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Employing co-catalytic zinc reagents facilitates the iron-

catalysed Suzuki cross-coupling of tetraarylborates with both

benzyl and 2-heteroaryl halides.

The use of iron catalysis in C–C bond-forming processes

(Scheme 1) is undergoing a renaissance due in no small part

to the low cost and toxicity of iron compared with palladium.1

In most cases the organometallic coupling partner employed is

a Grignard reagent and whilst these can be used in a wide

range of reactions, the application of softer, more substrate

tolerant aryl metal nucleophiles remains underdeveloped.2,3

We recently found that the preformed catalyst 1 or similar

catalysts formed in situ show good to excellent activity in the

Negishi coupling of arylzinc reagents with benzyl halides

and phosphates.4 Similarly, Nakamura and co-workers

demonstrated that 1 can be used in the Negishi coupling of

electron-deficient fluoroaryl zinc reagents with alkyl halides.5

The iron-catalysed Negishi coupling can be extended to

2-halopyridine and pyrimidine substrates, as summarised

briefly in Table 1.6w Good activity was observed in toluene–

THF mixtures; pure THF led to poorer results. Increasing the

amount of ditolylzinc beyond 1.2 equiv. gave higher yields

of product but also led to substantial quantities of bitolyl

impurity. The presence of the catalyst proved to be essential

for activity (entry 4). Only 2-halopyridines reacted, in contrast

with the previously reported iron-catalysed cross-coupling

with aryl Grignard reagents.6 This allowed for selective

2-arylation, as illustrated in entry 11.

Having established the iron-catalysed Negishi coupling of

both benzylhalides4 and 2-halopyridines with diarylzinc
reagents, we were keen to see whether this could be extended

to analogous Suzuki cross-couplings,7 however preliminary

experiments using arylboronic acids and esters as substrates

proved unsuccessful.

We previously postulated that formation of mixed Fe–Zn

bimetallic intermediates of the type 2 is important for the

success of 1 in the Negishi reaction; the arylzinc reagent helps

to stabilise the putative active catalyst 3, preventing premature

catalyst decomposition.4

We reasoned that if intermediates of the type 2 are indeed

significant then appropriate Fe–Zn mixtures might act as

catalysts in other cross-coupling reactions provided the

Scheme 1 Iron-catalysed cross-coupling reactions.

Table 1 Fe-catalysed Negishi coupling of halopyridinesa

Entry
Heteroaryl
halide Product

Spec. yieldb

(%) (isolated)

1 65c

2 75 (53)
3 15d

4 2e

5 X = Cl 35
6 X = I 55

7 58 (58)

8 None 0

9 None 0

10 None 0

11 56 (50)

a Conditions: heteroarylhalide (1.0 mmol), Zn(4-tolyl)2 (0.25 M in

THF, 4.8 ml), 1 (0.05 mmol), toluene (6 ml), 100 1C, 4 h. b Spectro-

scopic yield determined by 1H NMR (1,3,5-C6H3(OMe)3 internal

standard). c 1 equiv. Zn(4-tolyl). d THF only. e No catalyst.
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nucleophilic coupling partners employed are capable of

arylating the zinc centre. Given that aryl boron reagents have

been used as stoichiometric arylating species for zinc

reagents,8 we wondered could co-catalytic amounts of zinc

reagents be exploited to initiate Suzuki cross-coupling?9

We focussed initially on the coupling of 3-methoxybenzyl

bromide with various aryl boron reagents and these results are

summarised in Table 2. Where diarylzinc reagents were employed,

these were prepared in situ from the appropriate Grignard reagent.

Again, no activity was seen with phenylboronic acid or its pinacol

ester in either the presence or absence of base (entries 1–4),

however some, albeit poor, activity was observed when triphenyl-

boroxine was employed with diethylzinc (entry 6).10

The key to success proved to be in the use of tetraarylborate

salts as the arylating reagents, with excellent activity observed

with sodium tetraphenylborate (entry 8). Changing to pure

THF as solvent switched off activity (entry 9), whilst changing

the diarylzinc reagent had little impact (entry 10). No

difference in yield was obtained on reducing the Zn : Fe ratio

from 2 : 1 to 1 : 1 (entry 11), but in the absence of zinc reagents

no activity was observed (entry 12). Interestingly, zinc chloride

could be used in place of the diarylzinc (entry 13) although the

activity was somewhat lower. Diethylzinc also showed some

activity (entry 14). When diarylzinc reagents were used as

the co-catalysts, essentially no incorporation of their aryl

functions into cross-coupled products was observed—

presumably the original aryl groups on the zinc were

consumed during the reductive activation of the pre-catalyst.

Lowering the iron loading to 2.5 mol% did not have a

substantial impact, whilst 1 mol% could be exploited

effectively under more forcing conditions (entries 15 and 16).

The presence of an iron catalyst proved essential (entry 17).

Poorer activities were obtained with [Fe(acac)3], [FeCl2(dppp)2]

and [FeCl2(py)4] (entries 18–20).

Replacing the tetraarylborate with either an aryltrifluoroborate

or the activated aryl triolborate 411 proved unsuccessful (entries 21

and 22). The use of Li[PhBBu3] formed in situ from PhLi and

BBu3 (entry 24) showed promise, but the reaction was accom-

panied by substantial homocoupling (39%) of the benzyl halide.

Having established that sodium tetraphenylborate gave

excellent results, we next examined the coupling of tetraaryl-

borates with a range of benzyl and 2-heteropyridyl halides

and these results are summarised in Table 3. In general the

reactions with the 2-halopyridines needed to be performed at

higher temperature for a longer time in order to maximise

conversion, although the conditions for individual reactions

were not optimised. Apart from the nitro-function all other

functional groups tested on the benzyl halide substrates—

cyano, ester and bromide—were tolerated well. Slightly lower

activity was observed with a benzyl chloride substrate (entry 2)

and contrary to previous findings in the analogous iron-

catalysed Negishi reaction,4 benzyl phosphates proved to be

poor substrates (entry 4). As observed in the Negishi coupling,

the ability to selectively couple a benzyl bromide decorated

with a second bromide on the aromatic ring (entries 8 and 16)

is particularly noteworthy as this selectivity would be difficult

if not impossible to achieve with palladium catalysis and opens

the possibility for further catalytic functionalisation.

Good results were observed when Na[BPh4] was replaced

with K[B(4-tolyl)4] (entry 12), unfortunately the less nucleophilic

substrate Na[B(C6H4–Cl)4] displayed very low reactivity.

At present, mechanistic detail is limited, but we note the

following observations. The lack of activity in the absence of a

zinc co-catalyst supports the supposition that transmetallation

occurs from the aryl boron reagent to the iron centre via an

arylzinc intermediate.12 Effectively the zinc reagent functions

in much the same manner as the copper co-catalyst in

Sonogashira coupling reactions.13 As for the oxidation state

of the iron complex when the aryl group is transferred, this has

yet to be fully determined but we favour an iron(I)14,15 species

in agreement with the results obtained recently by Norrby and

co-workers in the iron-catalysed coupling of aryl halides with

alkyl Grignard reagents.16 Whilst there may be commonality

in the transmetallation steps between the reactions reported

here and Grignard cross-coupling reactions, there are stark

Table 2 Optimisation of Suzuki coupling of benzyl halidesa

Entry ZnR2 ArBYn Base
Spec. yieldb

(%)

1 Zn(C6H4-4-OMe)2 PhB(OH)2 None 0
2 K2CO3 0

3 None 0

4 K2CO3 0

5 None 0

6 Et2Zn 17
7 K2CO3 0
8 Zn(C6H4-4-OMe)2 Na[BPh4] None 96
9 0c

10 Zn(C6H4-4-Me)2 95
11 Zn(C6H4-4-OMe)2 96d

12 None 0
13 ZnCl2 48
14 ZnEt2 29
15 Zn(C6H4-4-OMe)2 93e

16 71f

17 0g

18 24h

19 44i

20 59j

21 K[4-tolylBF3] 0

22 0

23 Li[PhBBu3] 49k

a Conditions: ZnR2 (0.1 mmol in THF, 0.14–0.34 ml), ArBYn

(1.25 mmol), 3-MeOC6H4CH2Br (1.0 mmol), 1 (0.05 mmol), toluene

(8 ml), 85 1C, 4 h. b Spectroscopic yield, determined by 1H NMR

(1,3,5-C6H3(OMe)3 internal standard). c Solvent = THF. d 5 mol%

Ar2Zn.
e 2.5 mol% Fe. f 1 mol% Fe, reflux, 16 h. g No catalyst.

h cat = [Fe(acac)3], 16 h. i cat = [FeCl2(dppp)2], 16 h. j cat =

[FeCl2(py)4], 16 h. k 39% homocoupled bibenzyl product observed.
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contrasts between the oxidative addition steps. Thus whilst

only 2-heteroaryl halides are coupled in the reactions reported

here, this is not the case in Grignard cross-coupling reactions.6

Obviously this dichotomy will need to be explored further.

In summary, simple mixed iron–zinc catalysts formed in situ

give good activity in the cross-coupling of arylborate salts with

both benzyl and heteroaryl halides. We are currently exploring

the full scope of these reactions, particularly with regard to

increasing the range of aryl boron nucleophiles that can be

employed, as well as their mechanisms.

We thankGlaxoSmithKline, Syngenta and EPSRC for funding.
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