

Available online at www.sciencedirect.com

Bioorganic & Medicinal Chemistry Letters

Bioorganic & Medicinal Chemistry Letters 17 (2007) 1399-1402

Dopamine/serotonin receptor ligands. Part 15: Oxygenation of the benz-indolo-azecine LE 300 leads to novel subnanomolar dopamine D_1/D_5 antagonists^{\Leftrightarrow}

Christoph Enzensperger, Susann Kilian, Marit Ackermann, Anne Koch, Kristin Kelch and Jochen Lehmann*

Institut für Pharmazie, Lehrstuhl für Pharmazeutische/Medizinische Chemie, Friedrich-Schiller-Universität Jena, Philosophenweg 14, D-07743 Jena, Germany

> Received 21 September 2006; revised 28 November 2006; accepted 30 November 2006 Available online 3 December 2006

Abstract—Relying on the high affinities of the benz-indolo-azecine LE 300 (1) and the hydroxylated dibenz-azecine LE 404 (2b) for the D_1/D_5 receptor subtypes, we synthesized methoxylated, hydroxylated and an indole-N methylated derivatives of 1 (Fig. 1). Hydroxylation of azecine derivatives is beneficial with regard to the affinities and selectivities for all the dopamine receptor subtypes. The 'serotonin-derived' 3-oxygenated target compounds but not the 11-oxygenated analogues were superior to the unsubstituted LE 300. 11-Methoxy-7,14-dimethyl-6,7,8,9,14,15-hexahydro-5*H*-indolo[3,2-*f*][3]benzazecine (3e) was found to be the most potent antagonist at $D_2/D_3/D_4$ and D_5 receptor subtypes (K_i for $D_5 = 0.23$ nmol) of all known benz-indolo-azecines.

Locomotion, emotion, cognition and endocrinal secretion are linked with dopaminergic transmission. Most of the dopamine receptor antagonists used as antipsychotics inhibit the D₂-family (D₂, D₃ and D₄), 'azecine-styled' dopamine antagonists like **1** (LE 300)^{5,2–4} or its dibenzo-analogues⁴ **2** showed selectivity primarily for the D₁ family (D₁ and D₅) (Fig. 1).

Previous investigations of this novel class of antidopaminergic drugs revealed that replacing the indole moiety in the lead 1 with benzene is tolerated without a loss in affinity for most of the dopamine receptor subtypes.³ (compare 1 and 2c in Table 1). But the affinities of 2c were increased by substituents in the aromatic system (compare 2c-b in Table 1). The phenolic 2b showed a 73-fold higher affinity for the D₁ receptor compared to the MeO-congener 2a, and its affinity for D₅ was also higher (Table 1). On the other hand, the affinity for D₂ was slightly higher for the MeO-compound 2a than for 2b (Table 1).

Figure 1. The lead compounds LE 300 (1) and dibenzazecines 2a-d.

The lead compound 1 of all azecine-type dopamine receptor ligands has not been substituted up to now in the aromatic rings or in the indole nitrogen. To investigate if the effects of methoxylation and hydroxylation of azecine derivatives with regard to the affinities and selectivities for all of the dopamine receptor subtypes are beneficial, we attached MeO-/HO-groups to the benzindolo-azecine scaffold of 1 at the indole moiety (**3a** and **b**) and at the benzene part (**3c** and **d**), respectively (Fig. 2). Furthermore, we methylated the indole-N of **3a**, which yielded **3e**. Finally, we characterized the interaction of these target compounds with the humancloned D₁-D₅ receptor subtypes by radioligand-binding experiments and by a functional calcium assay.

To synthesize the 11-methoxy-hexahydro-5H-indolo[3,2-f][3]benzazecine **3a**, the corresponding indolo-benzazecin-11-ol **3b** and the 7,14-dimethyl derivative **3e**, a

Keywords: Dopamine receptor ligands; Azecines; LE 300; Oxygenation; N-methylation.

[☆] See Ref. 1.

^{*} Corresponding author. Tel.: +49 3641 949803; fax: +49 3641 949802; e-mail: j.lehmann@uni-jena.de

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2006.11.093

Table 1. Affinities (K_i , nM) for dopamine receptor D_1 – D_5 subtypes determined by radioligand-binding experiments

Compound	- K _i (nM)				
	HEK D ₁	CHO D _{2L}	CHO D ₃	CHO D _{4.4}	HEK D ₅
1 (LE-300) ⁷	1.9 ± 0.9	44.5 ± 15.8	$40.3 \pm 14.4^{\rm a}$	109 ± 39	7.5 ± 0.3
2a	28.5 ± 9.7	13 ± 9	75.7 ± 7.3^{b}	43.4 ± 13.2^{b}	38.3 ± 24^{a}
2b ³	0.39 ± 0.22	17.5 ± 2.1	47 ± 24	11.3 ± 1	1.5 ± 0.2
$2c^3$	4.5 ± 2.1	56.5 ± 9.0	52.5 ± 6.4	134 ± 15	11.2 ± 1.8
3a	0.82 ± 0.056^{b}	11.9 ± 5.6^{a}	475 ± 48.5^{b}	266 ± 22^{b}	3.6 ± 0.6^{a}
3b	0.56 ± 0.06^{b}	38.4 ± 14^{a}	944 ± 171^{b}	398 ± 288^{a}	0.39 ± 0.16^{a}
3c	19.0 ± 2.3^{b}	22.8 ± 11.1^{a}	1135 ± 237^{b}	$92.6 \pm 5.3^{\rm a}$	31.5 ± 14.7^{b}
3d	3.7 ± 1.1^{b}	74.7 ± 34^{a}	2070 ± 776^{b}	1359 ± 926^{a}	5.4 ± 3.6^{a}
3e	$2.00 \pm 1.6^{\mathrm{a}}$	1.70 ± 0.6^{a}	$3.78 \pm 2.4^{\mathrm{a}}$	21.55 ± 3.5^{b}	$0.23\pm0.06^{\rm a}$

^a K_i values are means of three experiments, performed in triplicate \pm SEM.

^b K_i values are means of two experiments, performed in triplicate \pm SEM.

Figure 2. Novel derivatives of LE 300 (1) with numbering of the ring system.

mixture of equimolar amounts of 5-methoxy-tryptamine and chloroethylbenzoylchloride⁶ (4) was reacted together with 3 mol of triethylamine in dichloromethane. The resulting benzamide derivative 5 was cyclized with POCl₃ in acetonitrile. NaBH₄ reduction of the intermediate in methanol yielded the pentacyclic benzindolo-quinolizine 6. After quaternization with methyl iodide in acetone, the resulting compound 7 was cleaved using elemental sodium in liquid ammonia to yield 3a.¹¹ The phenolic analogue $3b^{12}$ was obtained from 3a by ether cleavage with BBr₃ in dichloromethane.

Interestingly, the dimethylated benz-indolo-acezine 3e could be obtained in a one-pot reaction out of 7 just by adding 1.5 mol of methyl iodide to the solution of 7 in liquid ammonia after adding the sodium which is needed to cleave the central C–N bond. Purification was performed by preparing the hydrochloride salt of $3e^{15}$ and recrystallization from isopropanole (Scheme 1).

3-Methoxyphenethylamine and the indololactone 8^7 were used for synthesizing the 3-methoxy-7-methylhexahydro-indolo[3,2-*f*][3]-benzazecine **3c** and the corresponding indolo[3,2-*f*][3]-benzazecin-3-ol **3d**. Applying the cyclization/reduction sequence with POCl₃ in acetonitrile and NaBH₄ in methanol to the hydroxyethylbenzamide **9** yielded the corresponding quinolizine

Scheme 1. Synthesis of benz-indolo-azecines 3a and 3b. Reagents and conditions: (a) 5-methoxy-tryptamine, 3 mol NEt₃, CH_2Cl_2 , 0 °C–rt; (b) POCl₃/acetonitrile 1:20, 5 h, 30 °C, under nitrogen; (c) NaBH₄, MeOH, 0 °C, 1 h, reflux; (d) methyl iodide, acetone; (e) Na, liq NH₃; (f) BBr₃, CH_2Cl_2 , 5 h, reflux; (g) Na, liq NH₃, methyl iodide.

derivative 10. Quaternization with methyl iodide and the subsequent ring cleavage of the quaternary salt 11 resulted in 3c.¹³ The O-demethylation was conducted with HBr in acetic acid and produced the phenolic quaternary salt 12. The target compound $3d^{14}$ was obtained by ring cleavage (Scheme 2).

All of the target compounds were screened for their binding affinities for human-cloned D_1 , D_{2L} , D_3 , $D_{4.4}$ and D_5 receptors, stably expressed in HEK 293 or CHO cells, by radioligand-binding experiments. The protocol has been described.^{8,16}

Additionally, the functionality of the target compounds was investigated for the D_1 , D_2 and D_5 receptors using a

Scheme 2. Synthesis of benz-indolo-azecines 3c and 3d. Reagents and conditions: (a) 1.3 mol 3-methoxyphenethylamine, toluene, 24 h, reflux; (b) POCl₃/acetonitrile 1:1, 24 h, reflux, under nitrogen; (c) NaBH₄, MeOH, 0°, 1 h, reflux; (d) methyl iodide, acetonitrile; (e) HBr/HOAc, 3 h, reflux; (f) Na, liq NH₃.

calcium fluorescence assay which has been developed and established in our group.⁹

None of the reported compounds increased the intramolecular calcium concentration of any type of cell. This excludes agonistic activity. Instead, the compounds suppressed the calcium signal which was induced by standard dopamine agonists (D_1/D_5 receptors: SKF 38393, D_2 : quinpirol) in a concentration-dependent manner and produced sigmoidal curves which characterize the inhibition of the respective agonists' action (data not shown). These findings confirmed that the compounds are either antagonists or inverse agonists in both of the dopamine receptor families. Affinity data (Table 1) were generated from radioligand-binding experiments.

SAR with regard to the influence of the HO-/MeO-substitution of the benz-indolo-azecines on the affinity for the D_1 receptor are similar to those found for the dibenz-azecines: Of all of the new indolic compounds **3a-d**, the phenolic derivatives **3b**, **d** are superior to their methoxy analogues 3a, c in binding to the D_1 receptor. The same was found for the D₅ receptor. In the affinity for the D_2 receptor, we observed a marginally higher affinity for the methoxy-substituted 2a in the dibenzoazecines 2a, b (Table 1). This tendency could be seen in former investigations,⁴ is observed for several unpublished compounds and was affirmed for the new benzindolo-azecines: in both series of compounds-the ones with an oxygenated indole moiety (3a and b) and also the ones with the, respectively, substituted benzene moiety (3c and d)—the methoxy-derivatives 3a, c exhibited a 3-fold higher affinity for the D_2 receptor compared to their phenolic congeners **3b** and **d** (Table 1).

In addition to these general relations, it is noteworthy that the structural area where oxygenation takes place is guite relevant. The compounds **3c** and **d**, which may be considered a combination of 1 and 2a, b rather than **3a**, **b**, exhibited lower affinities than their indole-substituted counterparts 3a, b and e. Compounds 3c and d do maintain the oxygenated benzene ring of 2a and b. consequently the introduction of the indole for the unsubstituted benzene ring is disfavoured. Perhaps the indole-rather than the benzene-moiety is involved in receptor binding, and hydroxylation or-to a lesser extent-methoxylation at the indole, yielding 'serotoninderived' structures, facilitates the receptor binding, whereas these additional substituents in the benzene part do not enhance or lower the protein binding significantly. The substituents on benzene ring effect steric or electronic interaction, that causes a decrease in affinity. The selectivity profile is characterized by a preference for the D_1/D_5 family and for **3e** there is a remarkable 9-fold D_5 selectivity over the D_1 receptor.

Selecting one of the more attractive 11-oxygenated derivatives (3a), we methylated the indole nitrogen, and the resulting compound 3e showed an increase in all of the affinities compared to the desmethyl derivative **3a** with the exception of that for D_1 . The affinity for the D_1 receptor decreased by a factor of 2.4, whereas the affinity for D₅ increased by factor 15 yielding a 9-fold D₅-selectivity. Furthermore, a surprising increase was observed for D_2 and D_3 : the affinity rose from 12 to 1.7 nM and from 474 to 3.8 nM, respectively. For D₄ the affinity improved more than 10-fold. Thus, compound 3e, showing the same high affinity for the D_1 and D₂ receptors, a very high affinity for D₅ and considerable affinities for D₃ and D₄, features a receptor profile which is quite unusual for the azecine-like dopamine receptor antagonists and different from those being investigated so far by our group.

Since the affinity of 3e is not reduced in comparison to 3a, it can be excluded that the indole NH of the benzindolo-azecines interacts in the same way as the OH in 2b. The influence on the affinity profile caused by the indole *N*-methyl group must rather be a steric than an electronic effect.

In general the SAR regarding the interaction of the HOand the MeO-compounds with the D_1 receptor are similar for the dibenzo- and the benzindolo-derivatives. But the significant loss in affinity that occurs in the unsubstituted dibenzazecine 2c by introducing a MeO-substituent (2a) was not found for the benz-indolo-azecine. Here the compound with a MeO-substitution at the indole moiety (3a) shows higher affinity than the unsubstituted 1.

In conclusion: to investigate the influence of methoxylation, hydroxylation and indole-N-methylation, we synthesized five appropriate derivatives of the dopamine antagonist LE 300, measured the affinities for all human-cloned dopamine receptors and characterized them as antagonists or inverse agonists in a fluorescence calcium assay. These structural modifications partially improved affinities and changed selectivities. 'Serotonin-derived' compounds were superior to their 'tryptamine-derived' isomers. The one-pot reaction for both the indole-N-methylation and the ring expansion procedure under Birch conditions represents a novel synthetic strategy that might be useful for the preparation of further N-alkylated indolo-azecines. It might also be used for alkylating phenolic groups simultaneously.

Acknowledgements

We thank Bärbel Schmalwasser, Petra Wiecha and Heidi Traber for skillful technical assistance in performing the pharmacological assays.

References and notes

- 1. Hamacher, A.; Weigt, M.; Wiese, M.; Hoefgen, B.; Lehmann, J.; Kassack, M. U. *BMC Pharmacol.* 2006, 6, 11.
- 2. Enzensperger, C.; Lehmann, J. J. Med. Chem. 2006, 49, 6408.
- Hoefgen, B.; Decker, M.; Mohr, P.; Schramm, A. M.; Rostom, S. A. F.; El Subbagh, H.; Schweikert, P. M.; Rudolf, D. R.; Kassack, M. U.; Lehmann, J. J. Med. Chem. 2006, 49, 760.
- Mohr, P.; Decker, M.; Enzensperger, C.; Lehmann, J. J. Med. Chem. 2006, 49, 2110.
- Decker, M.; Schleifer, K.; Nieger, M.; Lehmann, J. Eur. J. Med. Chem. 2004, 39, 481.
- Odasso, G.; Winters, G.; Schiatti, P.; Selva, D.; Nathansohn, G. Farmaco 1977, 32, 159.
- Witt, T.; Hock, F. J.; Lehmann, J. J. Med. Chem. 2000, 43, 2079.
- 8. Decker, M.; Lehmann, J. Arch. Pharm. Life Sci. 2003, 336, 466.
- Kassack, M. U.; Hoefgen, B.; Lehmann, J.; Eckstein, N.; Quillan, J. M.; Sadee, W. J. Biomol. Screen. 2002, 7, 233.
- 10. Cheng, Y. C.; Prusoff, W. H. Biochem. Pharmacol. 1973, 22, 3099.
- 11. 11-Methoxy-7-methyl-6,7,8,9,14,15-hexahydro-5*H*-indolo[3,2-*f*][3]benzazecine (**3a**): white foam, mp 160 °C. ¹H NMR (250 MHz; CDCl₃): δ 2.6 (s, 3H, N–CH₃) 2.9–2.6 (m, 8H, H-5, 6, 8, 9), 3.8 (s, 3H, –OCH₃), 4.4 (s, 2H, H-15), 6.8 (dd, 1H, *J* = 2.5, 8.7 Hz, H-12), 6.95 (d, 1H, *J* = 2.5 Hz, H-10), 7.2 (m, 4H, H-2,3,4,13), 7.3 (m_c, 1H, H-1), 7.7 (s, 1H, –NH) ppm. GC/MS: *M* = 320 (79%), *M* = 275, 276 (32%), *M* = 262 (27%), *M* = 248 (32%), *M* = 173 (16%), *M* = 160 (53%), *M* = 58 (100%). Anal. (C₂₁H₂₄N₂O): C, N, H.
- 7-Methyl-6,7,8,9,14,15-hexahydro-5*H*-indolo[3,2-*f*][3]benzazecin-11-ol (3b): from isopropanol grey powder, mp

175–180 °C. ¹H NMR (250 MHz; methanol d_4): δ 2.2 (s, 3H, N–CH₃) 2.9–2.6 (m, 8H, H-5, 6, 8, 9), 4.2 (s, 2H, H-15), 6.65 (dd, 1H, J = 2.3, 8.6 Hz, H-12), 6.8 (d, 1H, J = 2.3 Hz, H-10), 7.1 (d, 1H, J = 8.6 Hz, H-13), 7.25 (m, 4H, H-2,3,4), 7.3 (m_c, 1H, H-1). ppm. GC/MS: M = 306 (85%), M = 262, 261 (37%), M = 234 (50%), M = 207 (30%), M = 160 (29%), M = 146 (29%), M = 58 (100%). Anal. (C₂₀H₂₂N₂O): C, N, H.

- 13. 3-Methoxy-7-methyl-6,7,8,9,14,15-hexahydro-5*H*-indolo[3,2-*f*][3]benzazecine (**3c**): white powder, mp 252 °C (HCl salt). ¹H NMR (250 MHz; CDCl₃): (free base) δ 2.6 (s, 3H, N–CH₃) 2.5 (m_c, 2H, H-5 or H-9), 2.6 (m_c, 4H, H-6 or H-8 and 5 or 9), 2.7 (m_c, 2H, H-6 or H-8), 2.8 (s, 3H, –OCH₃), 4.2 (s, 2H, H-15), 6.5 (d, 1H, J = 2.7 Hz, H-4), 6.6 (dd, 1H, J = 2.9; 8.4 Hz, H-2), 7.0 (m_c, 2H, H-11 and H-12), 7.1 (d, 1H, J = 2.7 Hz, H-10), 7.2 (d, 1H, J = 1.5 Hz, H-13),7.3 (m_c, 1H, H-1), 7.6 (s, 1H, –NH) ppm. GC/MS: M = 320 (100%); M = 275 (35%); M = 262 (31%) M = 248 (35%); M = 217 (25%); M = 190 (28%); M = 143 (26%). Anal. (C₂₁H₂₅N₂OCl): C, N, H.
- 14. 7-Methyl-6,7,8,9,14,15-hexahydro-5*H*-indolo[3,2-*f*][3]benzazecin-3-ol (**3d**): off-white powder, mp 135 °C. ¹H NMR (250 MHz; CDCl₃): δ 2.3 (s, 3H, N–CH₃), 2.5 (dd, 2H, J = 5.4 Hz, H-5 or H-9), 2.6 (dd, 2H, J = 5.2 Hz, H-5 or H-9), 2.7 (m_c, 2H, H-6 or H-8), 2.8 (m_c, 2H, H-6 or H-8), 4.2 (s, 2H, H-15), 6.5 (d, 1H, J = 2.7 Hz, H-4), 6.6 (dd, 1H, J = 2.9; 8.2 Hz, H-2), 7.0 (m_c, 2H, H-11 and H-12), 7.05 (m_c, 1H, H-10 or H-13), 7.1 (m_c, 1H, H-10 or H-13), 7.3 (m_c, 1H, H-1), 7.7 (s, 1H, –NH) ppm. GC/MS: M = 306(100%); M = 261 (45%); M = 248 (41%); M = 234 (60%); M = 176 (48%); M = 143 (53%). Anal. (C₂₀H₂₂N₂O): C, N, H.
- 15. 11-Methoxy-7,14-dimethyl-6,7,8,9,14,15-hexahydro-5*H*indolo[3,2-*f*][3]benzazecine hydrochloride (**3e**): off-white solid, mp 226–242 °C (slow decomposition). ¹H NMR (250 MHz; CDCl₃): δ 2.36 (s, 3H, N–CH₃), 2.53–2.46 (m, 4H, H-6 and H-8), 2.8–2.73 (m, 4H, H-5 and H-9), 3.51 (s, 3H, indole-N–CH₃), 3.87 (s, 3H, –OCH₃), 4.4 (s, 2H, H-15), 6.85–6.8 (dd, 1H, *J* = 8.7, 2.4 Hz, H-12), 6.93–6.94 (d, 1H, *J* = 2.4 Hz, H-10), 7.02–7.33 (m, 5H, H-1, H-4), 7.1 (d, 1H, *J* = 8.7 Hz, H-13) ppm. GC/MS: *M* = 334 (100%); *M* = 290 (18%); *M* = 276 (57%); *M* = 262 (82%); *M* = 229 (80%); *M* = 187 (34%); *M* = 174 (65%); *M* = 160 (34%). Anal. (C₂₂H₂₇N₂OCl): C, N, H.
- 16. [3H]SCH 23390 and [3H]spiperone were used as radioligands at the D₁-like and D₂-like receptor family, respectively. Incubation at 27 °C was terminated after 90 min by rapid filtration with a Perkin-Elmer Mach III harvester. At least two independent experiments were carried out, each in triplicate. K_i values were calculated from IC₅₀ values, applying the equation of Cheng and Prusoff,¹⁰ and are given in nanomolar units (Table 1).