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Abstract: Gas-phase pyrolysis of aminomethylene Meldrum’s acid
derivatives gave quinolinones and/or amines depending on the
nature of arylamino moiety. Effect of substituent on reaction rate
and nature of pyrolysis products supports the suggested intramolec-
ular nucleophilic substitution reaction via initially formed ketene-
amine intermediate.
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The rapid rise in bacterial resistance to traditional anti-
biotic such as b-lactams has encouraged continuous
search for new classes of antibiotics, which led to intro-
duction of nalidixic acid (1) in 1962. Ciprofloxacin (2,
Figure 1) was marketed in 1980; however, recently there
has been a rapid development of resistance to cipro-
floxacin. These searches for new quinolin-4-ones1,2 were
initiated by synthesis of either via cyclization b-amino-
acrylates,3 high-temperature condensation of b-ketoesters
with amines,4 or via reaction of diethyl ethoxymethylene-
malonates with aromatic amines.5 These are multistage
routes and are of limited scope.

Figure 1

Chen and Wang have reported the formation of 4-
quinolinones6 upon heating 3 in diphenyl ether at 250
°C.6,7 It was suggested6 that the reaction does not involve
electrophilic attack on the benzene ring but rather an elec-
trocyclization of 3-(paranitrophenylamino)penta-1,2-
dien-1-one (4,7 cf. Scheme 1).

In conjunction with our research interest in the utility of
gas-phase pyrolytic reactions as green benign approaches
in organic synthesis8–10 we describe in this article an effi-
cient synthesis of quinolin-4-one from Meldrum’s acid
derivatives.

Ten Meldrum’s acid derivatives were synthesized utiliz-
ing the reported synthetic approach11 via condensing
Meldrum’s acid 6 with triethylorthoformate and aromatic
amines 7 to produce 8a–j (Scheme 2).11 Static gas-phase
pyrolysis12 of 8a–j at 300 °C for 900 s resulted in the for-
mation of aromatic amines in addition to quinolinones 11
and acetone, however, in flash vacuum pyrolysis (FVP)13

at 600 °C and 10–2 Torr only quinolinones, acetone, and
trace amount of aromatic amines are produced. The yield
of each product was found to depend on the nature of the
substituent on the benzene ring as well as pyrolysis condi-
tions (cf. Table 1). Pyrolysis of 8a–c either by FVP at 600
°C13 or by static pyrolysis at 300 °C afforded quinolinones
11a–c, acetone, and trace amount of aromatic amines. The
analyses of the product 11b as an example are in
agreement with the proposed structure.14 Pyrolyzing 8d
afforded, in addition to quinolinone 11d and amine 7d,
quinolinone 11a which results most likely via ipso sub-
stitution. On the other hand, pyrolysis of 8e–h under the
same conditions offered in addition to acetone a 1:1
mixture of quinolinones 11e–h and 11i–l. The structure of
11e and 11i was established based on spectral data.15,16

Contradicting with reported formation of 2-methyl quino-
linones upon pyrolyzing 3 in diphenyl ether,6 in our hands
pyrolysis of 8i afforded only traces of quinolinones 11m
in addition to acetone. The major pyrolysis product, in
fact, was 4-nitroaniline. This confirms that the electron
density at the cyclization reaction site plays a significant
role in the course of the cyclization reaction. Thus sub-
stituents in 8a–c generally enrich the p-electronic cloud in
the benzene ring, while a nitro substituent in 8i is known
to decrease the p-cloud density in the ring, thus reducing
the nucleophilicity of the ring carbons. We thus believe
that the initially formed 9 either cyclizes into 10 that then
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affords 11, or is decomposed prior to cyclization when the
cyclization site is not sufficiently nucleophilic. Similar to
compound 8c, compound 8j undergoes ipso substitution
to give a mixture of 11n and 11a. It is worth mentioning

here that the attack at ipso position is well known for nitro
substituents but we believe that it is quite unusual with
methoxy substituents.17 Our conclusion is that formation
of quinolinones via pyrolysis of 8a–j proceeds via an
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Table 1 Pyrolysis of Compounds 8

Reactant Product yield (%)

Flash vacuum pyrolysis Static pyrolysis

8a 11a (83.5%) 11a (35.6%)

8b 11b (65.2%) + 7b (1%) 11b (53%) + 7b (36%)

8c 11c (14.5%) + 7c (5%) 11c (51.3%) + 7c (17.7%)

8d 11d (20. 1%) + 11a (5.6%) + 7d (2.3%) 11d (15.8%) + 11a (18%) + 7d (26.1%)

8e 11e (14.9%) + 11i (18%) 11e (14.1%) + 11i (27.7%)

8f 11f (14.3%) + 11j (15.2%) 11f (34%) + 11j (20%)

8g 11g (17%) + 11k (18.8%) 11g (10.1%) + 11k (11.7%)

8h 11h (11.4%) + 11l (21.6%) + 7h (33%) 11h (1.7%) + 11l (2.5%) + 7h (28.2%)

8i 11m (2.9%) + 7i (9.9%) 11m (1%) + 7i (12%)

8j 11a (9.6%) + 11n (21%) + 7j (3.5%) 11a (%) + 11n (%) + 7j (%)

15a 16 (17.8%) + 12(2%) 16 (9%) + 12(23%)

15b Did not sublime 17 (16.5%) 

15c 19 (84.8%) 19 (21.6%)
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intramolecular nucleophilic displacement. Although the
fact that 8h is formed in better yield than 8i seems at first
sight contradictory to this assumption, closer inspection
reveals that this is not exactly the case, as substitution in
para-position would contribute to the ease of N–N cleav-
age and this contributes to the observed low yield of 8i.

We have then investigated the possible utility of this reac-
tion for synthesis of condensed azines, by condensing 6
with heterocyclic amines 12–14. The reaction produced
15a–c in good yields. The FVP of 15a,b at 600 °C
afforded the condensed azines 16 and 17. On the other
hand, FVP of 15c gave a product that can in theory be
formulated as pyrido[2,3-b]pyrazine (18), or pyr-
azino[1,2-a]pyrimidine (19). The structure of 19 was
established based on the absence of D2O exchangeable
NH signal18 (cf. Scheme 3).

Scheme 3

A simple, green approach for synthesis of quinolinones,
azoloazines, and pyrimidoazines is now available. More-
over we were able provide evidence that the conversion of
8 into 11 processes via an intramolecular nucleophilic
substitution reaction for which substituents on the aryl
moiety play an important role. 
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