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ABSTRACT: The synthesis of highly functionalized pyr-
roles has been achieved by reaction of rhodium-
stabilized imino-carbenes with furans. The reaction fea-
tures an initial [3+2]-annulation to form bicyclic hemi-
aminals, followed by ring-opening to generate trisubsti-
tuted pyrroles. 

Pyrroles are common structural motifs in pharmaceu-
tical agents and smart materials, and development of 
new methods for their syntheses remains an active 
field.1,2 Recent approaches include nitrone/cyclopropane 
cycloaddition,2a 4π–electrocyclizations of azapentadi-
enyl cations,2b metallonitrene condensation with aryl 
acetaldehydes,2c tandem photochemical decomposition 
of α-diazo oximes/formal [3+2]-cycloaddition,2e and 
sequential inter- and intramolecular Buchwald/Hartwig 
aminations.2f In this communication, we describe a nov-
el approach for the synthesis of pyrroles by reaction of 
N-sulfonyltriazoles with furans catalyzed by dirhodium 
tetracarboxylates (eq 1). In concurrent but independent 
studies, Sarpong and co-workers have developed a com-
plementary approach to pyrroles by means of intramo-
lecular reactions of N-sulfonyltriazoles with allenes.3 

 

 
 
We have a long-standing interest in the chemistry of 

rhodium-stabilized donor/acceptor carbenes.4 The stand-
ard method of generating these carbenes has been the 
rhodium-catalyzed extrusion of nitrogen from diazo 
compounds.4 Recently Gevorgyan5 and Fokin5c-d,6a have 
developed an alternative entry into donor/acceptor car-
benes beginning with N-sulfonyl-1,2,3-triazoles. We 
have begun exploring the possibility of using N-
sulfonyltriazoles to achieve novel rhodium carbene 

transformations that are inaccessible with the do-
nor/acceptor rhodium carbenes derived from diazo com-
pounds.7 Typically donor/acceptor rhodium carbenes 
undergo facile cyclopropanation (eq 2).8 Therefore, we 
became intrigued by an anomalous result reported by 
Fokin on attempted cyclopropanation of p-
methoxystyrene, which formed a dihydropyrrole (eq 
3).6b 

 

 
 
The atypical reaction was observed when p-

methoxystyrene, an electron rich system, was used as the 
rhodium carbene trapping agent. Thus, we considered 
whether other distinct transformations could be achieved 
from rhodium-catalyzed reactions of triazoles with elec-
tron rich heterocycles.9 We began the study by examin-
ing the rhodium acetate-catalyzed reaction of 2,5-
dimethylfuran (1) with N-sulfonyltriazole 2. We were 
pleased to find that the reaction resulted in the unprece-
dented formation of pyrrole 3 in 41% yield.  

 

 
 
The conversion of furans and triazoles into pyrroles, 

containing components coming from both of the original 
heterocycles, is a novel convergent transformation. 
Thus, we decided to pursue the optimum conditions and 
scope of this unusual synthetic sequence. The reaction 
was found to be highly dependent on both the solvent 
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and the dirhodium catalyst, as shown in the optimization 
studies described by Table 1. Initially a number of achi-
ral dirhodium tetracarboxylates were screened (entries 1-
6), of which Rh2(OOct)4 proved superior (entry 3, 56% 
yield). Highly electron deficient catalysts, such as 
Rh2(TFA)4 and Rh2(pfb)4, did not generate any of the 
pyrrole and triazole 2 was recovered (entries 5 and 6). A 
hydrocarbon solvent (entry 7) was substantially less ef-
fective than 1,2-dichloroethane (1,2-DCE). The use of 
chloroform, which has been reported as the optimum 
solvent for carbenoid transformations from triazoles,6a 
provided poor yields of the desired product (entry 8, 
29% yield). We also examined some of the most estab-
lished chiral catalysts because they often provide im-
proved yields of products over the standard achiral cata-
lysts.6d, 10 When Rh2(S-DOSP)4 was implemented, an 
efficient synthesis of the pyrrole 3 was achieved in 77% 
yield (entry 9). In contrast, neither of the other amino 
acid-derived catalysts, Rh2(S-NTTL)4 and Rh2(S-
PTAD)4, proved as efficacious (entries 10 and 11). 

 
Table 1. Optimization studies for the synthesis of 3a 

 
a2 (0.25 mmol, 1.0 equiv), 1 (0.75 mmol, 3.0 equiv) and 

Rh2(Lig)n (0.0025 mmol, 0.01 equiv) combined in solvent (1.0 
mL) and heated at 70 °C for 4–12 h until consumption of 2 was 
apparent by TLC. bIsolated yields. cN-Sulfonyltriazole was recov-
ered. 

 
With the optimal conditions in hand, the scope of car-

bene architecture in the pyrrole synthesis was examined 
(Table 2).  Steric and electronic variations in the 4-aryl 
moiety on the triazole 4 had minimal impact in the effi-
cacy of the reaction (compare 5a–c and 5e–h). A variety 
of N-sulfonyl-protecting groups on the triazole were 
compatible with pyrrole formation; however, the N-tosyl 
group furnished the highest yields of 5 (compare 5c–e). 
The alkenyl triazole 4i, was also an effective substrate, 
generating the pyrrole 5i in 70% yield. This reactivity is 
in marked contrast to that observed with rhodium vinyl-

carbenes derived from diazo compounds, as they under-
go a tandem cyclopropanation/Cope rearrangement with 
2,5-dimethylfuran.11 

 
Table 2. N-sulfonyltriazole 4 variationsa 

 
a4 (0.50 mmol, 1.0 equiv), 1 (1.5 mmol, 3.0 equiv) and Rh2(S-

DOSP)4 (9 mg, 0.005 mmol, 0.01 equiv) combined in 1,2-DCE 
(2.0 mL) and heated at 70 °C for 4–24 h until consumption of 4 
was apparent by TLC. Yields are isolated yields of purified prod-
ucts. 

 
The reaction was then extended to a range of furan 

derivatives (6) and the results are summarized in Table 
3. Furan itself did not provide a clean transformation, 
and ring-opened dienal-type products were evident from 
NMR analysis of the reaction residue.11 2-Methylfuran 
resulted in the formation of a single regioisomer of the 
3,4-disubstituted furan 7a in moderate yield (41%). As 
with 1, 2,5-diethylfuran was an excellent substrate for 
the pyrrole synthesis, furnishing 7b in 99% yield. The 
reactions with asymmetrically 2,5-disubstituted furans 
generally proceeded in high yields (65-89%) but in 
many instances, mixtures of regiosiomers were formed, 
as seen with 7c-e and 7g. Notably, in the case of 2-
(triisopropyl)siloxymethyl-5-methylfuran, the pyrrole 7f 
was formed in a highly regioselective manner. Presuma-
bly in this case, the combination of steric crowding and 
electronic deactivation by the C2-substitent causes the 
reaction to be highly regioselective. 
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Table 3. Furan 6 variationsa 

 
a2 or 4f (0.50 mmol, 1.0 equiv), 6 (1.5 mmol, 3.0 equiv) and 

Rh2(S-DOSP)4 (9 mg, 0.005 mmol, 0.01 equiv) combined in 1,2-
DCE (2.0 mL) and heated at 70 °C for 4–24 h until consumption 
of 4 was apparent by TLC. Yields are isolated yields of purified 
products. Ratios (7:8) determined by 1H NMR analysis of crude 
reaction residue. bCombined yield of two regioisomers 7 and 8. 

 
A mechanistic rationale for the formation of the pyr-

roles is provided in Scheme 1. Heating the triazole 4f in 
the presence of the dirhodium catalyst generates the 
imino carbene-intermediate 9 via tandem triazole ring-
opening and nitrogen extrusion.6 The rhodium carbene 9 
reacts with the furan at C-3 to generate the zwitterion 
10,9,11 which then closes to the hemiaminal 11. Ring-
opening of 11 under mildly acidic conditions would 
generate 12, which is configured to aromatize to the pyr-
role 13. The requirement of attack of the rhodium car-
bene at the C-3-position would explain why furan failed 
to give a clean reaction and the yield with 2-methylfuran 
was modest. Both of these substrates would tend to react 
with carbenoids at C-2, and the resulting zwitterionic 
intermediates tend to ring-open to dienones.9,11  

 
Scheme 1. Plausible mechanism for pyrrole for-
mation 

 
 

In summary, we have developed a highly effective 
synthesis of trisubstituted pyrroles from the rhodium-
catalyzed reaction of furans with N-sulfonyl-1,2,3-
triazoles. The reaction features a formal [3+2]-
cycloaddition across the furan C2–C3 π–bond, followed 
by acid-catalyzed rupture of the transient hemiaminal 
and termination of the cascade by concomitant elimina-
tion/aromatization to generate the pyrrole nucleus. 
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