytic quinoxalinones (thio)etherification by alcohols and thiols at room temperature in moderate to good yields with high regioselectivity.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>Table 1</b> . Optimization of photocatalytic etherification <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                         |            |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------------|------------|--|
| $R^{1} = O \text{ or } S$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $ |                           | atalyst<br>tive<br>24 h |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2a                        |                         | l<br>3aa   |  |
| Aldose reductase (ALR2) inhibitor Antitumor and antimicrobial activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Photocatalyst             | Additive                | Yield      |  |
| <b>Figure 1</b> (Thio)ether substituted quinoxalinone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lifti y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (mol %)                   | (equiv.)                | $(\%)^{b}$ |  |
| derivatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $Ru(bpy)_3Cl_3(5)$        |                         | 21         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $Ir(ppy)_3(5)$            | _                       | /          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rose bengal (5)           | _                       | 25         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Eosin Y (5)               |                         | 32         |  |
| Previous work:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Methylene blue (5)        |                         | /          |  |
| a. Transition-metal-catalyzed (thio)etherification of aryl halides/triflates/boronic acids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rhodamine 6G (5)          | _                       | 42         |  |
| Ar-X + PVH Cu, Pd, Fe, or Ni cat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rhodamine 6G (5)          | $Cs_2CO_3(2)$           | 11         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rhodamine 6G (5)          | NaOH (2)                |            |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Rhodamine 6G (5)          | $K_2CO_3(2)$            | 15         |  |
| b. Cross-dehydrogenative coupling of arenes with alcohols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rhodamine 6G (5)          | $CF_3CO_2H(2)$          | 81         |  |
| Pd, Cu/Ag or Co cat.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rhodamine 6G (5)          | $CF_3SO_3H(2)$          | 46         |  |
| Ar-OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rhodamine 6G (5)          | $H_2SO_4(2)$            | 44         |  |
| c. Dehydrogenative C-H/S-H cross-coupling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rhodamine 6G (1)          | $CF_3CO_2H(2)$          | 69         |  |
| Ar-H + PCH catalyst [O]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rhodamine 6G (10)         | $CF_3CO_2H(2)$          | 80         |  |
| or electricity Ar—SR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | $CF_3CO_2H(2)$          | 30         |  |
| most limited to aryl thiols                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rhodamine 6G (5)          | $CF_3CO_2H(3)$          | 72         |  |
| d. C3 fluoroalkoxylation and alkoxylation of quinoxalinones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rhodamine 6G (5)          | $CF_3CO_2H(1)$          | 71         |  |
| $N \rightarrow H$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $18^c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rhodamine 6G (5)          | $CF_3CO_2H(2)$          | 30         |  |
| $R^2 \frac{1}{10}$ + R <sub>3</sub> OH $\xrightarrow{\text{Pril(OTFA)}_2 (1.5-2 \text{ equily.})} R^2 \frac{1}{10}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $19^d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Rhodamine 6G (5)          | $CF_3CO_2H(2)$          | 37         |  |
| R <sup>1</sup> R <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $20^{e}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rhodamine 6G (5)          | $CF_3CO_2H(2)$          |            |  |
| Limited to primary or secondary alcohols<br>Stoichiometric PhI/OTEA), was used as oxidant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $21^{f}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rhodamine 6G (5)          | $CF_3CO_2H(2)$          | 80         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>a</sup> Reactio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n conditions: <b>1a</b> ( | 0.4  mmol. <b>2a</b>    | (1 mL)     |  |
| This work: (Thio)etherification of Quinoxalinones                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | photocatal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vst additive 3 W Blue     | LED air rt              | (I IIII)   |  |
| ∧ N (A) RB-6G (5 mol%) ∧ N X +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>b</sup> Isolated vields based on <b>1a</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                         |            |  |
| $R^2 \frac{1}{1}$ $R^3 = 3 W \text{ blue LEDs} R^2 \frac{1}{1}$ $R^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>c</sup> 3 W white LEDs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           |                         |            |  |
| $\sim$ N $\sim$ V $\sim$ N | $d^{3}$ W gree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n I FDs                   |                         |            |  |
| Divergent aliphatic alcohols and thiols ● Inexpensive non-metallic photocatalyst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>e</sup> Without light irradiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           |                         |            |  |
| (primary, secondary, and tertiary)<br>57 examples  High regioselectivity and atom economy Broad substrate scope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $f \mathbf{O}_{\mathbf{a}}$ was use                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | agin maulation.           |                         |            |  |
| up to 94% vield  Simple operation and eco-friendly energy source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\circ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | scu.                      |                         |            |  |

**Scheme 1.** The construction of the C–O and C-S bond

### **Results and Discussion**

Initially, 1-methylquinoxalin-2(1H)-one (1a) was treated with isopropyl alcohol (2a) in the presence of Ru(bpy)<sub>3</sub>Cl<sub>3</sub> (5 mol %) under irradiation with 3 W blue LED lamps. To our delight, the desired product 3aa was obtained in 21% yield after 24 h (Table 1, entry 1). Furthermore, other photocatalysts such as Ir(ppy)<sub>3</sub>, Rose bengal, Eosin Y, Methylene blue, and Rhodamine 6G were also examined (Table 1, entries 2-6). Rhodamine 6G was demonstrated to be the most effective one to give the desired product 3aa in 42% yield (Table 1, entry 6). We next screened different bases and acids aiming to improve the yield, the application of CF<sub>3</sub>COOH (2.0 equiv.) could improve the yield to 81%

(Table 1, entries 7-12). The  $CF_3CO_2H$  may protonate 1a, thus facilitating the subsequent nucleophilic substitution. Further optimization of the reaction was carried out by screening of the loading amounts of Rhodamine 6G and CF<sub>3</sub>CO<sub>2</sub>H. However. the vield has no significant improvement (Table 1, entries 13-17). Unexpectedly, when the reaction was carried out in the absence of Rhodamine 6G, 3aa was obtained in 30% yield. In addition, when the reaction was conducted under irradiation with 3 W white and green LED lamps, **3aa** was also obtained in 30% and 37% yield, respectively (Table 1, entries 18 and 19). No transformation was observed when the reaction was carried out in the dark (Table 1, entry 20). Moreover, when the reaction was carried out under O<sub>2</sub>, the yield has no significant improvement (Table 1, entry 21).

With the optimized reaction conditions in hand, the scope of the present transformation was further investigated by employing various quinoxalin-2-one derivatives and alcohols (Scheme 2). Firstly, a series

of alcohols were attempted under the standard conditions. Simple aliphatic alcohols, such as isopropyl alcohol, ethanol, butyl alcohol, 2methylpropan-1-ol, 3-methylbutan-1-ol, and cyclopentanol were all compatible with the reaction to give the desired products in 61-85% yields (3aa, 3ab, 3ac, 3ad, 3ae, and 3af). Importantly, the use of glycol ethers as starting materials did not compromise the efficiency of the cross-coupling (3ag). Moreover, 2.2.2-trifluoroethan-1-ol were also found to participate efficiently in the reactions (3ah). Envl group was also tolerated, the corresponding product 3ai was obtained. Nevertheless, none of desired product was detected when phenol were employed in the present reaction system. Notably, N-free protected quinoxalin-2(1H)-ones also worked well (3ca, 3cc, and 3ce). The compatibility with N-substituted quinoxalinones was then examined. Various Nprotected groups such as N-ethyl, N-benzyl, N-phenyl, N-esteryl, N-propynyl, and N-octyl groups were all well tolerated in this reaction system to give the desired products in 54-88% yields (3ba, 3bb, 3bc, 3bd, 3db, 3eb, 3fb, 3gb, and 3hb). Furthermore, a broad tolerance of substituted quinoxalin-2(1H)-ones with an electron-withdrawing or electron-donating group, such as F, Cl, Br, NO<sub>2</sub>, CO<sub>2</sub>Me, CF<sub>3</sub>, CN, and Me at 6 or 7-position of the aromatic rings, reacted with ethanol smoothly to generate the anticipated products (3ib, 3jb, 3kb, 3lb, 3mb, 3nb, 3ob, 3sb, 3tb, **3ub**) in moderate to good yields. A mixture of 6-MeO and 7-MeO substituted quinoxalin-2(1H)-ones reacted with ethanol gave the products (3rb and 3rb') in 64 % yields. A substituted quinoxalin-2(1H)-one with Cl or Br on the 8-position was also the suitable substrate, giving the desired product (3pb and 3qb) in 87% and 80% yield, respectively.



**Scheme 2.** Scope of photocatalytic etherification <sup>*a*</sup> <sup>*a*</sup> Reaction conditions: **1** (0.4 mmol), **2** (1 mL), Rhodamine 6G (5 mol %), CF<sub>3</sub>COOH (0.8 mmol), 3 W Blue LEDs, air, rt, 24 h; isolated yields based on **1**. <sup>*b*</sup> Phenol (3 equiv.) and CH<sub>3</sub>CN (1 mL) was used.



**Scheme 3.** Scope of photocatalytic thioetherification <sup>*a*</sup> <sup>*a*</sup> Reaction conditions: **1a** (0.4 mmol), **4** (1 mL), Rhodamine 6G (5 mol %), CF<sub>3</sub>COOH (0.8 mmol), 3 W Blue LEDs, air, rt, 24 h; isolated yields based on **1a**. <sup>*b*</sup> *p*-Toluenethiol (3 equiv.) and CH<sub>3</sub>CN (1 mL) was used, the yield based on *p*-toluenethiol.

scope We examined the further of this thioetherification quinoxalinones by employing various thiols (Scheme 3). Simple aliphatic thiols (primary, secondary, and tertiary) such as ethanethiol, propane-2-thiol, 2-methylpropane-2-thiol, and cyclopentanethiol were suitable substrates, and the corresponding products were obtained in 74-84 yields (5aa, 5ab, 5ac, and 5ad). In addition, various primary aliphatic thiols containing a long aliphatic chains or aromatic ring group were also suitable substrates, and the corresponding products (5ae, 5af, and 5ag) were obtained in 55-92% yields. Ethyl 2-mercaptoacetate bearing an ester group was also an efficient substrate in this transformation, giving 5ah in 82% yield. when ethane-1,2-dithiol bearing two Notably, hydrosulfuryl groups was used, only one of them could be coupled to 1a, giving 5ai in 41% yield. Enyl group was also tolerated, the corresponding product 5aj was obtained. However, when *p*-toluenethiol was employed, only trace product was detected, along with 13% yield S-(*p*-tolyl) of 4methylbenzenesulfonothioate. Moreover, quinoxalin-2(1H)-ones bearing CF<sub>3</sub>, Me, F, Cl, CN, and CO<sub>2</sub>Me groups on the benzene ring were also investigated under the optimal reaction conditions, and the corresponding products (**5bk**, **5fc**, **5ck**, **5ek**, **5gc**, **5ic**, **5jc**, and **5kc**) were isolated in moderate to good yields. The reaction also processed smoothly with disubstituted quinoxalin-2(1H)-ones as the substrates, giving the corresponding products **5dc** and **5hc** in 48% and 84% yield, respectively.

Further application for such synthetic methodology was carried out. For example, a simple ester hydrolysis of **3fb** delivered the corresponding aldose reductase (ALR2) inhibitor (**6fb**) in good yield (Scheme 4).



Some preliminary mechanistic studies were conducted. When radical scavenger 2,2,6,6 tetramethyl-1-piperidinyloxy (TEMPO) or 2,6-ditert-butyl-4methylphenol (BHT) was added into the reaction system under the standard conditions, the present transformation was completely inhibited, suggesting that this transformation might involve a radical process (Scheme 5a). Moreover, when the reaction was carried out under N2, no product was detected. This result indicates that dioxygen is essential for the present transformation (Scheme 5b). In order to verify the formation of  $O_2$  radical under photoredox catalysis, 5,5-dimethyl-pyrroline-N-oxide (DMPO) was employed as a capture reagent to trap the possible radical in this reaction by electron paramagnetic resonance (EPR), which was presented in Figures 6 and 7 of ESI<sup>†</sup>. When DMPO was added into a solution of 1a, TFA, and Rhodamine 6G in air saturated ethanol or 1-propanethiol, the strong characteristic signal of an O<sub>2</sub><sup>-</sup> adduct with DMPO emerged after the reaction mixture was irradiated by 3 W blue LED lamps after 15 min. To our delight, when in the absence of Rhodamine 6G, the characteristic signal of an O<sub>2</sub><sup>--</sup> adduct with DMPO was also observed. These experimental results clearly revealed that two radical routes were involved in the reaction.

Cyclic voltammetry measurements were also performed to understand the possible mechanism. As shown in Figure 8 of ESI<sup>†</sup>, the oxidation semi-peak potential of **1a** ( $E_{p/2}$ = 1.83 V vs SCE in CH<sub>3</sub>CN) and 1-propanethiol ( $E_{p/2}$ = 1.54 V vs SCE in CH<sub>3</sub>CN) were both higher than that of Rhodamine 6G\* ( $E_{red}$ = 0.95 V vs SCE).<sup>[23]</sup> Meanwhile, high-energy alkoxy radicals from simple alkanols ( $E_{p/2} > 2.0$  V vs SCE in CH<sub>3</sub>CN) is very difficult.<sup>[20]</sup> We infer that **1a** might be irradiated by light to produce the excited-state **1a**\* ( $E_{p/2}$ = -1.36 V vs SCE in CH<sub>3</sub>CN based on the electrochemical and spectroscopic measurements, see ESI<sup>†</sup> for details),<sup>[24]</sup> which would be oxidized by Rhodamine 6G\* or O<sub>2</sub> ( $E_{Red}$  = -0.44 V vs. SCE).<sup>[21]</sup>

The Stern–Volmer plot reveals the effective quenching of Rhodamine 6G\* by 1methylquinoxalin-2(1H)-one (1a\*) which indicates the single electron transfer (SET) step and reductive quenching cycle of the cross-coupling process (Figures 1 and 3 in ESI<sup>†</sup>). On the other hand, 1a\* also can be quenched by Rhodamine 6G\* effectively (Figures 4 and 5 in ESI<sup>+</sup>). In contrast, the emission intensity of Rhodamine 6G\* has no dramatically change along with the increasing of the amount of 1propanethiol (Figures 2 and 3 in ESI<sup>†</sup>).

On the basis of these results and relevant reports,<sup>[18, 22]</sup> a possible mechanism was proposed in Scheme 6. Initially, **1a** is irradiated by light to produce the excited-state **1a**\*, which would be oxidized by Rhodamine 6G\* (path a) or O<sub>2</sub> (path b) to produce reactive radical cation **A**. Subsequently, the oxidation of Rhodamine 6G<sup>-</sup> ( $E_{ox}$ = -1.14 V vs Ag/AgCl)<sup>[23]</sup> by O<sub>2</sub> generates the ground state Rhodamine 6G and O<sub>2</sub><sup>-</sup>. Then, **A** is trapped by alcohols or thiols to form nitrogen radical intermediate **B**. Finally, **B** is oxidized by O<sub>2</sub> or HO<sub>2</sub>• to give the CDC product after deprotonation. In addition, the formation of H<sub>2</sub>O<sub>2</sub> was also examined by a starch potassium iodide test paper and the paper was changed into blue.



### Conclusion

In summary, we have illustrated the visible-lightpromoted quinoxalinones  $C(sp^2)$ -H (thio)etherification with diverse alcohols and thiols in air.<sup>[25]</sup> The present protocol provides a facile and practical approach to access diverse 3-alkyloxyl and 3-alkylthiol substituted quinoxalin-2(1H)-ones in moderate to good yields, which is of great value from organic synthesis perspectives due to its desirable features including a cheap catalyst, eco-friendly energy source, high atom economy, operation simplicity, conditions. mild and Α detailed mechanism investigation of the and further application of this protocol is underway in our laboratory.

### **Experimental Section**

#### **General Considerations**

All purchased chemicals were used as received without further purification. All reactions were monitored by TLC with silica gel-coated plates. <sup>1</sup>H (400, 500, or 600 MHz) NMR and <sup>13</sup>C (101, 126, or 151 MHz) NMR spectra were recorded on a Varian spectrometer in  $CDCl_3$  or  $DMSO-d_6$ using tetramethylsilane (TMS) as internal standards. Data are reported as follows: Chemical shift (number of protons, multiplicity, coupling constants). Coupling constants were quoted to the nearest 0.1 Hz and multiplicity reported according to the following convention: s = singlet, d =doublet, t = triplet, q = quartet, m = multiplet, hept = heptet, br = broad. Mass spectra were measured with a HRMS APCI instrument using ESI ionization. Fourier transform infrared spectroscopy (FTIR) spectra were recorded on a Nicolet iS50 in attenuated total reflectance (ATR) mode and reported with wave number (cm<sup>-1</sup>). The cyclic voltammetry measurements were detected by using a CHI 600E electrochemical workstation. Fluorescence quenching experiments were performed on a Hitachi F-7000 FL Spectrophotometer. The EPR experiments were performed on Bruker A300 EPR Spectrometer. UV-visable absorption experiments were performed on UV-2250 spectrophotometer.

## General procedure for the synthesis of compounds in Scheme 2

To a 25 mL dried Schlenk tube equipped with magnetic stir bar was added 1 (0.4 mmol), Rhodamine 6G (0.02 mmol, 5 mol%), alcohols (1 mL), CF<sub>3</sub>COOH (0.8 mmol, 2 equiv.). The mixture was stirred at room temperature and irradiated by 3 W blue LEDs for 24 h, the reaction mixture was quenched with satd. aq. NaHCO<sub>3</sub> (10 mL) and extracted with EtOAc. The combined organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The crude products were purified on a silica gel column using hexane/EtOAc.

## General procedure for the synthesis of compounds in Scheme 3

To a 25 mL dried Schlenk tube equipped with magnetic stir bar was added 1 (0.4 mmol), Rhodamine 6G (0.02 mmol, 5 mol%), thiols (1 mL), CF<sub>3</sub>COOH (0.8 mmol, 2 equiv.). The mixture was stirred at room temperature and

10.1002/adsc.201901008

irradiated by 3W blue LEDs for 24 h, the reaction mixture was quenched with satd. aq. NaHCO<sub>3</sub> (10 mL) and extracted with EtOAc. The combined organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The crude products were purified on a silica gel column using hexane/EtOAc.

#### Characterization data for the products

#### (3aa) 3-isopropoxy-1-methylquinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.61 (dd, J = 7.9, 1.4 Hz, 1H), 7.44-7.38 (m, 1H), 7.30 (dd, J = 7.7, 1.1 Hz, 1H), 7.25 (dd, J = 8.3, 1.0 Hz, 1H), 5.49 (hept, J = 6.2 Hz, 1H), 3.72 (s, 3H), 1.46 (d, J = 6.2 Hz, 6H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  153.4, 151.4, 131.4, 131.3, 127.4, 126.7, 123.8, 113.5, 70.5, 29.5, 21.6 (2C); HRMS (ESI): C<sub>12</sub>H<sub>15</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> calculated: 219.1128, found: 219.1153.

#### (3ab) 3-ethoxy-1-methylquinoxalin-2(1H)-one

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.63 (dd, J = 7.9, 1.3 Hz, 1H), 7.44 – 7.39 (m, 1H), 7.33 – 7.29 (m, 1H), 7.26 (d, J =8.1 Hz,1H), 4.56 (q, J = 7.1 Hz, 2H), 3.73 (s, 3H), 1.51 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  153.9, 151.2, 131.5, 131.2, 127.5, 126.9, 123.9, 113.6, 63.5, 29.5, 14.2; HRMS (ESI): C<sub>11</sub>H<sub>12</sub>N<sub>2</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup> calculated: 227.0791, found: 227.0813.

#### (3ac) 3-butoxy-1-methylquinoxalin-2(1H)-one

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) δ 7.62 (dd, J = 7.9, 1.3 Hz, 1H), 7.43 – 7.38 (m, 1H), 7.32 – 7.28 (m, 1H), 7.26 (d, J =8.4 Hz, 1H), 4.48 (t, J = 6.8 Hz, 2H), 3.72 (s, 3H), 1.91 – 1.85 (m, 2H), 1.56 – 1.48 (m, 2H), 0.99 (t, J = 7.4 Hz, 3H); <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) δ 154.1, 151.2, 131.6, 131.3, 127.5, 126.9, 123.9, 113.6, 67.4, 30.5, 29.5, 19.2, 13.8; HRMS (ESI): C<sub>13</sub>H<sub>16</sub>N<sub>2</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup> calculated: 255.1104, found: 255.1121.

#### (3ad) 3-Isobutoxy-1-methylquinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.62 (dd, J = 7.9, 1.4 Hz, 1H), 7.43 – 7.37 (m, 1H), 7.32 – 7.27 (m, 1H), 7.25 (d, J = 8.3 Hz, 1H), 4.24 (d, J = 6.9 Hz, 2H), 3.72 (s, 3H), 3.32 – 2.22 (m, 1H), 1.06 (d, J = 6.7 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  154.2, 151.1, 131.5, 131.2, 127.4, 126.9, 123.9, 113.6, 73.7, 29.4, 27.6, 19.3; HRMS (ESI): C<sub>13</sub>H<sub>16</sub>N<sub>2</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup> calculated: 255.1104, found: 255.1128.

#### (3ae) 3-(isopentyloxy)-1-methylquinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.63 (dd, J = 7.9, 1.4 Hz, 1H), 7.43 – 7.37 (m, 1H), 7.32 – 7.27 (m, 1H), 7.25 (dd, J = 8.3, 1.1 Hz, 1H), 4.51 (t, J = 6.8 Hz, 2H), 3.72 (s, 3H), 1.90 – 1.83 (m, 1H), 1.78 (q, J = 6.9 Hz, 2H), 0.99 (d, J = 6.4 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  154.1, 151.2, 131.5, 131.2, 127.5, 126.9, 123.9, 113.6, 66.2, 37.2, 29.5, 25.1, 22.6 (2C); ATR-FTIR (cm<sup>-1</sup>):2958, 1671, 1473, 1387, 1258, 1122, 751; HRMS (ESI): C<sub>14</sub>H<sub>18</sub>N<sub>2</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup> calculated: 269.1260, found: 269.1278.

(3af) 3-(cyclopentyloxy)-1-methylquinoxalin-2(1H)-one <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.62 (dd, J = 7.9, 1.4 Hz, 1H), 7.41 – 7.36 (m, 1H), 7.30 – 7.27 (m, 1H), 7.24 (dd, J= 8.3, 1.0 Hz, 1H), 5.58 – 5.53 (m, 1H), 3.70 (s, 3H), 2.11 – 2.03 (m, 2H), 1.98 –1.92 (m, 2H), 1.88 –1.85 (m, 2H), 1.66 –1.63 (m, 2H); <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  153.8, 151.3, 131.5, 131.4, 127.5, 126.7, 123.8, 113.5, 79.9, 38.8, 32.6, 29.4, 25.0, 24.0; HRMS (ESI): C<sub>14</sub>H<sub>18</sub>N<sub>2</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup> calculated: 267.1104, found: 267.1118.

## $(3ag) \quad 3\mbox{-}(2\mbox{-methoxy}\mbox{-}1\mbox{-methylquinoxalin-}2(1H)\mbox{-}one$

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.62 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.44 – 7.40 (m, 1H), 7.73 7.25 (m, 2H), 4.64 (t, *J* = 9.6 Hz, 2H), 3.85 (t, *J* = 10 Hz, 2H), 3.72 (s, 3H), 3.44 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  153.9, 151.1, 131.8, 131.1, 127.7, 127.3, 124.1, 113.8, 70.3, 66.4, 59.3, 29.6; ATR-FTIR (cm<sup>-1</sup>):2925, 1644, 1456, 1313, 1279, 1173, 1077, 732; HRMS (ESI): C<sub>12</sub>H<sub>14</sub>N<sub>2</sub>NaO<sub>3</sub> [M+Na]<sup>+</sup> calculated: 257.0897, found: 257.0894.

#### (3ah) 1-methyl-3-(2,2,2-trifluoroethoxy)quinoxalin-2(1H)-one

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 (dd, J = 8.0, 1.4 Hz, 1H), 7.51 – 7.45 (m, 1H), 7.36 – 7.32 (m, 1H), 7.30 (d, J =7.6 Hz, 1H), 4.90 (q, J = 8.3 Hz, 2H), 3.74 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  152.0, 150.2, 132.1, 130.0, 128.2, 127.9, 124.2, 123.1 (q,  $J_F = 276$  Hz), 113.8, 62.8 (q,  $J_F = 37$  Hz), 29.6; HRMS (ESI): C<sub>11</sub>H<sub>9</sub>F<sub>3</sub>N<sub>2</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup> calculated: 281.0508, found: 281.0537.

#### (3ai) 3-(but-3-en-1-yloxy)-1-methylquinoxalin-2(1H)one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.63 (d, J = 7.9 Hz, 1H), 7.41 (t, J = 7.8 Hz, 1H), 7.32 – 7.24 (m, 2H), 5.97 (ddt, J =17.1, 10.3, 6.8 Hz, 1H), 5.19 (dd, J = 17.2, 1.6 Hz, 1H), 5.11 (dd, J = 10.4, 1.2 Hz, 1H), 4.53 (t, J = 7.1 Hz, 2H), 3.72 (s, 3H), 2.66 (q, J = 7.0 Hz, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 153.8, 151.1, 134.0, 131.6, 131.1, 127.6, 127.0, 123.9, 117.3, 113.6, 66.6, 32.9, 29.5; HRMS (ESI): C<sub>13</sub>H<sub>14</sub>N<sub>2</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup> calculated: 253.0947, found: 253.0948.

#### (3ba) 1-Ethyl-3-isopropoxyquinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.62 (dd, J = 8.2, 1.5 Hz, 1H), 7.42 – 7.36 (m, 1H), 7.31 – 7.27 (m, 2H), 5.48 (hept, J = 6.2 Hz, 1H), 4.34 (q, J = 7.2 Hz, 2H), 1.47 (d, J = 6.Hz, 6H), 1.38 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  153.4, 150.8, 131.7, 130.3, 127.7, 126.7, 123.6, 113.4, 70.4, 37.6, 21.6 (2C), 12.4; ATR-FTIR (cm<sup>-1</sup>):2979, 1670, 1489, 1470, 1314, 1262, 1125; HRMS (ESI): C<sub>13</sub>H<sub>16</sub>N<sub>2</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup> calculated: 255.1104, found: 255.1126.

#### (3bb) 3-Ethoxy-1-ethylquinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.66 – 7.61 (m, 1H), 7.44 – 7.37 (m, 1H), 7.32 – 7.25 (m, 2H), 4.55 (q, *J* = 7.1 Hz, 2H), 4.35 (q, *J* = 7.2 Hz, 2H), 1.51 (t, *J* = 7.1 Hz, 3H), 1.38 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  153.9, 150.7, 131.6, 130.4, 127.8, 126.9, 123.7, 113.5, 63.5, 37.6, 14.2, 12.4; HRMS (ESI): C<sub>12</sub>H<sub>14</sub>N<sub>2</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup> calculated: 241.0947, found: 241.0965.

#### (3bc) 3-Butoxy-1-ethylquinoxalin-2(1*H*)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.64 (dd, J = 8.2, 1.5 Hz, 1H), 7.42 – 7.37 (m, 1H), 7.31 – 7.26 (m, 2H), 4.47 (t, J = 6.8 Hz, 2H), 4.34 (q, J = 7.2 Hz, 2H), 1.92 – 1.85 (m, 2H), 1.58 – 1.48 (m, 2H), 1.38 (t, J = 7.2 Hz, 3H), 0.99 (t, J = 7.4 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.1, 150.6, 131.6, 130.4, 127.8, 126.9, 123.7, 113.5, 67.4, 37.6, 30.6, 19.2, 13.9, 12.4; ATR-FTIR (cm<sup>-1</sup>): 2959, 1671, 1470, 1376, 1220, 1125, 1063, 753; HRMS (ESI): C<sub>14</sub>H<sub>18</sub>N<sub>2</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup> calculated: 269.1260, found: 269.1278.

#### (3bd) 1-Ethyl-3-isobutoxyquinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.65 (dd, J = 8.2, 1.5 Hz, 1H), 7.45 – 7.40 (m, 1H), 7.34 – 7.29 (m, 2H), 4.36 (q, J = 7.2 Hz, 2H), 4.23 (d, J = 6.8 Hz, 2H), 1.40 (t, J = 7.2 Hz,

10.1002/adsc.201901008

3H), 1.06 (d, J = 6.7 Hz, 6H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  153.9, 150.9, 131.8, 130.0, 127.8, 127.0, 124.1, 113.6, 73.8, 37.9, 27.6, 19.3 (2C), 12.4; ATR-FTIR (cm<sup>-1</sup>):2925, 1698, 1434, 1392, 1259, 1163, 1087; HRMS (ESI): C<sub>14</sub>H<sub>18</sub>N<sub>2</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup> calculated: 269.1260, found: 269.1279.

#### (3ca) 3-isopropoxyquinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.23 (s, 1H), 7.60 (dd, J = 7.9, 1.3 Hz, 1H), 7.42 – 7.38 (m, 1H), 7.37 – 7.27 (m, 2H), 5.53 (hept, J = 6.2 Hz, 1H), 1.50 (d, J = 6.2 Hz, 6H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  153.7, 153.0, 131.5, 129.0, 126.8, 126.6, 124.3, 115.8, 70.8, 21.6 (2C); ATR-FTIR (cm<sup>-1</sup>):2975, 1678, 1460, 1383, 1232, 1109; HRMS (ESI): C<sub>11</sub>H<sub>12</sub>N<sub>2</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup>calculated: 227.0791, found: 227.0812.

#### (3cc) 3-butoxyquinoxalin-2(1*H*)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.37 (br, 1H), 7.46 – 7.38 (m, 1H), 7.38 – 7.32 (m, 1H), 7.30 (d, J = 6.9 Hz, 1H), 4.53 (t, J = 6.6 Hz, 2H), 1.97 – 1.84 (m, 2H), 1.60 – 1.53 (m, 2H), 1.01 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.4, 152.8, 131.4, 129.2, 127.0, 126.6, 124.4, 115.9, 67.6, 30.6, 19.3, 13.9; HRMS (ESI): C<sub>12</sub>H<sub>14</sub>N<sub>2</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup> calculated: 241.0947, found: 241.0961.

#### (3ce) 3-(isopentyloxy)quinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  12.34 (s, 1H), 7.62 (d, *J* = 7. 7 Hz, 1H), 7.48 – 7.28 (m, 3H), 4.55 (t, *J* = 6.6 Hz, 2H), 1. 90 – 1.79 (m, 3H), 1.00 (d, *J* = 6.0 Hz, 6H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.4, 152.8, 131.4, 129.2, 127.0, 126.6, 1 24.5, 115.9, 66.4, 37.2, 25.1, 22.6 (2C); ATR-FTIR (cm<sup>-1</sup>): 2959, 1671, 1495, 1379, 1321, 1272, 1123, 1050; HRMS ( ESI): C<sub>13</sub>H<sub>16</sub>N<sub>2</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup> calculated: 255.1104, found: 255.1130.

#### (3db) 1-benzyl-3-ethoxyquinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.62 (dd, J = 7.4, 1.9 Hz, 1H), 7.34 – 7.17 (m, 8H), 5.52 (s, 2H), 4.58 (q, J = 7.1 Hz, 2H), 1.53 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 154.0, 151.4, 135.2, 131.5, 130.8, 128.9 (2C), 127.7, 127.6, 127.0 (2C), 126.9, 123.9, 114.5, 63.6, 46.2, 14.2; HRMS (ESI): C<sub>17</sub>H<sub>17</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> calculated: 281.1285, found: 281.1304.

#### (3eb) 3-ethoxy-1-phenethylquinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.65 (dd, J = 8.2, 1.5 Hz, 1H), 7.43 – 7.37 (m, 1H), 7.34 (d, J = 4.8 Hz, 4H), 7.32 – 7.27 (m, 3H), 4.55 (q, J = 7.1 Hz, 2H), 4.50 – 4.41 (m, 2H), 3.07 – 3.01 (m, 2H), 1.51 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 154.0, 150.9, 137.9, 131.7, 130.6, 128.9 (2C), 128.9 (2C), 128.0, 127.1, 127.0, 124.0, 113.5, 63.6, 44.1, 33.4, 14.3; ATR-FTIR (cm<sup>-1</sup>): 2975, 1667, 1609, 1491, 1339, 1237, 1128, 745, 702; HRMS (ESI): C<sub>18</sub>H<sub>19</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> calculated: 295.1441, found: 295.1443.

#### (3fb) tert-butyl 2-(3-ethoxy-2-oxoquinoxalin-1(2H)yl)acetate

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.63 (dd, J = 7.9, 1.3 Hz, 1H), 7.39 – 7.33 (m, 1H), 7.29 (d, J = 7.0 Hz, 1H), 7.01 (d, J = 8.2 Hz, 1H), 4.95 (s, 2H), 4.55 (q, J = 7.1 Hz, 2H), 1.50 (t, J = 7.1 Hz, 3H), 1.45 (s, 9H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 166.0, 153.7, 150.9, 131.2, 130.8, 127.8, 127.0, 124.1, 113.1, 83.1, 63.6, 44.5, 28.0 (3C), 14.2; HRMS (ESI): C<sub>16</sub>H<sub>20</sub>N<sub>2</sub>NaO<sub>4</sub> [M+Na]<sup>+</sup> calculated: 327.1315, found: 327.1341.

## (3gb) 3-ethoxy-1-(prop-2-yn-1-yl)quinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.64 (d, J = 8.0 Hz, 1H), 7.47 – 7.42 (m, 2H), 7.32 (ddd, J = 8.3, 6.2, 2.4 Hz, 1H), 5.07 (d, J = 2.4 Hz, 2H), 4.55 (q, J = 7.1 Hz, 2H), 2.28 (t, J = 2.5 Hz, 1H), 1.50 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  153.9, 149.9, 131.0, 130.4, 127.5, 127.4, 124.5, 115.3, 78.4, 75.6, 63.5, 32.0, 14.5; HRMS (ESI): C<sub>13</sub>H<sub>12</sub>N<sub>2</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup> calculated: 251.0791, found:251.0807.

#### (3hb) 3-ethoxy-1-octylquinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.65 – 7.59 (m, 1H), 7.42 – 7.35 (m, 1H), 7.30 – 7.24 (m, 2H), 4.53 (q, J = 7.1 Hz, 2H), 4.26 (t, J = 7.6 Hz, 2H), 1.75 (quint, J = 7.6 Hz, 2H), 1.50 (t, J = 7.1 Hz, 3H), 1.40 – 1.20 (m, 10H), 0.87 (t, J = 6.8 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 153.9, 150.9, 131.6, 130.7, 127.8, 126.8, 123.7, 113.7, 63.4, 42.6, 31.8, 29.3, 29.2, 27.2, 26.9, 22.6, 14.2, 14.1; ATR-FTIR (cm<sup>-1</sup>): 2927, 2855, 1674, 1610, 1470, 1369, 1277, 1126, 1061, 752; HRMS (ESI): C<sub>18</sub>H<sub>27</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> calculated 303.2067, found:303.2061.

#### (3ib) 7-bromo-3-ethoxy-1-methylquinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.78 (d, J = 2.1 Hz, 1H), 7.49 (dd, J = 8.8, 2.2 Hz, 1H), 7.11 (d, J = 8.8 Hz, 1H), 4.54 (q, J = 7.0 Hz, 2H), 3.69 (s, 3H), 1.49 (t, J = 7.0 Hz, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  154.5, 150.9, 132.4, 130.7, 130.0, 129.6, 116.5, 114.9, 63.8, 29.6, 14.1; HRMS (ESI): C<sub>11</sub>H<sub>11</sub>BrN<sub>2</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup> calculated: 304.9896, found: 304.9919.

#### (3jb) 6-bromo-3-ethoxy-1-methylquinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.47 – 7.44 (m, 1H), 7.40 – 7.36 (m, 2H), 4.52 (q, J = 7.1 Hz, 2H), 3.68 (s, 3H), 1.49 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.1, 150.9, 132.7, 130.3, 128.8, 127.1, 120.3, 116.7, 63.8, 29.7, 14.2; HRMS (ESI): C<sub>11</sub>H<sub>11</sub>BrN<sub>2</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup> calculated 304.9896, found: 304.9887.

## (3kb) 6,7-dichloro-3-ethoxy-1-methylquinoxalin-2(1H) one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 (s, 1H), 7.32 (s, 1H), 4.52 (q, *J* = 7.1 Hz, 2H), 3.67 (s, 3H), 1.49 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.5, 150.6, 131.0, 130.6, 130.5, 128.3, 127.5, 115.0, 64.0, 29.8, 14.1; HRMS (ESI): C<sub>11</sub>H<sub>10</sub>Cl<sub>2</sub>N<sub>2</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup> calculated: 295.0012, found: 295.0028.

(3lb) 3-ethoxy-1-methyl-6-nitroquinoxalin-2(1H)-one <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.49 (d, J = 2.1 Hz, 1H), 8.2 6 (dd, J = 9.1, 2.4 Hz, 1H), 7.36 (d, J = 9.1 Hz, 1H), 4.59 ( q, J = 7.1 Hz, 2H), 3.78 (s, 3H), 1.52 (t, J = 7.1 Hz, 3H); <sup>13</sup> C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  155.1, 150.8, 143.8, 136.3, 1 31.1, 123.0, 121.7, 114.0, 64.4, 30.1, 14.1; HRMS (ESI): C <sup>11</sup>H<sub>12</sub>N<sub>3</sub>O<sub>4</sub> [M+H]<sup>+</sup> calculated: 250.0822, found: 250.0816. (3mb) 3-ethoxy-1,6,7-trimethylquinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 (s, 1H), 7.01 (s, 1H), 4.51 (q, *J* = 7.1 Hz, 2H), 3.69 (s, 3H), 2.38 (s, 3H), 2.32 (s, 3H), 1.49 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  153.5, 151.2, 136.1, 132.6, 129.4, 129.2, 127.8, 114.3, 63.2, 29.4, 20.2, 19.2, 14.2; HRMS (ESI): C<sub>13</sub>H<sub>16</sub>N<sub>2</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup> calculated: 255.1104, found: 255.1101.

#### (3nb) 3-ethoxy-6-fluoro-1-methylquinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.33 (dd, J = 9.1, 2.8 Hz, 1H), 7.22 – 7.18 (m, 1H), 7.16 – 7.11 (m, 1H), 4.55 (q, J = 7.1 Hz, 2H), 3.71 (s, 3H), 1.50 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.1 (d, J = 242.7 Hz), 154.8

(s), 150.8 (s), 132.2 (d, J = 11.9 Hz), 128.2 (d, J = 2.3 Hz), 114.5 (d, J = 9.2 Hz), 114.2 (d, J = 23.8 Hz), 113.4 (d, J = 23.1 Hz), 63.8 (s), 29.7 (d, J = 5.3 Hz), 14.1 (s); ATR-FTIR (cm<sup>-1</sup>): 2965, 1669, 1619, 1576, 1458, 1372, 1275, 1119, 1078; HRMS (ESI): C<sub>11</sub>H<sub>11</sub>FN<sub>2</sub>NaO<sub>2</sub> [M+Na]<sup>+</sup> calculated: 245.0697, found: 245.0693.

## (3ob) 3-ethoxy-1-methyl-6-(trifluoromethyl)quinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.74 (d, J = 8.3 Hz, 1H), 7.61 – 7.47 (m, 2H), 4.60 (q, J = 7.1 Hz, 2H), 3.78 (s, 3H), 1.53 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 155.2, 150.9, 133.6, 131.6, , 128.7 (q, J = 33.0 Hz), 128.0, 123.9 (q, J = 273.2 Hz), 120.5 (q, J = 3.7 Hz), 111.0 (q, J =4.1 Hz) , 64.1, 29.7, 14.1; HRMS (ESI): C<sub>12</sub>H<sub>12</sub>F<sub>3</sub> N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> calculated: 273.0845, found: 273.0840.

(3pb) 8-chloro-3-ethoxy-1-methylquinoxalin-2(1H)-one <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 – 7.36 (m, 1H), 7.31 – 7.27 (m, 1H), 7.21 – 7.09 (m, 1H), 4.65 – 4.59 (m, 2H), 3.72 – 3.71 (m, 3H), 1.55 – 1.51 (m, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  153.8, 150.8, 132.8, 132.0, 128.1, 126.7, 124.7, 112.4, 64.1, 29.9, 14.0; ATR-FTIR (cm<sup>-1</sup>): 2979, 2357, 1663, 1605, 1466, 1370, 1275, 1134, 1014, 785; HRMS (ESI): C<sub>11</sub>H<sub>12</sub>ClN<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> calculated: 239.0582, found: 239.0581; HRMS (ESI): C<sub>11</sub>H<sub>12</sub>ClN<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> calculated: 261.0401, found: 261.0405.

(3qb) 8-bromo-3-ethoxy-1-methylquinoxalin-2(1H)-one <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 (dd, J = 7.1, 1.9 Hz, 1H), 7.25 – 7.18 (m, 2H), 4.63 (q, J = 7.1 Hz, 2H), 3.71 (s, 3H), 1.53 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.0, 150.9, 132.6, 129.2, 128.0, 127.2, 122.8, 113.1, 64.3, 29.9, 14.0; ATR-FTIR (cm<sup>-1</sup>): 2922, 1622, 1464, 1368, 1273, 1204, 1131, 1051; HRMS (ESI): C<sub>11</sub>H<sub>12</sub>BrN<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> calculated: 283.0077, found, 283.0075.

(3rb) 3-ethoxy-6-methoxy-1-methylquinoxalin-2(1H)one

## (3rb') 3-ethoxy-7-methoxy-1-methylquinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.15 (d, J = 9.1 Hz, 1H), 7.13 – 6.66 (m, 2H), 4.56 – 4.47 (m, 2H), 3.89 – 3.87 (m, 3H), 3.69 – 3.67 (m, 3H), 1.52 – 1.47 (m, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  158.7, 156.3, 154.4, 152.2, 151.4, 150.7, 132.6, 132.1, 128.4, 125.6, 125.4, 115.2, 114.4, 110.2, 110.0, 98.7, 63.5, 63.1, 55.7, 55.7, 29.6, 29.5, 14.2, 14.2; ATR-FTIR (cm<sup>-1</sup>): 2963, 2363, 1670, 1598, 1466, 1303, 1261, 1096, 1027, 802; HRMS (ESI): C<sub>12</sub>H<sub>15</sub>N<sub>2</sub>O<sub>3</sub> [M+H]<sup>+</sup> calculated: 235.1077, found: 235.1077; HRMS (ESI): C<sub>12</sub>H<sub>15</sub>N<sub>2</sub>O<sub>3</sub> [M+Na]<sup>+</sup> calculated: 257.0879, found, 257.0884.

#### (3sb) 3-ethoxy-6,7-difluoro-1-methylpyrazino[2,3b]pyrazin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.46 – 7.41 (m, 1H), 7.09 – 7.05 (m, 1H), 4.53 (q, *J* = 7.0 Hz, 2H), 3.68 (s, 3H), 1.50 (t, *J* = 7.1 Hz, 3H);<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  154.1 (d, *J* = 2.2 Hz), 150.7 (s), 149.2 (dd, *J* = 227.9, 14.0 Hz), 146.7 (dd, *J* = 224.8, 14.0 Hz), 128.2 (dd, *J* = 8.4, 2.2 Hz), 127.5 (dd, *J* = 9.8, 2.9 Hz), 115.3 (dd, *J* = 18.7, 1.4 Hz), 102.4 (d, *J* = 23.2 Hz), 63.8 (s), 30.0 (s), 14.1 (s); ATR-FTIR (cm<sup>-1</sup>): 2965, 1667, 1611, 1516, 1445, 1384, 1285, 1108, 0.38, 798; HRMS (ESI): C<sub>11</sub>H<sub>11</sub>F<sub>2</sub>N<sub>2</sub>O<sub>2</sub> [M+H]<sup>+</sup> calculated:241.0783, found:241.0787.

#### (3tb) methyl 2-ethoxy-4-methyl-3-oxo-3,4dihydroquinoxaline-6-carboxylate

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.94 – 7.93 (m, 2H), 7.63 (d, J = 8.7 Hz, 1H), 4.57 (q, J = 7.1 Hz, 2H), 3.97 (s, 3H), 3.76 (s, 3H), 1.51 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  166.3, 155.2, 151.0, 134.7, 131.3, 128.1, 127.4, 124.9, 115.3, 64.0, 52.5, 29.7, 14.1; ATR-FTIR (cm<sup>-1</sup>): 2922, 1677, 1591, 1456, 1313, 1234, 1114, 1048, 768; HRMS (ESI): C<sub>13</sub>H<sub>15</sub>N<sub>2</sub> O<sub>4</sub> [M+H]<sup>+</sup> calculated:263.1026, found: 263.1026.

#### (3ub) 2-ethoxy-4-methyl-3-oxo-3,4-dihydroquinoxaline-6-carbonitrile

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.71 – 7.65 (m, 1H), 7.58 – 7.51 (m, 2H), 4.58 (q, *J* = 7.1 Hz, 2H), 3.73 (s, 3H), 1.51 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  155.6, 150.7, 134.5, 132.0, 128.3, 127.2, 118.5, 117.7, 110.0, 64.4, 29.7, 14.1; ATR-FTIR (cm<sup>-1</sup>): 2925, 2233, 1683, 1613, 1559, 1460, 1312, 1251, 1129, 1045; HRMS (ESI): C<sub>12</sub>H<sub>12</sub>N<sub>3</sub>O<sub>2</sub> [M+H]<sup>+</sup> calculated:230.0924, found: 230.0921. **(5aa) 3-(Ethylthio)-1-methylquinoxalin-2(1***H***)-one <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) \delta 7.76 (dd,** *J* **= 7.9, 1.4 Hz, 1H), 7.50 – 7.46 (m, 1H), 7.37 – 7.35 (m, 1H), 7.33 – 7.31 (m, 1H), 3.71 (s, 3H), 3.19 (q,** *J* **= 7.4 Hz, 2H), 1.42 (t,** *J* **= 7.4 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) \delta 160.0, 153.4,** 

7.4 Hz, 5H); <sup>10</sup>C NMR (101 MHz, CDCl<sub>3</sub>) 6 160.0, 155.4, 133.6, 131.4, 128.3, 128.2, 123.8, 113.8, 29.3, 24.0, 13.8; ATR-FTIR (cm<sup>-1</sup>): 2961, 1654, 1600, 1534, 1464. 1343, 1251, 1172, 1079, 755; HRMS (ESI):  $C_{11}H_{12}N_2NaOS$  [M+Na]<sup>+</sup> calculated: 243.0563, found: 243.0589.

#### (5ab) 3-(isopropylthio)-1-methylquinoxalin-2(1H)-one

<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (d, *J* = 8.0 Hz, 1H), 7.48 – 7.45 (m, 1H), 7.32 (t, *J* = 7.6 Hz, 1H), 7.28 (d, *J* = 8.3 Hz, 1H), 4.00 (hept, *J* = 6.8 Hz, 1H), 3.70 (s, 3H), 1.4 (d, *J* = 6.9 Hz, 6H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  160.0, 153.3, 133.6, 131.3, 128.2, 128.1, 123.8, 113.7, 34.5, 29.3, 22.6 (2C); ATR-FTIR (cm<sup>-1</sup>): 2985, 1646, 1466, 1384, 1175, 1080, 748; HRMS (ESI): C<sub>12</sub>H<sub>14</sub>N<sub>2</sub>NaOS [M+Na]<sup>±</sup> calculated: 257.0719, found : 257.0740.

(5ac) 3-(tert-butylthio)-1-methylquinoxalin-2(1H)-one <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.75 (d, J = 7.8 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H), 7.32 – 7.28 (m, 1H), 7.27 – 7.25 (m, 1H), 3.68 (s, 3H), 1.68 (s, 9H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 160.7, 153.4, 133.3, 131.3, 128.3, 128.2, 123.8, 113.8, 47.3, 29.7 (3C), 29.4; ATR-FTIR (cm<sup>-1</sup>): 2954, 1655, 1530, 1466, 1364, 1166, 1077; HRMS (ESI): C<sub>13</sub>H<sub>16</sub>N<sub>2</sub>NaOS [M+Na]<sup>+</sup> calculated: 271.0876, found: 271.0863.

(5ad) 3-(cyclohexylthio)-1-methylquinoxalin-2(1H)-one <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.72 (d, J = 7.5 Hz, 1H), 7.42 (t, J = 7.3 Hz, 1H), 7.34 – 7.27 (m, 1H), 7.26 – 7.24 (m, 1H), 3.91-3.85 (m, 1H), 3.67 (s, 3H), 2.13 – 2.11 (m, 2H), 1.82 – 1.79 (m, 2H), 1.66 – 1.34 (m, 6H); <sup>13</sup>C NMk (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.7, 153.3, 133.5, 131.3, 128.2, 128.0, 123.7, 113.7, 42.2, 32.5 (2C), 29.3, 26.0 (2C), 25.9; ATR-FTIR (cm<sup>-1</sup>): 2923, 1647, 1599, 1466, 1313, 1269, 1175, 1079, 749; HRMS (ESI): C<sub>15</sub>H<sub>18</sub>N<sub>2</sub>NaOS [M+Na]<sup>+</sup> calculated: 297.1032, found: 297.1032.

#### (5ae) 3-(heptylthio)-1-methylquinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.73 (d, J = 7.6 Hz, 1H), 7.43 (t, J = 7.3 Hz, 1H), 7.32 – 7.26 (m, 2H), 3.69 (s, 3H), 3.16 (t, J = 7.0 Hz, 2H), 1.80 – 1.44 (m, 4H), 1.37 – 1.22 (m, 6H), 0.89 (t, J = 6.0 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.2, 153.4, 133.5, 131.4, 128.3, 128.1, 123.8, 113.8, 31.8, 29.7, 29.3, 29.1, 28.9, 28.6, 22.7, 14.2; ATR-FTIR (cm<sup>-1</sup>): 2920, 1644, 1600, 1467, 1346, 1173, 1079, 750; HRMS (ESI):  $C_{16}H_{22}N_2NaOS$  [M+Na]<sup>+</sup> calculated: 313.1345, found: 313.1336.

#### (5af) 1-methyl-3-(tetradecylthio)quinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.75 (d, J = 7.9 Hz, 1H), 7.45 (t, J = 8.3 Hz, 1H), 7.34 – 7.28 (m, 2H), 3.71 (s, 3H), 3.17 (t, J = 7.4 Hz, 2H), 1.75 (quint, J = 7.4 Hz, 2H), 1.48 (quint, J = 6.8 Hz, 2H), 1.36 – 1.23 (m, 20H), 0.88 (t, J = 6.8 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  160.2, 153.4, 133.5, 131.4, 128.3, 128.1, 123.8, 113.7, 31.9, 29.7, 29.7, 29.7, 29.7, 29.6, 29.6, 29.5, 29.4, 29.3, 29.2, 29.1, 28.6, 22.7, 14.1; ATR-FTIR (cm<sup>-1</sup>): 2917, 1643, 1599, 1469, 1345, 1173, 1078, 749; HRMS (ESI): C<sub>23</sub>H<sub>37</sub>N<sub>2</sub>OS [M+H]<sup>+</sup> calculated: 389.2621, found: 389.2622.

#### (5ag) 1-methyl-3-(phenethylthio)quinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 (d, J = 7.9 Hz, 1H), 7.43 (t, J = 7.7 Hz, 1H), 7.35 – 7.32 (m, 5H), 7.28 – 7.22 (m, 2H), 3.67 (s, 3H), 3.40 (t, J = 8.0 Hz, 2H), 3.05 (t, J =7.6 Hz, 2H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.7, 153.4, 140.6, 133.5, 131.4, 128.7 (2C), 128.6 (2C), 128.3 (2C), 126.5, 123.9, 113.8, 35.2, 31.1, 29.3; ATR-FTIR (cm<sup>-1</sup>): 2925, 1644, 1580, 1460, 1346, 1279, 1174, 1077, 754; HRMS (ESI): C<sub>17</sub>H<sub>16</sub>N<sub>2</sub>NaOS [M+Na]<sup>+</sup> calculated: 319.0876. found: 319.0882.

#### (5ah) ethyl 2-((4-methyl-3-oxo-3,4-dihydroquinoxalin-2yl)thio)acetate

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.69 (d, J = 7.8 Hz, 1H), 7.46 (t, J = 7.8 Hz, 1H), 7.33 – 7.27 (m, 2H), 4.23 (q, J =7.1 Hz, 2H), 3.94 (s, 2H), 3.68 (s, 3H), 1.30 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  169.0, 158.4, 153.1, 133.2, 131.6, 128.7, 128.3, 124.0, 113.9, 61.7, 32.5, 29.3, 14.3; ATR-FTIR (cm<sup>-1</sup>): 2972, 1644, 1598, 1463, 1383, 1306, 1159, 1095, 755; HRMS (ESI): C<sub>13</sub>H<sub>14</sub>N<sub>2</sub>NaO<sub>3</sub>S [M+Na]<sup>+</sup> calculated: 301.0617, found: 301.0620.

## (5ai) 3-((3-mercaptopropyl)thio)-1-methylquinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.77 (dd, J = 7.9, 1.3 Hz, 1H), 7.50 – 7.45 (m, 1H), 7.37 – 7.28 (m, 2H), 3.72 (s, 3H), 3.31 (t, J = 7.0 Hz, 2H), 2.71 (q, J = 7.1 Hz, 2H), 2.08 (quint, J = 7.0 Hz, 2H), 1.48 (t, J = 8.0 Hz, 1H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 159.6, 153.4, 133.4, 131.4, 128.4, 128.3, 123.9, 113.8, 32.8, 29.3, 27.8, 23.7; ATR-FTIR (cm<sup>-1</sup>): 2923, 1640, 1598, 1463, 1315, 1173, 1079, 753; HRMS (ESI): C<sub>12</sub>H<sub>14</sub>N<sub>2</sub>NaOS<sub>2</sub> [M+Na]<sup>+</sup> calculated: 289.0440, found: 289.0454.

#### (5aj) 3-(allylthio)-1-methylquinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.79 (dd, J = 7.9, 1.3 Hz, 1H), 7.49 – 7.45 (m, 1H), 7.36 – 7.29 (m, 2H), 6.05 – 5.94 (m, 1H), 5.41 – 5.15 (m, 2H), 3.85 (d, J = 6.9 Hz, 2H), 3.72 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  159.3, 153.3, 133.4, 133.0, 131.5, 128.4 (2C), 123.9, 118.2, 113.8, 32.5, 29.3; ATR-FTIR (cm<sup>-1</sup>): 2921, 1638, 1600, 1535, 1464, 1344, 1173, 1079, 969, 754; HRMS (ESI): C<sub>12</sub>H<sub>12</sub>N<sub>2</sub>NaOS [M+Na]<sup>+</sup> calculated: 255.0563, found: 255.0565.

#### (5bk) 3-(propylthio)-6-(trifluoromethyl)quinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  12.71 (s, 1H), 7.86 (d, J = 8.9 Hz, 1H), 7.59 – 7.58 (m, 2H), 3.16 (t, J = 7.2 Hz, 2H), 1.79 – 1.70(m, 2H), 1.06 (t, J = 7.4 Hz, 3H); <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  164.5, 153.2, 134.5, 130.7, 128.3, 128.0 (q, J = 32.1 Hz), 124.3 (q, J = 272.2 Hz), 120.1 (q, J

= 3.5 Hz), 113.2 (q, J = 4.1 Hz), 31.2, 21.9, 13.9; ATR-FTIR (cm<sup>-1</sup>): 2920, 1679, 1523, 1458, 1349, 1228, 1127, 1079; HRMS (ESI): C<sub>12</sub>H<sub>11</sub>F<sub>3</sub>N<sub>2</sub>OS [M+H]<sup>+</sup> calculated:289.0617, found:289.0612.

#### (5ck) 3-(propylthio)-7-(trifluoromethyl)quinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  12.76 (s, 1H), 7.92 (s, 1H), 7.74 – 7.72 (m, 1H), 7.44 (d, J = 8.5 Hz, 1H), 3.12 (t, J = 7.2 Hz, 2H), 1.76 – 1.66 (m, 2H), 1.02 (t, J = 7.3 Hz, 3H).<sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  163.2, 153.4, 133.4, 132.0, 124.8 (q, J = 3.6 Hz), 124.5 (q, J = 272.7 Hz), 124.2 (q, J = 32.6 Hz), 124.2 (q, J = 3.9 Hz),117.2, 31.1, 22.0, 13.9; ATR-FTIR (cm<sup>-1</sup>): 2921, 1684, 1624, 1459, 1326, 1123, 1064; HRMS (ESI): C<sub>12</sub>H<sub>11</sub>F<sub>3</sub>N<sub>2</sub>OS [M+H]<sup>+</sup>calculated: 289.0617, found: 289.0621.

(5dc) 3-(tert-butylthio)-6,7-dichloroquinoxalin-2(1H)-

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  12.55 (s, 1H), 7.91 (s, 1H), 7.40 (s, 1H), 1.61 (s, 9H); <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  163.6, 152.8, 131.8, 130.3, 130.1, 128.1, 125.6, 117.0, 47.5, 29.7(3C); ATR-FTIR (cm<sup>-1</sup>): 2957, 1667, 1541, 1457, 1165, 1067; HRMS (ESI): C<sub>12</sub>H<sub>12</sub>Cl<sub>2</sub>N<sub>2</sub>NaOS [M+Na]<sup>+</sup> calculated: 324.9940, found: 324.9944.

#### (5ek) 2-oxo-3-(propylthio)-1,2-dihydroquinoxaline-6carbonitrile

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  12.71 (s, 1H), 7.78 (d, J = 8.3 Hz, 1H), 7.66 – 7.64 (m, 1H), 7.60 (d, J = 1.7 Hz, 1H), 3.13 (t, J = 7.2 Hz, 2H), 1.76 – 1.67 (m, 2H), 1.02 (t, J = 7.4 Hz, 3H); <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  165.2, 153.1, 134.9, 130.9, 128.3, 126.9, 120.1, 118.9, 110.0, 31.2, 21.9, 13.9; ATR-FTIR (cm<sup>-1</sup>): 2958, 2226, 1673, 1525, 1455, 1383, 1234, 1136, 1077; HRMS (ESI): C<sub>12</sub>H<sub>11</sub>N<sub>3</sub>OS [M+H]<sup>+</sup> calculated: 246.0696, found:246.0699.

(5fc) 3-(tert-butylthio)-6,7-dimethylquinoxalin-2(1H)one

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  12.28 (s, 1H), 7.45 (s, 1H), 7.02 (s, 1H), 2.28 (s, 6H), 1.61 (s, 9H);<sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  159.9, 153.3, 138.0, 132.4, 130.9, 128.0, 127.3, 116.0, 46.7, 29.8(3C), 20.1, 19.3; ATR-FTIR (cm<sup>-1</sup>): 2920, 1651, 1526, 1450, 1361, 1164, 1073; HRMS (ESI): C<sub>14</sub>H<sub>19</sub>N<sub>2</sub>OS [M+H]<sup>+</sup> calculated: 263.1213, found:263.1204.

#### (5gc) 3-(tert-butylthio)-8-chloroquinoxalin-2(1H)-one

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  12.00 (s, 1H), 7.62 (d, J = 7.7 Hz, 1H), 7.53 (d, J = 7.8 Hz, 1H), 7.31 – 7.24 (m, 1H), 1.61 (s, 9H).<sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  162.8, 153.6, 133.4, 128.7, 127.5, 126.4, 124.2, 119.0, 47.2, 29.7(3C); ATR-FTIR (cm<sup>-1</sup>): 2961, 1662, 1527, 1458, 1384, 1065, 940, 724; HRMS (ESI): C<sub>12</sub>H<sub>13</sub>ClN<sub>2</sub>NaOS [M+Na]<sup>+</sup> calculated: 291.0329, found: 291.0322.

#### (5hc) 3-(tert-butylthio)-6,7-difluoroquinoxalin-2(1H)one

<sup>1</sup>H NMR (400 MHz, DMSO-*d*<sub>6</sub>) δ 12.49 (s, 1H), 7.72 – 7.68 (dd, J = 11.1, 8.2 Hz, 1H), 7.18– 7.13 (m, 1H), 1.59 (s, 9H); <sup>13</sup>C NMR (101 MHz, DMSO-*d*<sub>6</sub>) δ 162.3 (d, J = 2.6 Hz), 152.8 (s), 149.4 (dd, J = 247.7, 14.6 Hz), 146.2 (dd, J = 242.2, 14.2 Hz), 128.7 (dd, J = 10.0, 2.4 Hz), 127.3 (d, J = 9.1, 1.0 Hz), 115.0 (d, J = 18.5 Hz), 103.8 (d, J = 21.9 Hz), 47.2 (s), 29.7 (3C); ATR-FTIR (cm<sup>-1</sup>): 2921, 1670, 1510, 1470, 1386, 1292, 1166, 1070, 756; HRMS

(ESI):  $C_{12}H_{13}F_2N_2OS \ [M+H]^+$  calculated: 271.0711, found: 271.0710.

(5ic) 3-(tert-butylthio)-7-fluoroquinoxalin-2(1H)-one <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  12.46 (s, 1H), 7.49 – 7.46 (m, 1H), 7.37 – 7.23 (m, 2H), 1.61 (s, 9H); <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  163.2 (s), 158.5 (d, J = 239.5 Hz), 152.9 (s), 132.6 (d, J = 11.8 Hz), 126.9 (d, J = 1.6 Hz), 117.3 (d, J = 9.4 Hz), 116.4 (d, J = 24.3 Hz), 112.5 (d, J = 22.8 Hz), 47.2 (s), 29.7(3C); ATR-FTIR (cm<sup>-1</sup>): 2922, 1662, 1558, 1496, 1261, 1117, 1069; HRMS (ESI): C<sub>12</sub>H<sub>13</sub>FN<sub>2</sub>NaOS [M+Na]<sup>+</sup> calculated: 275.0625, found, 275.0617.

(5jc) 3-(tert-butylthio)-7-chloroquinoxalin-2(1H)-one <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  12.47 (s, 1H), 7.64 (d, J= 8.3 Hz, 1H), 7.30 – 7.22 (m, 2H), 1.60 (s, 9H); <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  162.0, 153.0, 132.5, 131.2, 131.1, 128.8, 123.9, 115.2, 47.1, 29.7(3C); ATR-FTIR (cm<sup>-1</sup>): 2961, 1663, 1526, 1383, 1067, 934; HRMS (ESI): C<sub>12</sub>H<sub>13</sub>ClN<sub>2</sub>NaOS [M+Na]<sup>+</sup> calculated: 291.0329, found: 291.0322.

#### (5kc) methyl 3-(tert-butylthio)-2-oxo-1,2dihydroquinoxaline-6-carboxylate

<sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  12.57 (s, 1H), 7.87 (d, J = 1.5 Hz, 1H), 7.81 – 7.79 (m, 1H), 7.75 – 7.73 (m, 1H), 3.89 (s, 3H), 1.63 (s, 9H); <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  165.9, 164.6, 153.1, 134.9, 130.0, 128.9, 127.5, 124.2, 117.3, 52.9, 47.4, 29.6(3C); ATR-FTIR (cm<sup>-1</sup>): 2923, 2359, 1725, 1661, 1531, 1454, 1384, 1220, 1130, 1064, 760; HRMS (ESI): C<sub>14</sub>H<sub>17</sub>N<sub>2</sub>O<sub>3</sub>S [M+H]<sup>+</sup> calculated: 293.0954, found: 293.0951.

(6fb) 2-(3-ethoxy-2-oxoquinoxalin-1(2H)-yl)acetic acid <sup>1</sup>H NMR (400 MHz, DMSO- $d_6$ )  $\delta$  7.60 (d, J = 7.8 Hz, 1H), 7.46 – 7.40 (m, 2H), 7.37 – 7.28 (m, 1H), 5.01 (s, 2H), 4.45 (q, J = 7.0 Hz, 2H), 1.40 (t, J = 7.0 Hz, 3H); <sup>13</sup>C NMR (101 MHz, DMSO- $d_6$ )  $\delta$  169.2, 153.8, 150.5, 131.4, 130.8, 127.6, 127.4, 124.3, 114.9, 63.4, 44.3, 14.5; HRMS (ESI): C<sub>12</sub>H<sub>12</sub>N<sub>2</sub>NaO<sub>4</sub> [M+Na]<sup>+</sup> calculated: 271.0689, found: 271.0685.

### Acknowledgements

We are grateful to the Natural Science Foundation of China (No. 21776254) for financial help.

### References

[1] a) F. Ullmann, P. Sponagel, Ber. Dtsch. Chem. Ges.
1905, 38, 2211–2212; b) F. Monnier, M. Taillefer, Angew. Chem. Int. Ed. 2009, 48, 6954–6971; c) H. Lin, D. Sun, Org. Prep. Proced. Int. 2013, 45, 341– 394; d) C. Sambiagio, S. P. Marsden, A. J. Blackera, P. C. McGowan, Chem. Soc. Rev. 2014, 43, 3525– 3550; e) P. S. Herradura, K. A. Pendola, R. K. Guy, Org. Lett. 2000, 2, 2019–2022; f) S. V. Ley, A. W. Thomas, Angew. Chem. Int. Ed. 2003, 42, 5400– 5449; g) Y. Zhang, G. Ni, C. Li, S. Xu, Z. Zhang, X. Xie, Tetrahedron 2015, 71, 4927–4932; h) J. S. Marcum, K. A. McGarry, C. J. Ferber, T. B. Clark, J. Org. Chem. 2016, 81, 7963–7969; i) S. Bhunia, G. G. Pawar, S. V. Kumar, Y. Jiang, D. Ma, *Angew. Chem. Int. Ed.* **2017**, *56*, 16136–16179.

- [2] a) J. F. Hartwig, Angew. Chem. Int. Ed. 1998, 37, 2046–2067; b) J. F. Hartwig, Nature 2008, 455, 314–322; c) T. Hu, T. Schulz, C. Torborg, X. Chen, J. Wang, M. Beller, J. Huang, Chem. Commun. 2009, 7330–7332; d) A. Aranyos, D. W. Old, A. Kiyomori, J. P. Wolfe, J. P. Sadighi, S. L. Buchwald, J. Am. Chem. Soc. 1999, 121, 4369–4378; e) K. E. Torraca, X. Huang, C. A. Parrish, S. L. Buchwald, J. Am. Chem. Soc. 2001, 123, 10770–10771; f) C. H. Burgoes, T. E. Barder, X. Huang, S. L. Buchwald, Angew. Chem. Int. Ed. 2006, 45, 4321–4326; g) T. Itoh, T. Mase, Org. Lett. 2004, 6, 4587–4590.
- [3] a) O. Bistri, A. Correa, C. Bolm, Angew. Chem. Int. Ed. 2008, 47, 586–588; b) A. Correa, M. Carril, C. Bolm, Angew. Chem. Int. Ed. 2008, 47, 2880–2883;
  c) Y.-Y. Lin, Y.-J. Wang, C.-H. Lin, J.-H. Cheng, C.-F. Lee, J. Org. Chem. 2012, 77, 6100–6106; d) W.-Y. Wu, J.-C. Wang, F.-Y. Tsai, Green Chem. 2009, 11, 326–329.
- [4] a) J. A. Terrett, J. D. Cuthbertson, V. W. Shurtleff, D. W. C. MacMillan, *Nature* 2015, 524, 330–334; b)
  S. Jammi, P. Barua, L. Rout, P. Saha, T. Punniyamurthy, *Tetrahedron Lett.* 2008, 49, 1484– 1487; c) C. Cavedon, A. Madani, P. H. Seeberger, B. Pieber, *Org. Lett.* 2019, 21, 5331–5334.
- [5] a) L. Niu, J. Liu, X.-A. Liang, S. Wang, A. Lei, *Nat. Commun.* 2019, 10, 467; b) A. Lipp, G. Lahm, T. Opatz, J. Org. Chem. 2016, 81, 4890–4897; c) C. A. Huff, R. D. Cohen, K. D. Dykstra, E. Strechfuss, D. A. Dirocco, S. W. Krska, J. Org. Chem. 2016, 81, 6980–6987; d) C. A. Correia, L. Yang, C.-J. Li, Org. Lett. 2011, 13, 4581–4583; e) T. He, L. Yu, L. Zhang, L. Wang, M. Wang, Org. Lett. 2011, 13, 5016–5019.
- [6] a) G. K. S. Prakash, T. Mathew, C. Panja, G. A. Olah, J. Org. Chem. 2007, 72, 5847–5850; b) S. Madabhushi, R. Jillella, V. Sriramoju, R. Singh, Green Chem. 2014, 16, 3125–3131; c) H. Wang, Q. Lu, C. Qian, C. Liu, W. Liu, K. Chen, A. Lei, Angew. Chem. Int. Ed. 2016, 55, 1094–1097; d) H. Wang, Q. Lu, C. Qian, C. Liu, W. Liu, K. Chen, A. Lei, Angew. Chem. 2016, 128, 1106–1109.
- [7] a) L. V. Desai, H. A. Malik, M. S. Sanford, Org. Lett. 2006, 8, 1141–1144; b) G.-W. Wang, T.-T. Yuan, J. Org. Chem. 2010, 75, 476-479; c) W. Li, P. Sun, J. Org. Chem. 2012, 77, 8362-8366; d) J. Roane, O. Daugulis, Org. Lett. 2013, 15, 5842-5845: e) S. Bhadra, C. Matheis, D. Katayev, L. J. Gooßen, Angew. Chem. Int. Ed. 2013, 52, 9279-9283; f) L.-B. Zhang, X.-Q. Hao, S.-K. Zhang, K. Liu, B. Ren, J.-F. Gong, J.-L. Niu, M.-P. Song, J. Org. Chem. 2014, 79, 10399–10409; g) L.-B. Zhang, X.-Q. Hao, S.-K. Zhang, Z.-J. Liu, X.-X. Zheng, J.-F. Gong, J.-L. Niu, M.-P. Song, Angew. Chem. Int. Ed. 2015, 54, 272–275; h) Y. Zhou, J. Zhu, B. Li, Y. Zhang, J. Feng, Org. Lett. 2016, 18, 380-383; i) Y. Zheng, P. Ye, B. Chen, Q.-Y. Meng, K. Feng, W. Wang, L.-Z. Wu, C.-H. Tung, Org. Lett. 2017, 19, 2206–2209.

- [8] a) J. Yuan, X. Ma, H. Yi, C. Liu, A. Lei, Chem. Commun. 2014, 50, 14386–14389; b) S. K. R. Parumala, R. K. Peddinti, Green Chem. 2015, 17, 4068–4072; c) Z. Huang, D. Zhang, X. Qi, Z. Yan, M. Wang, H. Yan, A. Lei, Org. Lett. 2016, 18, 2351–2354; d) T. Gensch, F. J. R. Klauck, F. Glorius, Angew. Chem. Int. Ed. 2016, 55, 11287– 11291; e) T. Gensch, F. J. R. Klauck, F. Glorius, Angew. Chem. 2016, 128, 11457–11461; f) P. Wang, S. Tang, P. Huang, A. Lei, Angew. Chem. Int. Ed. 2017, 56, 3009–3013.
- [9] a) A. Carta, S. Piras, G. Loriga, G. Paglietti, *Mini-Rev. Med. Chem.* 2006, *6*, 1179–1200; b) P. T. Akins, R. P. Atkinson, *Curr. Med. Res. Opin.* 2002, *18*, 9–13.
- [10] Q. Ke, G. Yan, J. Yu, X. Wu, Org. Biomol. Chem. 2019, 17, 5863–5881.
- [11] a) A. Carrër, J. D. Brion, S. Messaoudi, M. Alami, Org. Lett. 2013, 15, 5606–5609; b) K. Yin, R. Zhang, Org. Lett. 2017, 19, 1530–1533; c) S. Paul, J. H. Ha, G. E. Park, Y. R. Lee, Adv. Synth. Catal. 2017, 359, 1515–1521; d) J. Yuan, S. Liu, L. Qu, Adv. Synth. Catal. 2017, 359, 4197–4207; e) S. Paul, H. D. Khanal, C. D. Clinton, S. H. Kim, Y. R. Lee, Org. Chem. Front. 2019, 6, 231–235; f) L. Wang, P. Bao, W. Liu, S. Liu, C. Hu, H. Yue, D. Yang, W. Wei, Chin. J. Org. Chem. 2018, 38, 3189–3196.
- [12] a) W. Wei, L. Wang, H. Yue, P. Bao, W. Liu, C. Hu, D. Yang, H. Wang, ACS Sustainable Chem. Eng. 2018, 6, 17252-17257; b) J. Fu, J. Yuan, Y. Zhang, Y. Xiao, P. Mao, X. Diao, L. Qu, Org. Chem. Front. 2018, 5, 3382-3390; c) L. Hu, J. Yuan, J. Fu, T. Zhang, L. Gao, Y. Xiao, P. Mao, L. Qu, Eur. J. Org. Chem. 2018, 4113-4120; d) J. Yuan, J. Fu, J. Yin, Z. Dong, Y. Xiao, P. Mao, L. Qu, Org. Chem. Front. 2018, 5, 2820–2828; e) W. Xue, Y. Su, K. Wang, R. Zhang, Y. Feng, L. Cao, D. Huang, Y. Hu, Org. Biomol. Chem. 2019, 17, 6654-6661; f) W. Zhang, Y. Pan, C. Yang, L. Chen, X. Li, J. Cheng, J. Org. Chem. 2019, 84, 7786-7795; g) W. Zhang, Y. Pan, C. Yang, X. Li, B. Wang, Org. Chem. Front. 2019, 6, 2765-2770; h) K. Mane, R. Kamble, G. Suryavanshi, New J. Chem. 2019, 43, 7403–7408.
- [13] a) X. Zeng, C. Liu, X. Wang, J. Zhang, X. Wang, Y. Hu, Org. Biomol. Chem. 2017, 15, 8929–8935;
  b) J.-W. Yuan, J.-H. Fu, S.-N Liu, Y.-M. Xiao, P. Mao, L. B. Qu, Org. Biomol. Chem. 2018, 16, 3203–3212.
- [14] a) M. Gao, Y. Li, L. Xie, R. Chauvin, X. Cui, *Chem. Commun.* 2016, 52, 2846–2849; b) Y. Kim, D. Y. Kim, *Tetrahedron Lett.* 2018, 59, 2443–2446; c) J. Wang, J. Li, Y. Wei, J. Yang, C. Huo, *Org. Chem. Front.* 2018, 5, 3534–3537.

- [15] a) L. Wang, Y. Zhang, F. Li, X. Hao, H.-Yu. Zhang, J. Zhao, *Adv. Synth. Catal.* 2018, *360*, 3969–3977;
  b) S. Liu, Y. Huang, F. Qing, X. Xu, *Org. Lett.* 2018, *20*, 5497–5501.
- [16] a) G. Hong, J. Yuan, J. Fu, G. Pan, Z. Wang, L. Yang, Y. Xiao, P. Mao, X. Zhang, Org. Chem. Front. 2019, 6, 1173–1182; b) L. Wang, H. Liu, F. Li, J. Zhao, H. Zhang, Y. Zhang, Adv. Synth. Catal. 2019, 361, 2354–2359
- [17] a) Y. Li, M. Gao, L. Wang, X. Cui, Org. Biomol. Chem. 2016, 14, 8428–8432; b) T. T. Hoang, T. A. To, V. T. T. Cao, A. T. Nguyen, T. T. Nguyen, N. T. S. Phan, Catal. Commun. 2017, 101, 20–25; c) A. Gupta, M. S. Deshmukh, N. Jain, J. Org. Chem. 2017, 82, 4784–4792; d) Q. Yang, Z. Yang, Y. Tan, J. Zhao, Q. Sun, H. Zhang, Y. Zhang, Adv. Synth. Catal. 2019, 361, 1–7; e) Q. Yang, Y. Zhang, Q. Sun, K. Shang, H.-Yu. Zhang, J. Zhao, Adv. Synth. Catal. 2018, 360, 4509–4514; f) W. Wei, L. Wang, P. Bao, Y. Shao, H. Yue, D. Yang, X. Yang, X. Zhao, H. Wang, Org. Lett. 2018, 20, 7125–7130; g) Q. Yang, Z. Yang, Y. Tan, J. Zhao, Q. Sun, H. Zhang, Y. Zhang, Adv. Synth. Catal. 2019, 361, 1662–1667
- [18] a) J. Xu, H. Yang, H. Cai, H. Bao, W. Li, P. Zhang Org. Lett. 2019, 21, 4698-4702; b) Q. Yang, X. Han, J. Zhao, H. Zhang, Y. Zhang, J. Org. Chem. DOI: 10.1021/acs.joc.9b01181
- [19] a) J. Zhou, Y. Zou, P. Zhou, Z. Chen, J. Li, Org. Chem. Front. 2019, 6, 1594–1598; b) J. Zhou, C. Jin, X. Li, W. Su, RSC Advances. 2015, 5, 7232– 7236; c) Z. Guo, C. Jin, J. Zhou, W. Su, RSC Adv. 2016, 6, 79016–79019.
- [20] a) A. Hu, Y. Chen, J. J. Guo, N. Yu, Q. An, Z. Zuo, J. Am. Chem. Soc. 2018, 140, 13580–13585; b) A. Hu, J. J. Guo, H. Pan, Z. Zuo, Science 2018, 361, 668–672.
- [21] D. T. Sawyer, J. S. Valentine, Acc. Chem. Res. 1981, 14, 393–400.
- [22] T. Slanina, T. Oberschmid, *ChemCatChem.* **2018**, *10*, 4182–4190.
- [23] N. A. Romero, D. A. Nicewicz, *Chem. Rev.* **2016**, *116*, 10075–10166.
- [24] a) L. Buzzetti, G. E. M. Crisenza, P. Melchiorre, Angew. Chem. Int. Ed. 2019, 58, 3730-3747; b) L.
   Buzzetti, A. Prieto, S. R. Roy, P. Melchiorre, Angew. Chem. Int. Ed. 2017, 56, 15039–15043.
- [25] During the revision of this manuscript, a closely related paper on visible-light-induced alkoxylation of quinoxalin-2(1H)-ones with alcohol appeared online:
  L. Zhao, L. Wang, Y. Gao, Z. Wang, P. Li, *Adv. Syntn. Catal.* DOI: 10.1002/adsc.201900732

### FULL PAPER

(Thio)etherification of Quinoxalinones under Visible-Light Photoredox Catalysis

Adv. Synth. Catal. Year, Volume, Page – Page

Jiadi Zhou,<sup>a</sup> Peng Zhou,<sup>b</sup> Tingting Zhao,<sup>b</sup> Quanlei Ren,<sup>b</sup> and Jianjun Li<sup>a,b\*</sup>



57 examples up to 94% yield

Inexpensive non-metallic photocatalyst
 High regioselectivity and atom economy
 Broad substrate scope
 Simple operation and eco-friendly energy source