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Abstract: The synthesis of epoxy-terminated dialkyl disulfides for incorporation into 
polymerizable self-asssembled monolayers is reported. The epoxide is installed by an indirect 
method in which the disulfide linkage is used as a built-in protecting group. © 1998 Elsevier Science Ltd. 
A l l  f i g h t s  r e s e r v e d .  

There is great interest in synthesizing novel organosulfur compounds that can be used to fabricate new 
types of self-assembled monolayers (SAMs) with prescribed structure and interfacial properties for applications 
such as chemical sensors. Conventional n-alkanethiolate SAMs on gold cannot withstand chronic exposure to 
organic solvents ~ or air ,2. 3.4 limiting their usefulness. One way to enhance the stability of alkanethiolate SAMs is 
to incorporate a polymerizable group into the alkane backbone, e.g., diacetylene, 5 vinyl, 6 pyrrole, 7 or boronic 
acid. 8 Once intermolecular crosslinks have been made, 5'9 even if a significant fraction of the adsorbed thiolate 
molecules oxidize to the more weakly adhering sulfmates and sulfonates, desorption and delamination are 
minimized. We have accomplished the convenient synthesis of epoxy-terminated dialkyl disulfides that can 
spontaneously self-assemble onto gold surfaces, and which can then undergo ring-opening polymerization (e. g., 
by cationic or anionic initiation) I° to form novel thin-ftlm polymers (Scheme I). While amphiphiles containing 
epoxides have been synthesized for polymerizable Langmuir Blodgett films, H'12 and LOf'as et al. have desribed a 
method to modify hydroxyl terminated thiolates post-assembly to produce terminal epoxides, 13 this is the first 
synthesis of epoxy-terminated organosulfur compounds for self-assembly. Because epoxides are one of the most 
synthetically versatile organic intermediates, ~4 these molecules also provide a convenient starting point for a wide 
range of chemically modified SAMs. 
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Scheme 1 

The synthesis of the epoxy-terminated disulfides is built around two key transformations. One is 
installation of the epoxide ring in the last step by selectively converting a 1 ° alcohol of a terminal 1,2-diol to a 
tosylate group, and then effecting an intramolecular Sr~2 reaction to close the three-membered ring. By installing 
the ring indirectly, the problerns of (a) oxidizing an olefm in the presence of an electron-rich sulfur, and (b) of 
installing a thiol in the presence of the reactive epoxy ring are conveniently avoided. The second key 
transformation involves oxidizing the thiol to disulfide prior to the tosylation step. We have taken advantage of the 
fact that SAMs prepared from disulfides produce monolayers identical in structure to those prepared from the 
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corresponding thiols. This protection (required in order to mask the nucleophilicity of the thiol) allows tosylation 
of the alcohol to proceed without interference. Protecting the thiols as disulfides also helps minimiz any 
unwanted intra- or inter- molecular attack by the unprotected thiol on the epoxide ring once it has been installed. 
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Figure 1 

Figure 1 shows the synthetic route used to construct the epoxy-terminated symmetrical disulfides. The 
first step involves dihydroxylating bromoalkene 1.‘5B’6 A racemic mixture of diol 2 is obtained in almost 
quantitative yield.” (Although one advantage of obtaining the racemic mixture is that racemic monolayers pack 
mom densely and with fewer defects than monolayers composed purely of a single enantiomer,‘* the pure 
enantiomers may facilitate directed polymerization of the epoxides.) Protection of the 1,2-diol 2 is accomplished 
by dissolving it in dry acetone and adding TsOH in catalytic amounts to afford the acetonide 3, in 90% yield.“**’ 

Protection of the diol was found to be a necessary step. The subsequent transformation converts the 1” bromide 

into a thiol under extremely basic conditions. When carried out with an unprotected diol, a white insoluble 
polymer formed and the desired mercapto-diol was recovered in only -30% yield. Polymerization presumably 
occurs through deprotonation of the alcohol followed by subsequent intermolecular attack on another bromide. 
To convert 3 to the thiol, the bromo-acetonide 3 is tteated with thioacetic acid and excess sodium methoxide in a 
two-step procedure to give thiol 4 in 90% yield.*‘,** Thiol 4 is then oxidized with 0.1 M iodine to afford the 
deprotected disulfide 5 in 90% yield.23 In this transformation, methanolic iodine was used because it not only 
selectively oxidized the thiol to the disulfide without over-oxidation, but it also deprotected the diol in the same 
step.24 Disulfide 5 is dissolved in freshly distilled pyridine, treated with 2.5 eq TsCl to form the ditosylate, from 
which most of the pyridine is removed by aqueous extraction; the residue left after evaporation of the organic 
layer is taken up in CH,Cl,. Addition of 6 equiv of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) effects the 
intramolecular S,2 ring-closure to yield epoxy-disulfide 6 in a 55% yield.z The remaining material has been 
determined to be a variable mixture of unreacted diol-disulfide and unsymmetrical disulfides of 10,l I-diols and 
10,l I-epoxides, as well as 10,l I-diols and 1 1-tosyl-lo-01s. These compounds am easily separated from the 
target compound by flash chromatography. The six steps of this synthetic protocol produced the epoxy- 
terminated disulfide 6 in 40% overall yield. 
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This new synthetic route to symmetrical epoxy-terminated disulfides utilizes well-known reactions and 
common reagents, and can readily be extended to produce disulfides of varying chain lengths, affording control of 
the SAMs thickness. Another advantage of this approach is that the products have only carbon atoms in the 
backbone. Functional groups within SAMs can decrease the packing density and/or increase disorder in the 
SAM, or compromise the integrity of the film by introducing '~eak-finks" or reactive sites (e.g., a hydrolyzable 
ester linkage), u'27 The epoxides can readily be converted to a number of more interesting and synthetically useful 
organic functionalities. Thus, these new disulfides provide the starting point for synthesizing new types of SAMs 
with novel inteffacial properties. 
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