FULL PAPER

 R^1 , R^4 = Ph, 4-substituted Ph, 2-thienyl; R^2 , R^3 = H, Ph

A new strategy for the synthesis of highly efficient symmetric and asymmetric BODIPY fluorophores that combine trifluoromethyl and 3,5-aryl substituents has been developed. The key step is the P_2O_5 promoted condensation of 2,2,2-trifluoro-1-(5-arylpyrrol-2-yl)-1-ethanols with diverse 2-arylpyrroles.

Synthetic Dyes

L. N. Sobenina, O. V. Petrova,

K. B. Petrushenko, I. A. Ushakov,

A. I. Mikhaleva, R. Meallet-Renault,

B. A. Trofimov* 1–13

Synthesis and Optical Properties of Difluorobora-s-diazaindacene Dyes with Trifluoromethyl *meso*-Substituents

Keywords: Synthetic methods / Dyes/pigments / Nitrogen heterocycles / Fluorescence

Pages: 13

FULL PAPER

DOI: 10.1002/ejoc.201300212

1

Synthesis and Optical Properties of Difluorobora-s-diazaindacene Dyes with Trifluoromethyl meso-Substituents

Lyubov N. Sobenina,^[a] Olga V. Petrova,^[a] Konstantin B. Petrushenko,^[a] Igor A. Ushakov,^[a] Albina I. Mikhaleva,^[a] Rachel Meallet-Renault,^[b] and Boris A. Trofimov^{*[a]}

yield (0.84-0.99).

Keywords: Synthetic methods / Dyes/pigments / Nitrogen heterocycles / Fluorescence

A series of *meso*-CF₃-4,4-difluoro-4-bora-3a,4a-diaza-s-ind-acene (BODIPY) dyes with aryl and hetaryl substituents at the C-3 and C-5 positions, both symmetric and asymmetric, have been synthesized in 36–90 % yields by a new strategy involving as the key step the condensation of 2,2,2-trifluoro-1-(5-arylpyrrol-2-yl)-1-ethanols with diverse 2-arylpyrroles.

Introduction

BODIPY dyes (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) possess many distinctive and desirable properties such as high molar absorption coefficient, fluorescence quantum

21 yields and long wavelength emission.^[1] They have found numerous applications as optical chemosensors,^[2] fluorescent biolabels,^[3] light-harvesting molecules,^[4] emitters in organic light-emitting diodes,^[5] and light absorbers for solar cells.^[6] Biochemical applications of BODIPYs include conjuga-

26

tion with a variety of biomolecules such as lipids,^[7] proteins,^[8] DNA,^[9] carbohydrates^[10] and cholesterol.^[11]

BODIPYs that absorb and emit in the near-infrared (NIR) region are efficiently used to visualize and investigate in vivo molecular targets.^[12] Therefore, it is of applied inter-

31 est to shift the absorption or fluorescence maximum of BODIPYs into the red or NIR region as far as possible and increasing simultaneously the quantum yield.

An efficient way to red-shift the absorption and emission maxima is to extend the conjugated π -system of the

36

BODIPY molecule by introducing aromatic substituents in the 5- and/or 3-positions at the indacene core.^[13] This approach allows both absorption and emission to be shifted by 100–200 nm towards red. Very important shifts towards the NIR end of the visible spectra have been recently

Homepage: http://www.irkinstchem.ru

achieved by introducing a strong electron acceptor such as pentafluorobenzene^[14] or $CF_3^{[15,16]}$ at the *meso*-position of the BODIPY core, though the asymmetrical representatives with a *meso*-CF₃ moiety can only be synthesized by using a specific methodology.^[16]

The starting 2,2,2-trifluoro-1-(5-arylpyrrol-2-yl)-1-ethanols

are easily prepared by reduction of the available 2-trifluoro-

acetyl-5-arylpyrroles. The synthesized dyes fluoresce in a

longer wavelength region (626–698 nm) with high quantum

We have concisely reported that the presence of a CF_3 46 group in the *meso*-position of the BODIPY core does cause a deep bathochromic shift relative to congeners with other substituents in this position.^[16] Despite this progress, synthesis of new *meso*-CF₃-BODIPY derivatives with aryl groups remains challenging because the fluorescence maxima of BODIPY strongly depend on the nature of the aryl substituent.^[17]

Results and Discussion

The key step in the *meso*-CF₃-BODIPYs synthesis has been briefly outlined.^[16] The step represents the P_2O_5 -promoted condensation of available 2,2,2-trifluoro-1-(pyrrol-2yl)-1-ethanols with pyrroles. It should be noted that this methodology makes it possible to synthesize both symmetrical and asymmetrical BODIPYs as opposed to other methods^[14,15] affording exclusively symmetrical BODIPYs. 61

Inspired by this success, we have undertaken the synthesis of BODIPY derivatives combining aryl groups and a meso-CF₃ substituent.

We disclose herein the further development of the abovementioned synthesis and describe the preparation of a variety of new *meso*-trifluoromethylated BODIPY dyes with aryl and heteroaryl substituents at the C-3 and C-5 positions. The synthesis starts from easily available 2-phenylpyrroles **1a–1g**, which have different substituents at the *p*-position of the benzene ring.

71

66

 [[]a] A. E. Favorsky Irkutsk Institute of Chemistry Siberian Branch, Russian Academy of Science,
 1 Favorsky Str., 664033 Irkutsk, Russian Federation Fax: +7-3952-419346
 E-mail: boris_trofimov@irioch.irk.ru

 [[]b] Laboratoire de Photophysique et Photochimie Supramoleculaires et Macromoleculaires (CNRS UMR 8531), Ecole Normale Superieure de Cachan, 61 Avenue du President Wilson, 94235 Cachan cedex, France

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201300212.

96

Difluorobora-s-diazaindacene Dyes

Pyrroles **1a–1e** are readily obtained from alkylarylketoximes and acetylene through the Trofimov reaction^[18] in a one-pot procedure (Scheme 1).

Scheme 1. Synthesis of pyrroles 1a-1e.

76

Previously unknown 2-[(1,1-biphenyl)-4-yl]pyrrole (1f) and 2-[(1,1-biphenyl)-4-yl]-3-phenylpyrrole (1g) have been synthesized by devinylation^[19] of the corresponding *N*-vinyl derivatives 2f and 2g, which are the major products of the Trofimov reaction owing to rapid vinylation of the intermediate *NH*-pyrroles (Scheme 2).

Scheme 2. Synthesis of pyrroles 1f and 1g.

- Scheme 3 shows the synthetic route to BODIPY dyes 3 from pyrroles 1a–1g. The reaction sequence includes trifluoroacetylation of pyrroles 1c–1g to afford 2-trifluoroacetylpyrroles 4c–4g. The reduction products of pyrroles 4c–4g with NaBH₄, 2,2,2-trifluoro-1-(pyrrol-2-yl)-1-ethanols 5c–5g, reacted with pyrroles 1a–1g in the presence of
- P_2O_5 (equimolar ratio) to give dipyrromethanes **6**. The latter are easily isolated and can be used as intermediates in syntheses of other compounds, in particular, porphyrins.^[20] Oxidation of dipyrromethanes **6** with 2,3-dichloro-5,6-di-
- 91 cyanobenzoquinone (DDQ) and subsequent complexation of the resulting dipyrromethenes with BF_3 is realized as a

This general strategy allows, depending on the structure of pyrroles **1a–1g** and ethanols **5c–5g**, both symmetric and asymmetric BODIPY dyes **3** to be easily assembled.

Thus, the synthesis of asymmetric BODIPY dyes, which was a long-standing challenge, has been incidentally an elegantly overcome.

In some cases the synthesis of asymmetric dipyrromethanes is accompanied by the formation of insignificant quantities (2-3%) of two symmetric ones. For instance, dipyrromethanes **6bb** and **6ff** have been identified (¹⁹F NMR spectroscopy) in the synthesis of the asymmetric dipyrromethane **6bf** (Scheme 4). 106

Scheme 4. The formation of dipyrromethanes **6bf**, **6bb** and **6ff**.

The formation of symmetric dipyrromethanes as minor products may be rationalized as follows: under the acidic conditions of the synthesis, the asymmetric dipyrromethanes (for instance **6bf**) disproportionate partially into pyrrole carbocations (**7b** and **7f**) and pyrroles (**1b** and **1f**; 111 Scheme 5). Cation **7b** may attack pyrrole **1b** to afford symmetric dipyrromethane **6bb**. Analogously, attack of pyrrole **1f** at cation **7f** gives dipyrromethane **6ff**.

Another plausible pathway to symmetric dipyrromethanes, and hence to symmetric BODIPYs, may be the dissociation of starting pyrrolylethanols **5c–5g** to the free pyrrole and trifluoroacetaldehyde, the latter able to react with the two same pyrrole molecules (Scheme 6).

Scheme 3. Synthesis of BODIPY dyes 3.

BODIPYs 3 (yield, %)

3cc (89)

Me

FULL PAPER

Table 1. Preparation of BODIPY dyes 3 from ethanols 5c-5g and pyrroles **1a–1g** through Scheme 3.

Table 1. (Continued).

Scheme 5. Proposed symmetrisation of dipyrromethanes 6bb and **6ff**.

3gg (90)

Scheme 6. Alternative pathway to symmetric dipyrromethane **6bb** (dipyrromethane **6ff** is formed analogously).

- Figure 1 depicts the absorption and fluorescence spectra of synthesized dyes **3cc**, **3ff** and **3bf**. The spectra show intense long-wave absorption bands and almost symmetrical corresponding fluorescence bands. Detailed spectroscopic and photophysical characteristics of BODIPY dyes **3** including lifetime (τ_f), fluorescence rate constant (k_f , $k_f = -$
- 126 $1/\tau_{\rm f}$) as well as rate constants of radiative $(k_{\rm r})$ and non-radiative $(k_{\rm nr})$ deactivation are given in Table 2. The same data for 4,4-difluoro-3,5-diphenyl-8-trifluoromethyl-4-bora-3a,4a-diaza-*s*-indacene (**3aa**) synthesized earlier^[16] are also given in Table 2 and Figure 1.
- 131 Simple, "transparent", substituents (-Cl, $-CH_3$, $-OCH_3$) in the *p*-position of the benzene ring do not change the general character of absorption and fluorescence spectra. Nevertheless, the bands maxima are progressively shifted

towards the red region according to the electron-donating ability of the substituents (Cl < CH₃ < OCH₃) and their number (Table 2). Relative to known *meso*-4'-iodophenyl-BODIPYs^[13a] bearing the same substituents in the C-3 and C-5 positions, dyes **3** absorb and emit in longer-wave re-

gions and have much higher $\Phi_{\rm f}$ values. For example, 4,4difluoro-8-(4'-iodophenyl)-3,5-diphenyl-4-bora-3a,4a-di-141 aza-s-indacene has $\lambda_{max,abs} = 558 \text{ nm}, \lambda_{max,fl} = 592 \text{ nm}$ and $\Phi_{\rm f} = 0.15$,^[13a] whereas BODIPY dye **3aa** has $\lambda_{\rm max,abs} =$ 586 nm, $\lambda_{\text{max,fl}} = 626$ nm and $\Phi_{\text{f}} = 0.74$ and 4,4-difluoro-8-(4'-iodophenyl)-3,5-bis(4-methoxyphenyl)-4-bora-3a,4a-diaza-s-indacene has $\lambda_{\text{max,abs}} = 585 \text{ nm}, \lambda_{\text{max,fl}} = 629 \text{ nm}, \Phi_{\text{f}}$ 146 = 0.33,^[13a] and 3dd has $\lambda_{max,abs}$ = 616 nm, $\lambda_{max,fl}$ = 665.5 nm, $\Phi_{\rm f}$ = 0.98. On average, replacing a 4'-iodophenyl substituent by a CF₃ group in the *meso*-position leads to a shift in the most long-wave absorption band and fluorescence band by ca. 900 cm⁻¹. Replacement of the *meso*-aryl 151 with a trifluoromethyl moiety reduces the non-radiative decay through rotation, and leads to fluorophores with higher quantum yields.[15b]

The extension of the π -system owing to the increase in number of phenyl substituents in the BODIPY molecules 156 also favors the red shift of the absorption and fluorescence bands (BODIPY **3ff, 3ag, 3bg, 3gg**; Table 2). At the same time, asymmetric BODIPYs have decreased red-shift values.

Relative to BODIPY 3af and 3ag, their thienyl analogs

3bf and 3bg absorb and fluoresce at longer wave lengths,

their absorption and fluorescent bands are narrower and

they have lower Δv_{st} values. The aforementioned changes in

161

136

1.0 1.0 1,0 1,0 0,8 0,8 0,8 0,8 9,0 gdg 0,6 Jonie 0,4 0,6 Jonie 0,4 Sdb 0,6 0,4 0,4 0,2 0,2 0.2 0.2 0,0 0,0 0,0 0.0 500 600 700 800 500 600 700 800 Wavelength / nm Wavelength/nm

Figure 1. Normalized absorption (1-4) and fluorescence spectra (5-8) of BODIPYs 3aa (1, 5), 3cc (2, 6), 3ff (3,7) and 3bf (4, 8) in MeCN.

Table 2.	. Spectroscopic and	l photophysica	l data of BODIPYs 3	recorded in MeCN at 22 °C.
----------	---------------------	----------------	----------------------------	----------------------------

BODIPY	λ _{max,abs}	Absorption coeffi- cient	$\lambda_{\rm max,fl}$	λ _{max,ex}	Stokes shift	$\tau_{\rm f}$	Fluorescence quantum yield $(\Phi_{\rm f})^{[{\rm a}]}$	$k_{\rm f} \times 10^{9}$	$k_{\rm r} \times 10^9$	$k_{\rm nr} imes 10^9$
	[nm]	$(\varepsilon \ [M^{-1} cm^{-1}])$	[nm]	[nm]	$(\Delta v_{\rm St} \ [{\rm cm}^{-1}])$	[ns]		$[s^{-1}]$	$[s^{-1}]^{[b]}$	$[s^{-1}]^{[c]}$
3aa ^[16]	586	46000	626.0	586	1090	6.4	0.74	0.16	0.12	0.04
3ac	593	57800	632.5	592	1050	6.2	0.92	0.16	0.15	0.01
3cc	599	56400	640.5	598	1080	6.2	0.88	0.16	0.14	0.02
3ad	606	55700	650.5	606	1130	5.7	0.89	0.18	0.16	0.02
3dd	616	57200	665.5	617	1180	5.7	0.98	0.18	0.17	0.01
3ae	589	55700	629.0	588	1080	6.3	0.89	0.16	0.14	0.02
3ee	592	56800	634.0	592	1120	6.3	0.89	0.16	0.14	0.02
3af	599	54500	646.5	598	1200	5.9	0.88	0.17	0.15	0.02
3bf	636	57600	674.0	635	890	5.6	0.84	0.18	0.15	0.03
3ff	612	55800	667.0	611	1350	5.7	0.91	0.18	0.16	0.02
3ag	613	53000	673.0	614	1450	0.6	0.05	1.67	0.08	1.59
3bg	644	52300	688.5	643	1000	1.2	0.13	0.83	0.11	0.72
3gg	637	52000	698.0	638	1370	1.0	0.07	1.00	0.07	0.93

[a] Nile blue as standard [$\Phi_{\rm f} = 0.27, 0.5\%$ (v/v) 0.1 M HCl in ethanol]. [b] $k_{\rm r} = \Phi_{\rm f}/\tau_{\rm f.}$ [c] $k_{\rm nr} = \tau_{\rm f}^{-1} - k_{\rm r}$.

FULL PAPER

spectroscopic characteristics indicate a more planar structure for the thienyl-containing BODIPY, likely owing to lower steric hindrance from the five-membered thienyl ring.^[16,21]

166

Of special interest is the dependence of value rate constants k_r and k_{nr} on the presence or absence of the phenyl substituents conjugated with the BODIPY core in the 2

- 171 and/or 6 positions. The BODIPYs containing no such substituents have $k_{\rm r} >> k_{\rm np}$ and their $\Phi_{\rm f} = (k_{\rm r}/k_{\rm r} + k_{\rm nr})$ values are close to 1. However compounds **3ag**, **3bg** and **3gg** bearing substituents possess approximately two-times lower $k_{\rm r}$ values and 40-times higher $k_{\rm nr}$ constants. For these BODI-
- 176 PYs, radiative transitions are much less probable than nonradiative deactivation and they have low Φ_f values (Table 2). Apparently, the main cause for the drop of k_r value and increase of k_{nr} value is the decrease of **3ag**, **3bg** and **3gg** planarity in the S₀ and S₁ states from steric strain between
- 181 bulky phenyl substituents. This is supported by high $\Delta v_{\rm St}$ and half-width absorption band values as well as by quantum-chemical calculations of similar systems.^[16] The drop of $k_{\rm r}$ values with the decrease of planarity is a natural consequence of weakening of the π -orbitals interaction, and growth of $k_{\rm nr}$ values results from non-radiative losses owing

to significant changes of torsion angles in the S_1 state. These inferences are in accordance with quantum-chemical calculations of BODIPY **3af** and **3ag**, which have been

- selected as molecules containing or not containing phenyl substituents at the 2 position. Geometries for the molecules in the S₀ state were optimized by using the RI-DFT/BP86/ def2-TZVP method. Energies of S₀ \rightarrow S_i (*i* = 1–3) transitions were determined by using a time-dependent DFT (TDDFT) method RI-TD-BP86/def2-TZVP based on the optimized
- 196 geometries of the S_0 state. To decrease the calculation time the resolution identity (RI) was applied.

Optimized structures **3af** and **3ag** and calculated values of excitation energy are given in Figure 2 and Table 3, respectively. Both molecules have an almost planar struc-

- 201 ture for the BODIPY core with a tetragonal boron atom, two fluorine atoms perpendicular to the BODIPY plane and phenyl substituents deviated from the BODIPY skeleton. In compound **3af**, the torsion angle between the BODIPY plane and biphenyl fragment is ca. 30°. The intro-
- duction of another phenyl substituent in the 2 position (compound 3ag) increases this angle up to ca. 50°, whereas the torsion angle between the phenyl moieties in the biphenyl fragments remains the same (ca. 36°; Figure 2). Thus, based on the phenyl substituent size it can be concluded the biphenyl fragment of BODIPY 3ag is signifi-

cantly twisted from the molecule plane relative to compound **3af**. The phenyl substituent itself in the 2 position deviates from the BODIPY core by ca. 40°.

Figure 2. Optimized structures of BODIPY **3af** and **3ag** in state S_0 according to RI-BP86/def2-TZVP.

The increase in torsion angle between the BODIPY core and biphenyl moiety should lead to a hypsochromic shift of the absorption band of compound **3ag** relative to **3af** owing to the partial loss of conjugation. However, experimentally (Table 2) a bathochromic shift is observed. Probably, any hypsochromic shift is compensated for by the bathochromic shift exerted by the phenyl substituent in the 2 position.

The calculated (on the basis of optimized geometries) energy values of vertical $S_0 \rightarrow S_1$ transitions for compounds **3af** and **3ag** are 614.1 and 642.6 nm, respectively (Table 3) and are in good agreement with experimental data: 599 (**3af**) and 614 nm (**3ag**) (Table 2). Theoretical values of excitation energies and oscillator strength allow one to evaluate the radiation rate constants for emission of **3af** and **3ag** by using the Einstein transition probabilities^[22] (au): $k_r = 2E^2$ f/c^3 , in which c is the velocity of light, E is the transition

Table 3. Excitation energies and oscillator strength of BODIPY 3af and 3ag in the gas phase (RI-TD-BP86/def2-TZVP).

BODIPY	Transition	Energy [eV]	λ [nm]	f	Main configuration	Coefficient [%]
3af	$S_0 \rightarrow S_1$	2.02	614.1	0.48	HOMO-LUMO	75.8
	$S_0 \rightarrow S_2$	2.48	500.6	0.23	HOMO-1-LUMO	72.8
	$S_0 \rightarrow S_3$	2.59	479.0	0.0001	HOMO-2-LOMO	96.6
3ag	$S_0 \rightarrow S_1$	1.93	642.6	0.35	HOMO-LUMO	68.2
	$S_0 \rightarrow S_2$	2.16	573.7	0.09	HOMO-1-LUMO	64.6
	$S_0 \rightarrow S_3$	2.49	498.7	0.12	HOMO-3-LUMO	53.6

221

226

Pages: 13

ole v.6.1 software.^[23]

- Difluorobora-s-diazaindacene Dyes
- energy, and f is the oscillator strength. The theoretical value of k_r (**3af**)/ k_r (**3ag**), is 1.5, which correlates well with the experimental value (1.9).

It should be noted that attempts to evaluate the excitation-induced changes in geometries of BODIPY **3af** and

3ag have not met with success at this stage. Geometry optimization (TDDFT) of both molecules in the excited S₁ state give a structure with an orthogonal location for the biphenyl fragment and an almost forbidden S₁→S₀ transition (f ≈ 0.001) and unreal low fluorescence energy values (ca. 1000 nm) that contradict the experimental data.

Conclusions

In conclusion, an expedient strategy for the synthesis of highly efficient BODIPY fluorophores that combine trifluoromethyl and 3,5-aryl or heteroaryl substituents

- fluorescing in the 626–698 nm region with quantum yields close to unity has been developed. The key step of the strategy is the P_2O_5 -promoted condensation of readily accessible 2,2,2-trifluoro-1-(5-arylpyrrol-2-yl)-1-ethanols with diverse 2-arylpyrroles. Additionally, the strategy proved to be an
- 251 easy and general route to previously inaccessible asymmetric BODIPY fluorophores.

Experimental Section

General: IR spectra were obtained with a Bruker IFS-25 spectrometer (400–4000 cm⁻¹, KBr pellets). ¹H (400.1 MHz), ¹³C (100.6 MHz), ¹⁹F (376.5 MHz) and ¹⁵N (40.5 MHz) NMR spectra were recorded with a Bruker Avance 400 instrument in CDCl₃ and [D₆]DMSO. The assignment of signals in the ¹H NMR spectra was made by using COSY and NOESY experiments. Resonance signals of carbon atoms were assigned based on ¹H–¹³C HSQC and ¹H–

- 261 ¹³C HMBC experiments. Chemical shifts for ¹⁵N NMR spectra were measured through 2D ¹H–¹⁵N HMBC experiments. The ¹H and ¹³C chemical shifts were referenced to hexamethyldisilazane, ¹⁹F to CFCl₃, and ¹⁵N to CH₃NO₂. UV/Vis absorption spectra were measured with a Lambda-35 (Perkin–Elmer) spectrophotome-
- 266 ter. The absorption coefficients have been determined with an accuracy of $\pm 500 \text{ m}^{-1} \text{ cm}^{-1}$. Excitation and emission spectra were measured with a FLSP-920 combined steady-state and time-resolved fluorescence spectrometers (Edinburgh Instrument). All fluorescence and excitation spectra were corrected. Fluorescence decay
- 271 curves were obtained with a time-correlated single-photon-counting method. The experimental errors in the determination of $\tau_{\rm f}$ values were estimated to be 1%. For samples, a right-angle configuration was used and to avoid re-absorption, the maximum absorbance was kept below 0.1. The solvent used was CH₃CN (spec-
- 276 troscopic grade) from Sigma–Aldrich. The fluorescence quantum yields ($\Phi_{\rm f}$) of the BODIPY systems were calculated by using the following relationship [Equation (1)].

$$\Phi_{\rm f} = \Phi_{\rm ref} F_{sampl} A_{\rm ref} n^2_{\rm sampl} / F_{\rm ref} A_{\rm sampl} n^2_{\rm ref}$$
(1)

F denotes the integral of the corrected fluorescence spectrum, A is the absorbance at the excitation wavelength, and n is the refractive index of the medium, and ref and sampl denote parameters from the reference and unknown experimental samples, respectively. The

in ethanol]. Quantum-chemical calculations were performed by using Turbom-

286

General Procedure for the Preparation of 2-(1,1-biphenyl-4-yl)pyrroles 1f and 1g: 1,1-Biphenyl-4-yl-methylketoxime or 1,1-biphenyl-4-yl-benzylketoxime (25 mmol), KOH·0.5H₂O (1.63 g, 25 mmol) and dimethyl sulfoxide (DMSO; 120 mL) were placed into a 0.25 L steel rotating autoclave and acetylene was fed from a cylinder at 291 room temperature (initial pressure 14 atm). The autoclave was heated (100 °C) for 3 h. The reaction mixture, after cooling to room temperature, was diluted with a threefold volume excess of water and extracted with diethyl ether $(5 \times 30 \text{ mL})$. Ether extracts were washed with water $(5 \times 30 \text{ mL})$ to remove DMSO and dried with 296 Na₂SO₄. The residue after removing diethyl ether was fractionated by column chromatography (Al₂O₃, n-hexane) to afford 1-vinyl-2-(1,1-biphenyl-4-yl)pyrrole (2f) or 1-vinyl-2-(1,1-biphenyl-4-yl)-3phenylpyrrole (2g).

A suspension of pyrrole **2f** or **2g** (5 mmol) and mercury acetate 301 (1.59 g, 5 mmol) in aqueous acetonitrile (200 mL, 1:2) was stirred for 2 h at room temperature and then heated at 55–60 °C for 15 min. The reaction mixture was diluted with water (100 mL) and the solid formed was filtered off and dried. The solid was purified by flash-chromatography (Al₂O₃, hexane/diethyl ether, 1:1) to afford pyrrole **1f** or **1g**.

2-(1,1-Biphenyl-4-yl)pyrrole (1f): Yield 0.48 g (44%) as grayish crystals, m.p. 213-215 °C. IR (KBr): $\tilde{v}_{max} = 3433$, 3395, 1488, 1426, 836, 800, 763, 719, 691 cm⁻¹. ¹H NMR ([D₆]DMSO): $\delta = 11.40$ (br. s, 1 H, NH), 7.72 (m, 2 H, Ph-2a,6a), 7.68 (m, 2 H, Ph-2b,6b), 7.65 (m, 2 H, Ph-3a,5a), 7.45 (m, 2 H, Ph-3b,5b), 7.33 (m, 1 H, Ph-4b), 6.86 (m, 1 H, 2-H), 6.56 (m, 1 H, 4-H), 6.13 (m, 1 H, 3-H) ppm. ¹³C NMR ([D₆]DMSO): $\delta = 139.9$ (C-1b), 136.9 (C-4a), 132.2 (C-1a), 130.8 (C-5), 129.0 (C-3b,5b), 127.3 (C-4b), 127.0 (C-3a,5a), 126.3 (C-2b,6b), 123.9 (C-2a,6a), 119.7 (C-2), 109.3 (C-3), 106.0 (C-4) ppm. ¹⁵N NMR ([D₆]DMSO): $\delta = -228.4$ ppm. C₁₆H₁₃N (219.29): calcd. C 87.64, H 5.98, N 6.39; found C 87.38, H 5.85, N 6.23.

2-(1,1-Biphenyl-4-yl)-1-vinylpyrrole (2f): Yield 3.25 g (53%) as white crystals, m.p. 126–127 °C. IR (KBr): $\tilde{v}_{max} = 3145, 1640, 1465, 1316,$ 321 1290, 971, 960, 875, 841, 766, 713, 700 cm⁻¹. ¹H NMR (CDCl₃): $\delta = 7.73$ (m, 4 H, Ph-2a,6a,2b,6b), 7.55 (m, 4 H, Ph-3a,5a,3b,5b), 7.45 (m, 1 H, Ph-4b), 7.24 (m, 1 H, 5-H), 7.07 (dd, J = 15.6, 8.8 Hz, 1 H, H_x), 6.42 (m, 2 H, 3-H,4), 5.30 (d, J = 15.6 Hz, 1 H, H_B), 4.82 (d, J = 8.8 Hz, 1 H, H_A) ppm. ¹³C NMR (CDCl₃): $\delta = 140.7$ (C-1b), 140.0 (C-4a), 134.0 (C-1a), 132.1 (C_a), 131.5 (C-2), 129.6 (C-3b,5b), 128.9 (C-2a,6a), 127.5 (C-4b), 127.2 (C-3a,5a), 127.1 (C-2b,6b), 118.6 (C-5), 110.2 (C-3,4), 99.0 (C_β) ppm. C₁₈H₁₅N (245.32): calcd. C 88.13, H 6.16, N 5.71; found C 88.12, H 6.38, N 5.54.

2-(1,1-Biphenyl-4-yl)-3-phenylpyrrole (1g): Yield 0.92 g (62%) as beige crystals, m.p. 184–185 °C. IR (KBr): $\tilde{v}_{max} = 3409$, 1604, 1501, 1488, 1095, 895, 838, 764, 722, 699, 689 cm⁻¹. ¹H NMR (CDCl₃): $\delta = 8.27$ (br. s, 1 H, NH), 7.59 (m, 2 H, Ph-2b,6b), 7.53 (m, 2 H, Ph-3a,5a), 7.41 (m, 6 H, Ph-2a,6a,3b,5b,2c,6c), 7.33 (m, 1 H, Ph-4b), 7.27 (m, 2 H, Ph-3c,5c), 7.20 (m, 1 H, Ph-4c), 6.89 (dd, J = 2.5, 2.8 Hz, 1 H, 2-H), 6.43 (dd, J = 2.5, 2.8 Hz, 1 H, 3-H) ppm. ¹³C NMR (CDCl₃): $\delta = 140.6$ (C-1b), 139.4 (C-4a), 136.7 (C-1c), 132.4 (C-1a), 128.9 (C-2a,6a), 128.6 (C-2c,6c), 128.4 (C-3c,5c), 128.0 (C-5), 127.8 (C-3b,5b), 127.4 (C-4b), 127.3 (C-3a,5a), 126.9 (C-2b,6b), 125.8 (C-4c), 122.4 (C-4), 118.3 (C-2), 111.3 (C-3) ppm. C₂₂H₁₇N (295.38): calcd. C 89.46, H 5.80, N 4.74; found C 89.12, H 5.39, N 4.51.

FULL PAPER

2-(1,1-Biphenyl-4-yl)-3-phenyl-1-vinylpyrrole (2g): Yield 3.21 g 346 (40%) as white crystals, m.p. 113–114 °C. IR (KBr): \tilde{v}_{max} = 3449, 1636, 1599, 1494, 1472, 1446, 1423, 1382, 1316, 1297, 1281, 1253, 1075, 958, 929, 910, 855, 841, 768, 736, 723, 693 cm⁻¹. ¹H NMR (CDCl₃): δ = 7.61 (m, 2 H, Ph-2b,6b), 7.58 (m, 2 H, Ph-3a,5a), 7.42 (m, 2 H, Ph-3b,5b), 7.32 (m, 3 H, Ph-2a,6a,4b), 7.20 (m, 2 H,

- 351 Ph-2c,6c), 7.17 (d, J = 3.2 Hz, 1 H, 2-H), 7.16 (m, 2 H, Ph-3c,5c), 7.08 (m, 1 H, Ph-4c), 6.76 (dd, J = 15.9, 9.1 Hz, 1 H, H_x), 6.51 (d, J = 3.2 Hz, 1 H, 3-H), 5.15 (d, J = 15.9 Hz, 1 H, H_B), 4.63 (d, J =9.1 Hz, 1 H, H_A) ppm. ¹³C NMR (CDCl₃): $\delta = 140.5$ (C-1b), 140.4 (C-4a), 136.0 (C-1c), 131.9 (C-2a,6a), 131.7 (C_a), 130.8 (C-1a),
- 356 129.6 (C-5), 128.9 (C-3b,5b), 128.3 (C-3c,5c), 128.0 (C-2c,6c), 127.6 (C-4b), 127.2 (C-3a,5a), 127.1 (C-2b,6b), 125.6 (C-4c), 124.2 (C-4), 117.3 (C-2), 110.8 (C-3), 98.4 (C_β) ppm. ¹⁵N NMR (CDCl₃): δ = -207.6 ppm. C₂₄H₁₉N (321.42): calcd. C 89.68, H 5.96, N 4.36; found C 89.41, H 5.78, N 4.38.
- 361 Preparation of 2,2,2-trifluoro-1-(5-aryl-1*H*-pyrrol-2-yl)-1-ethanones 4f and 4g: A solution of trifluoroacetic anhydride (6.30 g, 30 mmol) in dry diethyl ether (10 mL) was added dropwise to a mixture of 2-(1,1-biphenyl)-4-ylpyrroles 1f or 1g (20 mmol) and pyridine (2.37 g, 30 mmol) in dry diethyl ether (50 mL) and stirred for 30 min. Then
- the reaction mixture was stirred for 2 h and diluted with a saturated solution of Na₂CO₃. The organic layer was separated and the aqueous layer was extracted with diethyl ether (3×10 mL). The combined extracts were washed with water (3×10 mL) and dried with MgSO₄. After removing the solvent the residue was washed with cold ethanol to give compound 4f and 4g.
 - The 2,2,2-trifluoro-1-(5-aryl-1*H*-pyrrol-2-yl)-1-ethanones 4c-4e were obtained analogously. Their spectroscopic data are described in ref.^[24]

1-[5-(1,1-Biphenyl)-4-yl]-1*H*-pyrrol-2-yl-2,2,2-trifluoro-1-ethanone

- 376 **(4f):** Yield 5.61 g (89%) as light-violet crystals, m.p. 238–239 °C. IR (KBr): $\tilde{v}_{max} = 3308$, 1644, 1479, 1266, 1201, 1138, 1076, 882, 840, 796, 764, 756 cm⁻¹. ¹H NMR ([D₆]DMSO): $\delta = 12.92$ (br. s, 1 H, NH), 8.06 (m, 2 H, Ph-2a,6a), 7.74 (m, 4 H, Ph-3a,5a,2b,6b), 7.47 (m, 2 H, Ph-3b,5b), 7.39 (m, 1 H, Ph-4b), 7.29 (dd, J = 4.0,
- 381 2.0 Hz, 1 H, 3-H), 6.96 (dd, J = 4.2, 2.2 Hz, 1 H, 4-H) ppm. ¹³C NMR ([D₆]DMSO): $\delta = 167.6$ (q, J = 34.7 Hz, CO), 143.4 (C-5), 140.6 (C-1b), 139.2 (C-4a), 129.1 (C-3b,5b), 128.9 (C-1a), 128.0 (C-3), 127.2 (C-3a,5a), 127.0 (C-2b,6b), 126.7 (C-2a,6a), 126.1 (C-4b), 123.6 (C-2), 117.3 (q, J = 290.3 Hz, CF₃), 111.1 (C-4) ppm. ¹⁹F
- 386 NMR ([D₆]DMSO): δ = -70.9 ppm. C₁₈H₁₂F₃NO (315.29): calcd. C 68.57, H 3.84, F 18.08, N 4.44; found C 68.12, H 3.69, F 17.82, N 4.54.

 $1-\{5-[(1,1-Biphenyl)-4-yl]-4-phenyl-1H-pyrrol-2-yl\}-2,2,2-trifluoro-1-ethanone (4g): Yield 5.64 g (72%) as light yellow crystals, m.p. 202–$

- 391 203 °C. IR (KBr): $\tilde{v}_{max} = 3300$, 1660, 1642, 1478, 1453, 1263, 1220, 1194, 1177, 1141, 896, 846, 765, 758, 735, 701 cm⁻¹. ¹H NMR ([D₆]-DMSO): $\delta = 13.03$ (br. s, 1 H, NH), 7.69 (m, 4 H, Ph-2a,6a,2b,6b), 7.53 (m, 2 H, Ph-3a,5a), 7.51 (m, 2 H, Ph-3b,5b), 7.46 (m, 7 H, 3-H, Ph-4b,2c-6c) ppm. ¹³C NMR ([D₆]DMSO): $\delta = 168.1$ (q, J =
- 396 34.8 Hz, CO), 141.0 (C-1b), 140.7 (C-4a), 139.6 (C-1c), 134.7 (C-1a), 130.0 (C-3b,5b), 129.6 (C-5), 129.5 (C-3c,5c), 129.1 (C-2c,6c), 129.0 (C-2a,6a), 128.4 (C-4b), 127.5 (C-2), 127.2 (C-2b,6b), 127.1 (C-3a,5a), 126.5 (C-4), 125.4 (C-4c), 122.8 (C-3), 117.6 (q, J =290.2 Hz, CF₃) ppm. ¹⁹F NMR ([D₆]DMSO): $\delta = -70.8$ ppm.
- 401 C₂₄H₁₆F₃NO (391.39): calcd. C 73.65, H 4.12, F 14.56, N 3.58; found C 73.46, H 4.08, F 14.71, N 3.52.

General Procedure for the Preparation of 2,2,2-Trifluoro-1-(5-arylpyrrol-2-yl)-1-ethanols 5c-5g: To an rigorously stirred mixture of 2,2,2-trifluoro-1-(5-arylpyrrol-2-yl)-1-ethanones 4c-4g (5 mmol) and NaHCO₃ (2.1 equiv., 0.882 g, 10.5 mmol) in MeOH (15 mL), $NaBH_4$ (2 equiv., 0.378 g, 10 mmol) was added in portions over 10 min and the reaction mixture was stirred for 30 min. The residue after removal of MeOH was diluted with water (30 mL), extracted with diethyl ether (4 × 10 mL) and dried with Na₂SO₄. The diethyl ether was removed and the resulting residue was purified by flash chromatography (Al₂O₃, diethyl ether) to give products **5c**–g.

1-[5-(4-Methylphenyl)-1*H***-pyrrol-2-yl]-2,2,2-trifluoro-1-ethanol (5c):** Yield 1.23 g (96%) as beige crystals, m.p. 156–157 °C. IR (KBr): $\tilde{v}_{max} = 3487, 3404, 3308, 1525, 1381, 1269, 1254, 1171, 1124, 1075,$ 1049, 995, 853, 824, 792, 700 cm⁻¹. ¹H NMR (CDCl₃): $\delta = 8.60$ 416 (br. s, 1 H, NH), 7.36 (m, 2 H, Ph-2,6), 7.17 (m, 2 H, Ph-3,5), 6.40 (m, 1 H, 4-H), 6.32 (m, 1 H, 3-H), 5.10 (q, J = 6.6 Hz, 1 H, CHCF₃), 2.34 (s, 3 H, Me), 2.61 (br. s, 1 H, OH) ppm. ¹³C NMR (CDCl₃): $\delta = 136.8$ (C-4, Ph), 134.1 (C-5), 129.7 (C-3,5, Ph), 129.4 (C-1, Ph), 124.2 (C-2,6, Ph), 124.0 (C-2), 124.0 (q, $J_{CF} = 280.9$ Hz, 421 CF₃), 110.9 (C-3), 105.8 (C-4), 67.7 (q, $J_{CF} = 33.6$ Hz, C-OH), 21.2 (Me) ppm. ¹⁹F NMR (CDCl₃): $\delta = -78.2$ (d, J = 6.6 Hz) ppm. C₁₃H₁₂F₃NO (255.24): calcd. C 61.17, H 4.74, F 22.33, N 5.49; found C 61.01, H 4.92, F 22.67, N 5.36.

1-[5-(4-Methoxyphenyl)-1*H*-pyrrol-2-yl]-2,2,2-trifluoro-1-ethanol 426 (5d): Yield 1.06 g (78%) as beige crystals, m.p. 120-121 °C. IR (KBr): \tilde{v}_{max} = 3355, 3322 (NH, OH) cm⁻¹. ¹H NMR (CDCl₃): δ = 8.60 (br. s, 1 H, NH), 7.42 (m, 2 H, Ph-2,6), 6.93 (m, 2 H, Ph-3,5), 6.37 (m, 1 H, 4-H), 6.35 (m, 1 H, 3-H), 5.12 (q, J = 6.7 Hz, 1 H, CHCF₃), 3.84 (s, 3 H, MeO), 2.81 (br. s, 1 H, OH) ppm. ¹³C NMR 431 $(CDCl_3)$: $\delta = 158.8 (C-4, Ph), 134.0 (C-5), 125.6 (C-2,6, Ph), 125.2$ (C-1, Ph), 124.0 (q, J_{CF} = 281.8 Hz, CF₃), 123.8 (C-2), 114.5 (C-3,5, Ph), 110.9 (C-3), 105.3 (C-4), 67.7 (q, J_{CF} = 33.6 Hz, C-OH), 55.4 (MeO) ppm. ¹⁹F NMR (CDCl₃): δ = -78.2 (d, J = 6.7 Hz) ppm. ¹⁵N NMR (CDCl₃): $\delta = -240.7$ ppm. $C_{13}H_{12}F_3NO_2$ 436 (271.24): calcd. C 57.57, H 4.46, F 21.01, N 5.16; found C 57.23, H 4.23, F 20.87, N 5.16.

1-[5-(4-Chlorophenyl)-1*H***-pyrrol-2-yl]-2,2,2-trifluoro-1-ethanol (5e):** Yield 1.32 g (96%) as beige crystals, m.p. 112–113 °C. IR (KBr): $\tilde{v}_{max} = 3504$, 3413, 3297 (NH, OH) cm⁻¹. ¹H NMR (CDCl₃): $\delta =$ 441 8.61 (br. s, 1 H, NH), 7.38 (m, 2 H, Ph-2,6), 7.32 (m, 2 H, Ph-3,5), 6.44 (m, 1 H, 4-H), 6.33 (m, 1 H, 3-H), 5.12 (q, *J* = 6.5 Hz, 1 H, CHCF₃), 2.61 (br. s, 1 H, OH) ppm. ¹³C NMR (CDCl₃): $\delta =$ 132.6 (C-4, Ph), 132.5 (C-5), 130.5 (C-1, Ph), 129.1 (C-3,5, Ph), 125.3 (C-2,6, Ph), 124.7 (C-2), 123.8 (q, *J*_{CF} = 281.8 Hz, CF₃), 111.0 (C-3), 107.0 (C-4), 67.6 (q, *J*_{CF} = 33.6 Hz, C-OH) ppm. ¹⁹F NMR (CDCl₃): $\delta = -78.4$ (d, *J* = 6.7 Hz) ppm. C₁₂H₉ClF₃NO (275.66): calcd. C 52.29, H 3.29, Cl 12.86, F 20.68, N 5.08; found C 52.29, H 2.94, Cl 12.73, F 20.28, N 4.77.

1-(5-[1,1-Biphenyl]-4-yl-1*H*-pyrrol-2-yl)-2,2,2-trifluoro-1-ethanol 451 (5f): Yield 1.43 g (90%) as beige crystals, m.p. 171–172 °C. IR (KBr): $\tilde{v}_{max} = 3430, 1608, 1596, 1272, 1215, 1174, 1123, 1046, 837,$ 787, 764, 702, 695 cm⁻¹. ¹H NMR ([D₆]DMSO): δ = 11.55 (br. s, 1 H, NH), 7.76 (m, 2 H, Ph-2a,6a), 7.68 (m, 2 H, Ph-2b,6b), 7.66 (m, 2 H, Ph-3a,5a), 7.45 (m, 2 H, Ph-3b,5b), 7.33 (m, 1 H, Ph-4b), 6.77 456 (d, J = 6.1 Hz, 1 H, OH), 6.56 (m, 1 H, 4-H), 6.24 (m, 1 H, 3-H),5.14 (q, J = 6.5 Hz, 1 H, CHCF₃) ppm. ¹³C NMR ([D₆]DMSO): δ = 139.8 (C-1b), 137.4 (C-4a), 131.7 (C-1a), 131.4 (C-5), 129.0 (C-3b,5b), 127.8 (C-2), 127.3 (C-4b), 127.0 (C-3a,5a), 126.4 (C-2b,6b), 124.9 (q, J_{CF} = 281.1 Hz, CF₃), 124.2 (C-2a,6a), 109.0 (C-3), 106.4 461 (C-4), 65.9 (q, J_{CF} = 31.7 Hz, C-OH) ppm. ¹⁹F NMR ([D₆]-DMSO): $\delta = -76.6$ (d, J = 7.2 Hz) ppm. C₁₈H₁₄F₃NO (317.31): calcd. C 68.13, H 4.45, F 17.96, N 4.41; found C 68.29, H 4.24, F 18.28, N 4.65.

1-(5-[1,1-Biphenyl]-4-yl-4-phenyl-1*H***-pyrrol-2-yl)-2,2,2-trifluoro-1ethanol (5g):** Yield 1.79 g (91%) as white crystals, m.p. 129 °C. IR (KBr): $\tilde{v}_{max} = 3449, 3330, 3290, 1265, 1207, 1183, 1165, 1130, 1045,$

Pages: 13

8.47, F 14.38, N 6.71.

1001, 845, 805, 766, 699 cm⁻¹. ¹H NMR ([D₆]DMSO): δ = 11.46 (br. s, 1 H, NH), 7.66 (m, 2 H, Ph-2b,6b), 7.60 (m, 2 H, Ph-3a,5a),

- 471 7.43 (m, 2 H, Ph-3b,5b), 7.42 (m, 2 H, Ph-2a,6a), 7.32 (m, 1 H, Ph-4b), 7.27 (m, 2 H, Ph-2c,6c), 7.25 (m, 2 H, Ph-3c,5c), 7.18 (m, 1 H, Ph-4c), 6.83 (d, J = 6.1 Hz, 1 H, OH), 6.38 (d, J = 2.2 Hz, 1 H, 3-H), 5.16 (m, 1 H, CHCF₃) ppm. ¹³C NMR ([D₆]DMSO): $\delta =$ 139.6 (C-1b), 138.3 (C-4a), 136.8 (C-1c), 132.1 (C-1a), 129.1 (C-
- 476 3b,5b), 128.6 (C-3c,5c), 128.2 (C-2c,6c), 128.1 (C-2a,6a), 127.7 (C-4b), 127.6 (C-5), 127.1 (C-2), 126.7 (C-3a,5a), 126.5 (C-2b,6b), 126.0 (C-4c), 125.0 (q, $J_{CF} = 282.5$ Hz, CF₃), 122.0 (C-4), 109.9 (C-3), 66.0 (q, $J_{CF} = 32.3$ Hz, C-OH) ppm. ¹⁹F NMR ([D₆]DMSO): δ = -76.6 (d, J = 7.2 Hz) ppm. ¹⁵N NMR ([D₆]DMSO): δ =
- 481 –222.3 ppm. C₂₄H₁₈F₃NO (393.41): calcd. C 73.27, H 4.61, F
 14.49, N 3.56; found C 73.00, H 4.38, F 14.28, N 3.69.

Preparation of Dipyrromethanes 6: A mixture of 2,2,2-trifluoro-1-(5-arylpyrrol-2-yl)-1-ethanol **5c–5g** and pyrrole **1a–1g** (molar ratio **1a–1g:5c–5g** 1:1) in dry CH₂Cl₂ was added to P₂O₅ (1 equiv.) under

- 486 argon and stirred at room temperature for 16 h. Then NaHCO₃ (1.5 equiv.) was added and the mixture was stirred at room temperature for 1 h. The precipitate was filtered off and washed with CH_2Cl_2 (5 times). Compounds **6** were isolated by column chromatography (SiO₂, *n*-hexane/CH₂Cl₂, 3:1 or 2:1).
- 491 2-(4-Methylphenyl)-5-[2,2,2-trifluoro-1-(5-phenyl-1*H*-pyrrol-2-yl)-ethyl]-1*H*-pyrrole (6ac): Yield 0.314 g (55%) as dark cherry crystals, m.p. 70–72 °C. IR (KBr): v_{max} = 3438, 3026, 2956, 2924, 1607, 1523, 1512, 1474, 1454, 1256, 1210, 1190, 1162, 1109, 1072, 1046, 819, 777, 757, 710 cm⁻¹. ¹H NMR (CDCl₃): δ = 8.29 (br. s, 1 H,
- 496 NH'), 8.25 (br. s, 1 H, NH), 7.40 (m, 2 H, Ph-2b,6b), 7.32 (m, 4 H, Ph-2a,6a,3b,5b), 7.19 (m, 1 H, Ph-4b), 7.14 (m, 2 H, Ph-3a,5a), 6.47 (m, 1 H, 4'-H), 6.43 (m, 1 H, 3-H), 6.30 (m, 2 H, 3',4-H), 4.88 (q, $J_{\rm HF}$ = 8.8 Hz, 1 H, CH), 2.32 (s, 3 H, Me) ppm. ¹³C NMR (CDCl₃): δ = 136.6 (C-4a), 133.5 (C-2), 133.3 (C-5'), 132.2 (C-1b),
- 501 129.7 (C-3a,5a), 129.5 (C-1a), 129.0 (C-3b,5b), 126.8 (C-4b), 125.2 (q, $J_{CF} = 280.1$ Hz, CF₃), 124.0 (C-2a,6a,2b,6b), 123.8 (C-2'), 123.3 (C-5), 111.1 (C-3'), 111.0 (C-4), 106.6 (C-4'), 106.0 (C-3), 43.7 (q, $J_{CF} = 30.2$ Hz, CH), 21.2 (Me) ppm. ¹⁹F NMR (CDCl₃): $\delta = -68.3$ (d, J = 8.8 Hz) ppm. ¹⁵N NMR (CDCl₃): $\delta = -236.9$ ppm.
- 506 $C_{23}H_{19}F_3N_2$ (380.41): calcd. C 72.62, H 5.03, F 14.98, N 7.36; found C 72.29, H 4.94, F 14.58, N 7.65.

2-(4-Methoxyphenyl)-5-[2,2,2-trifluoro-1-(5-phenyl-1*H***-pyrrol-2-yl)-ethyl]-1***H***-pyrrole (6ad):** Yield 0.285 g (72%) as red needles, m.p. 132–135 °C. IR (KBr): $\tilde{v}_{max} = 3459, 3431$ 1522, 1263, 1251, 1245,

- 511 1166, 1103, 1020, 780, 772, 760, 707, 691, 529 cm⁻¹. ¹H NMR (CDCl₃): δ = 8.31 (br. s, 1 H, NH'), 8.20 (br. s, 1 H, NH), 7.40 (m, 2 H, Ph-2b,6b), 7.34 (m, 2 H, Ph-2a,6a), 7.33 (m, 2 H, Ph-3b,5b), 7.19 (m, 1 H, Ph-4b), 6.88 (m, 2 H, Ph-3a,5a), 6.48 (m, 1 H, 4'-H), 6.36 (m, 1 H, 3-H), 6.32 (m, 1 H, 3'-H), 6.29 (m, 1 H, 4-H), 4.88
- 516 (q, $J_{\rm HF}$ = 8.8 Hz, 1 H, CH), 3.79 (s, 3 H, Me) ppm. ¹³C NMR (CDCl₃): δ = 158.7 (C-4a), 133.4 (C-2), 133.2 (C-5'), 132.2 (C-1b), 129.0 (C-3b,5b), 126.7 (C-4b), 125.5 (C-2a,6a), 125.3 (q, $J_{\rm CF}$ = 280.7 Hz, CF₃), 125.3 (C-1a), 124.0 (C-2b,6b), 123.9 (C-2'), 123.0 (C-5), 114.5 (C-3a,5a), 111.0 (C-3', C-4), 106.6 (C-4'), 105.5 (C-3),
- 521 55.4 (Me), 43.7 (q, J_{CF} = 30.1 Hz, CH) ppm. ¹⁹F NMR (CDCl₃): δ = -68.3 (d, J = 8.8 Hz) ppm. ¹⁵N NMR (CDCl₃): δ = -237.0 (N,N') ppm. C₂₃H₁₉F₃N₂O (396.41): calcd. C 69.69, H 4.83, F 14.38, N 7.07; found C 69.90, H 4.97, F 14.20, N 7.00.

2-(4-Chlorophenyl)-5-[2,2,2-trifluoro-1-(5-phenyl-1*H***-pyrrol-2-yl)-ethyl]-1***H***-pyrrole (6ae):** Yield 0.263 g (66%) as violet solid, m.p. 118–120 °C. IR (KBr): \tilde{v}_{max} = 3452 1507, 1260, 1212, 1182, 1162, 1101, 827, 781, 772, 758, 705, 690, 514 cm⁻¹. ¹H NMR (CDCl₃): δ = 8.27 (br. s, 1 H, NH'), 8.22 (br. s, 1 H, NH), 7.39 (m, 2 H, Ph-2b,6b), 7.32 (m, 2 H, Ph-3b,5b), 7.30 (m, 2 H, Ph-3a,5a), 7.27 (m, 2 H, Ph-2a,6a), 7.19 (m, 1 H, Ph-4b), 6.47 (m, 1 H, 4'-H), 6.44 (m, 531 1 H, 3-H), 6.31 (m, 2 H, 3',4-H), 4.85 (q, $J_{HF} = 8.9$ Hz, 1 H, CH) ppm. ¹³C NMR (CDCl₃): $\delta = 133.4$ (C-5'), 132.3 (C-4a), 132.2 (C-1b), 132.1 (C-2), 130.7 (C-1a), 129.2 (C-3a,5a), 129.0 (C-3b,5b), 126.8 (C-4b), 125.2 (C-2a,6a), 125.2 (q, $J_{CF} = 280.1$ Hz, CF₃), 124.2 (C-5), 124.0 (C-2b,6b), 123.6 (C-2'), 111.3 (C-4), 111.2 (C-3'), 107.1 (C-3), 106.6 (C-4'), 43.7 (q, $J_{CF} = 30.2$ Hz, CH) ppm. ¹⁹F NMR (CDCl₃): $\delta = -68.2$ (d, J = 8.9 Hz) ppm. ¹⁵N NMR (CDCl₃): $\delta = -236.9$ (N,N') ppm. C₂₂H₁₆ClF₃N₂ (400.83): calcd. C 65.92, H 4.02, Cl 8.85, F 14.22, N 6.99; found C 65.60, H 4.07, Cl

541

2-[1,1-Biphenyl]-4-yl-5-[2,2,2-trifluoro-1-(5-phenyl-1H-pyrrol-2-yl)ethyl]-1H-pyrrole (6af): Yield 0.201 g (96%) as light violet solid, m.p. 108–110 °C. IR (KBr): $\tilde{v}_{max} = 3457, 3422, 1607, 1495, 1473,$ 1424, 1257, 1210, 1167, 1102, 1072, 1051, 836, 804, 781, 764, 754, 705, 692 cm⁻¹. ¹H NMR (CDCl₃): δ = 8.35 (br. s, 1 H, NH), 8.33 546 (br. s, 1 H, NH'), 7.57 (m, 4 H, Ph-3a, 5a, 2b, 6b), 7.47 (m, 2 H, Ph-2a,6a), 7.42 (m, 4 H, Ph-3b,5b,2c,6c), 7.34 (m, 3 H, Ph-4b,3c,5c), 7.20 (m, 1 H, Ph-4c), 6.52 (m, 1 H, 4-H), 6.49 (m, 1 H, 3'-H), 6.34 (m, 2 H, 3,4'-H), 4.86 (q, $J_{\rm HF}$ = 8.8 Hz, 1 H, CH) ppm. ¹³C NMR $(CDCl_3): \delta = 140.6 (C-1b), 139.4 (C-4a), 133.3 (C-5'), 132.9 (C-2),$ 551 132.2 (C-1c), 131.1 (C-1a), 129.0 (C-3b,5b), 128.9 (C-3c,5c), 127.6 (C-3a,5a), 127.4 (C-4b), 126.9 (C-2b,6b), 126.8 (C-4c), 125.3 (q, $J_{\rm CF}$ = 280.3 Hz, CF₃), 124.3 (C-2a,6a), 124.0 (C-2c,6c), 123.9 (C-5), 123.8 (C-2'), 111.2 (C-4), 111.1 (C-3'), 106.8 (C-3), 106.6 (C-4'), 43.7 (q, $J_{\rm CF}$ = 30.2 Hz, CH) ppm. ¹⁹F NMR (CDCl₃): δ = -68.2 556 (d, J = 8.8 Hz) ppm. ¹⁵N NMR (CDCl₃): $\delta = -236.9$ (N,N') ppm. C₂₈H₂₁F₃N₂ (442.48): calcd. C 76.00, H 4.78, F 12.88, N 6.33; found C 75.96, H 4.67, F 12.92, N 6.31.

2-[1,1-Biphenyl]-4-yl-3-phenyl-5-[2,2,2-trifluoro-1-(5-phenyl-1H-pyrrol-2-yl)ethyl]-1H-pyrrole (6ag): Yield 0.060 g (45%) as a violet so-561 lid, m.p. 72–74 °C. IR (KBr): $\tilde{v}_{\rm max}$ = 3429, 1604, 1511, 1492, 1472, 1446, 1254, 1199, 1160, 1108, 1073, 843, 760, 697 cm⁻¹. ¹H NMR $(CDCl_3): \delta = 8.38$ (br. s, 1 H, NH'), 8.15 (br. s, 1 H, NH), 7.54 (m, 2 H, Ph-2b,6b), 7.48 (m, 2 H, Ph-3a,5a), 7.40 (m, 4 H, Ph-3b,5b,2c,6c), 7.29-7.37 (m, 7 H, Ph-2a,6a,4b,2d,6d,3d,5d), 7.26 (m, 566 2 H, Ph-3c,5c), 7.18 (m, 2 H, Ph-4c,4d), 6.48 (m, 1 H, 3'-H), 6.44 (m, 1 H, 4-H), 6.35 (m, 1 H, 4'-H), 4.92 (q, J_{HF} = 8.8 Hz, 1 H, CH) ppm. ¹³C NMR (CDCl₃): δ = 140.5 (C-1b), 139.9 (C-4a), 136.1 (C-1c), 133.5 (C-5'), 132.2 (C-1d), 131.7 (C-1a), 129.1 (C-3d,5d), 128.9 (C-3b,5b, C-2), 128.5 (C-2c,6c), 128.4 (C-3c,5c), 127.9 571 (C-2a,6a), 127.5 (C-4b), 127.4 (C-3a,5a), 127.0 (C-2b,6b), 126.8 (C-4d), 126.2 (C-4c), 125.2 (q, J_{CF} = 280.1 Hz, CF₃), 124.1 (C-2d,6d), 123.5 (C-2'), 123.4 (C-5), 122.8 (C-3), 111.9 (C-4), 111.3 (C-3'), 106.6 (C-4'), 43.7 (q, J_{CF} = 30.2 Hz, CH) ppm. ¹⁹F NMR (CDCl₃): $\delta = -68.1$ (d, J = 8.8 Hz) ppm. ¹⁵N NMR (CDCl₃): $\delta = -237.6$ 576 (N'), -231.5 (N) ppm. C₃₄H₂₅F₃N₂ (518.58): calcd. C 78.75, H 4.86, F 10.99, N 5.40; found C 78.55, H 4.90, F 11.09, N 5.36.

2-[1,1-Biphenyl]-4-yl-5-{2,2,2-trifluoro-1-[5-(2-thienyl)-1H-pyrrol-2yl]ethyl}-1H-pyrrole (6bf): Yield 0.168 g (79%) as a violet solid, m.p. 138–140 °C. IR (KBr): $\tilde{v}_{max} = 3451, 3422, 2919, 1607, 1596,$ 581 1528, 1495, 1426, 1259, 1169, 1102, 1052, 1040, 836, 781, 764, 705, 691 cm⁻¹. ¹H NMR (CDCl₃): δ = 8.32 (br. s, 1 H, NH), 8.18 (br. s, 1 H, NH'), 7.57 (m, 4 H, Ph-2b,6b,3a,5a), 7.47 (m, 2 H, Ph-2a,6a), 7.41 (m, 2 H, Ph-3b,5b), 7.31 (m, 1 H, Ph-4b), 7.12 (m, 1 H, 5-H of thiophene), 7.00 (m, 1 H, 3-H of thiophene), 6.96 (m, 1 H, 4-H 586 of thiophene), 6.51 (m, 1 H, 3-H), 6.37 (m, 1 H, 4'-H), 6.33 (m, 1 H, 4-H), 6.29 (m, 1 H, 3'-H), 4.88 (q, J_{HF} = 8.8 Hz, 1 H, CH) ppm. ¹³C NMR (CDCl₃): δ = 140.6 (C-1b), 139.5 (C-4a), 135.5 (C-2 of thiophene), 133.0 (C-2), 131.1 (C-1a), 128.9 (C-3b,5b), 127.8 (C-3a,5a), 127.7 (C-4 of thiophene, C-5'), 127.4 (C-4b), 126.9 (C-591 2b,6b), 125.2 (q, J_{CF} = 280.2 Hz, CF₃), 124.4 (C-,a), 123.8 (C-5 of

FULL PAPER

thiophene, C-5), 123.7 (C-2'), 121.6 (C-3 of thiophene), 111.3 (C-4), 111.0 (C-3'), 107.4 (C-4'), 106.8 (C-3), 43.7 (q, $J_{\rm CF}$ = 30.2 Hz, CH) ppm. ¹⁹F NMR (CDCl₃): δ = -68.2 (d, J = 8.8 Hz) ppm. ¹⁵N

2-[1,1-Biphenyl]-4-yl-3-phenyl-5-{2,2,2-trifluoro-1-[5-(2-thienyl)-1*H*-**pyrrol-2-yl]ethyl}-1***H*-**pyrrole (6bg):** Yield 0.144 g (68%) as a dark

- 601 blue solid, m.p. 76–78 °C. IR (KBr): $\tilde{v}_{max} = 3420, 1601, 1527, 1510, 1492, 1473, 1253, 1184, 1160, 1107, 843, 764, 697 cm⁻¹. ¹H NMR (CDCl₃): <math>\delta = 8.25$ (br. s, 1 H, NH'), 8.15 (br. s, 1 H, NH), 7.56 (m, 2 H, Ph-2b,6b), 7.50 (m, 2 H, Ph-3a,5a), 7.40 (m, 2 H, Ph-3b,5b), 7.36 (m, 4 H, Ph-2a,6a,2c,6c), 7.32 (m, 1 H, Ph-4b), 7.27 (m, 2 H,
- 606 Ph-3c,5c), 7.19 (m, 1 H, Ph-4c), 7.14 (m, 1 H, 5-H of thiophene), 7.01 (m, 1 H, 3-H of thiophene), 6.98 (m, 1 H, 4-H of thiophene), 6.44 (m, 1 H, 4-H), 6.38 (m, 1 H, 4'-H), 6.23 (m, 1 H, 3'-H), 4.88 (dd, $J_{\rm HF}$ = 8.8 Hz, 1 H, CH) ppm. ¹³C NMR (CDCl₃): δ = 140.5 (C-1b), 140.0 (C-4a), 136.0 (C-1c), 135.5 (C-2 of thiophene), 131.7
- 611 (C-1a), 129.0 (C-2), 128.9 (C-3b,5b), 128.5 (C-2c,6c), 128.4 (C-3c,5c), 127.8 (C-2a,6a), 127.7 (C-4 of thiophene, C-5'), 127.5 (C-4b), 127.4 (C-3a,5a), 126.9 (C-2b,6b), 126.2 (C-4c), 125.2 (q, J_{CF} = 278.6 Hz, CF₃), 123.4 (C-2'), 123.3 (C-5), 123.2 (C-5 of thiophene), 122.9 (C-3), 121.6 (C-3 of thiophene), 112.0 (C-4), 111.2 (C-3'),
- 616 107.4 (C-4'), 43.6 (q, J_{CF} = 30.5 Hz, CH) ppm. ¹⁹F NMR (CDCl₃): δ = -68.1 (d, J = 8.8 Hz) ppm. ¹⁵N NMR (CDCl₃): δ = -236.8 (N'), -231.9 (N) ppm. C₃₂H₂₃F₃N₂S (524.60): calcd. C 73.26, H 4.42, F 10.86, N 5.34, S 6.11; found C 72.98, H 4.35, F 10.90, N 5.45, S 6.21.
- 621 **2-(4-Methylphenyl)-5-{2,2,2-trifluoro-1-[5-(4-methylphenyl)-1H-pyrrol-2-yl]ethyl}-1H-pyrrole (6cc):** Yield 0.167 g (28%) as a dark violet solid, m.p. 85–86 °C. IR (KBr): $\tilde{v}_{max} = 3437, 3023, 2989, 2953,$ 2921, 2864, 1637, 1616, 1523, 1480, 1451, 1433, 1384, 1336, 1299, 1256, 1190, 1161, 1109, 1069, 1044, 865, 818, 802, 774, 709,
- 626 518 cm⁻¹. ¹H NMR (CDCl₃): δ = 8.25 (br. s, 2 H, NH), 7.30 (m, 4 H, Ph-2a,6a), 7.14 (m, 4 H, Ph -3a,5a), 6.43 (m, 2 H, 3,4'-H), 6.30 (m, 2 H, 3',4-H), 4.88 (q, J_{HF} = 8.8 Hz, 1 H, CH), 2.32 (s, 6 H, Me) ppm. ¹³C NMR (CDCl₃): δ = 136.5 (C-4a,4a'), 133.4 (C-2,5'), 129.7 (C-3a,5a, 3a',5a'), 129.5 (C-1a,1a'), 125.3 (q, J_{CF} = 280.4 Hz,
- 631 CF₃), 123.4 (C-2',5), 124.0 (C-2a,6a,2a',6a'), 111.0 (C-3',4), 106.0 (C-3,4'), 43.7 (q, J_{CF} = 30.2 Hz, CH), 21.2 (Me, Me') ppm. ¹⁹F NMR (CDCl₃): δ = -68.3 (d, J = 8.8 Hz) ppm. ¹⁵N NMR (CDCl₃): δ = -236.8 (N,N') ppm. C₂₄H₂₁F₃N₂ (394.44): calcd. C 73.08, H 5.37, F 14.45, N 7.10; found C 72.89, H 5.44, F 14.28, N 7.29.
- 636 2-(4-Methoxyphenyl)-5-{2,2,2-trifluoro-1-[5-(4-methoxyphenyl)-1H-pyrrol-2-yl]ethyl}-1H-pyrrole (6dd): Yield 0.095 g (64%) as a violet solid, m.p. 156–157 °C. IR (KBr): ṽ_{max} = 3465, 3399, 1613, 1589, 1522, 1480, 1469, 1439, 1255, 1244, 1180, 1159, 1101, 1028, 1019, 828, 772, 706, 611, 537 cm⁻¹. ¹H NMR (CDCl₃): δ = 8.23 (br. s, 2
- 641 H, NH), 7.31 (m, 4 H, Ph-2a,6a), 6.85 (m, 4 H, Ph-3a,5a), 6.34 (m, 2 H, 3,4'-H), 6.28 (m, 2 H, 3',4-H), 4.82 (q, $J_{\rm HF}$ = 8.8 Hz, 1 H, CH), 3.76 (s, 6 H, OMe) ppm. ¹³C NMR (CDCl₃): δ = 158.6 (C-4a,4a'), 133.2 (C-2,5'), 125.3 (q, $J_{\rm CF}$ = 280.3 Hz, CF₃), 125.3 (C-1a,1a'), 125.4 (C-2a,6a,2a',6a'), 123.2 (C-2',5), 114.5 (C-
- 646 3a,5a,3a',5a'), 110.8 (C-3',4), 105.5 (C-3,4'), 55.4 (OMe, OMe'), 43.6 (q, J_{CF} = 30.2 Hz, CH) ppm. ¹⁹F NMR (CDCl₃): δ = -68.3 (d, J = 8.8 Hz) ppm. ¹⁵N NMR (CDCl₃): δ = -236.8 (N,N') ppm. C₂₄H₂₁F₃N₂O₂ (426.44): calcd. C 67.60, H 4.96, F 13.37, N 6.57; found C 67.79, H 4.98, F 13.42, N 6.37.
- 2-(4-Chlorophenyl)-5-{2,2,2-trifluoro-1-[5-(4-chlorophenyl)-1*H*-pyrrol-2-yl]ethyl}-1*H*-pyrrole (6ee): Yield 0.292 g (67%) as a violet solid, m.p. 110–111 °C. IR (KBr): ν̃_{max} = 3462, 3433, 1631, 1507, 1268, 1259, 1212, 1192, 1159, 1104, 826, 772, 705, 516 cm⁻¹. ¹H

NMR (CDCl₃): δ = 8.25 (br. s, 2 H, NH), 7.32 (m, 4 H, Ph-3a,5a),

7.29 (m, 4 H, Ph-2a,6a), 6.46 (m, 2 H, 3,4'-H), 6.32 (m, 2 H, 3',4-H), 4.88 (q, $J_{HF} = 8.8$ Hz, 1 H, CH) ppm. ¹³C NMR (CDCl₃): $\delta =$ 132.4 (C-2,5'), 132.3 (C-4a,4a'), 130.6 (C-1a,1a'), 129.2 (C-3a,5a,3a',5a'), 125.2 (C-2a,6a,2a',6a'), 125.1 (q, $J_{CF} = 280.1$ Hz, CF₃), 124.0 (C-2',5), 111.3 (C-4,3'), 107.1 (C-3,4'), 43.7 (q, $J_{CF} =$ 29.8 Hz, CH) ppm. ¹⁹F NMR (CDCl₃): $\delta = -68.2$ (d, J =8.8 Hz) ppm. ¹⁵N NMR (CDCl₃): $\delta = -236.9$ (N,N') ppm. C₂₂H₁₅Cl₂F₃N₂ (435.27): calcd. C 60.71, H 3.47, Cl 16.29, F 13.09, N 6.44; found C 60.61, H 3.38, Cl 16.19, F 13.18, N 6.30.

2-[1,1-Biphenyl]-4-yl-5-{1-[5-(1,1-biphenyl)-4-yl-1H-pyrrol-2-yl]-2,2,2-trifluoroethyl}-1H-pyrrole (6ff): Yield 0.186 g (91%) as a light 666 pink solid, m.p. 184–185 °C. IR (KBr): v_{max} = 3472, 3454, 3412, 1610, 1598, 1528, 1494, 1253, 1241, 1210, 1169, 1150, 1105, 847, 837, 781, 765, 705, 694, 519 cm⁻¹. ¹H NMR (CDCl₃): δ = 8.37 (br. s, 2 H, NH), 7.58 (m, 8 H, Ph-3a,5a,2b,6b), 7.48 (m, 4 H, Ph-2a,6a), 7.42 (m, 4 H, Ph-3b,5b), 7.32 (m, 2 H, Ph-4b), 6.54 (m, 2 671 H, 3,4'-H), 6.36 (m, 2 H, 3',4-H), 4.92 (q, $J_{\rm HF}$ = 8.8 Hz, 1 H, CH) ppm. ¹³C NMR (CDCl₃): δ = 140.6 (C-1b,1b'), 139.5 (C-4a,4a'), 133.0 (C-2,5'), 131.2 (C-1a,1a'), 128.9 (C-3b,5b,3b',5b'), 127.7 (C-3a,5a,3a',5a'), 127.4 (C-4b,4b'), 126.9 (C-2b,6b,2b',6b'), 125.3 (q, J_{CF} = 280.0 Hz, CF₃), 124.4 (C-2a,6a,2a',6a'), 123.9 (C-676 2',5), 111.3 (C-3',4), 106.8 (C-3,4'), 43.8 (q, J_{CF} = 30.1 Hz, CH) ppm. ¹⁹F NMR (CDCl₃): $\delta = -68.2$ (d, J = 8.8 Hz) ppm. ¹⁵N NMR (CDCl₃): $\delta = -237.4$ (N,N') ppm. C₃₄H₂₅F₃N₂ (518.58): calcd. C 78.75, H 4.86, F 10.99, N 5.40; found C 78.96, H 4.67, F 11.12, N 5.25. 681

2-[1,1-Biphenyl]-4-vl-5-{1-[5-(1,1-biphenyl)-4-vl-4-phenyl-1*H*-pyrrol-2-yl]-2,2,2-trifluoroethyl}-3-phenyl-1H-pyrrole (6gg): Yield 0.120 g (70%) as a dark blue solid, m.p. 112–114 °C. IR (KBr): \tilde{v}_{max} = 3427, 3056, 3027, 1602, 1510, 1492, 1443, 1253, 1160, 1108, 909, 843, 764, 731, 697 cm⁻¹. ¹H NMR (CDCl₃): δ = 8.25 (br. s, 2 H, 686 NH), 7.57 (m, 4 H, Ph-2b,6b), 7.53 (m, 4 H, Ph-3a,5a), 7.41 (m, 4 H, Ph-3b,5b), 7.38 (m, 8 H, Ph-2a,6a,2c,6c), 7.32 (m, 2 H, Ph-4b), 7.28 (m, 4 H, Ph-3c,5c), 7.20 (m, 2 H, Ph-4c), 6.50 (d, J = 2.7 Hz, 2 H, 4,3'-H), 4.94 (q, $J_{\rm HF}$ = 8.8 Hz, 1 H, CH) ppm. ¹³C NMR $(CDCl_3): \delta = 140.5 (C-1b,1b'), 140.0 (C-4a,4a'), 136.0 (C-1c,1c'),$ 691 131.7 (C-1a,1a'), 129.1 (C-2,5'), 128.9 (C-3b,5b,3b',5b'), 128.6 (C-2c,6c,2c',6c'), 128.5 (C-3c,5c,3c',5c'), 127.9 (C-2a,6a,2a',6a'), 127.5 (C-4b,4b'), 127.4 (C-3a,5a,3a',5a'), 127.0 (C-2b,6b,2b',6b'), 126.2 (C-4c,4c'), 125.2 (q, J_{CF} = 280.1 Hz, CF₃), 123.2 (C-2',5), 122.8 (C-3,4'), 112.1 (C-3',4), 43.6 (q, $J_{\rm CF}$ = 29.7 Hz, CH) ppm. 696 ¹⁹F NMR (CDCl₃): δ = -67.9 (d, J = 8.8 Hz) ppm. ¹⁵N NMR (CDCl₃): $\delta = -231.9$ (N,N') ppm. C₄₆H₃₃F₃N₂ (670.77): calcd. C 82.37, H 4.96, F 8.50, N 4.18; found C 82.55, H 4.86, F 8.39, N 4.16

General Procedure for the Synthesis of BODIPY 3: A mixture of dipyrromethanes 6 and DDQ (molar ratio 1:1) in dry CH_2Cl_2 was stirred at room temperature for 1 h. Then iPr_2NEt (10 equiv.) was added and the solution was stirred for 10 min, before $BF_3 \cdot OEt_2$ (15 equiv.) was added dropwise. The reaction mixture was stirred at room temperature for 1 h, then approximately two thirds of the solvent was removed under reduced pressure and residue obtained was purified by column chromatography (SiO₂, *n*-hexane/CH₂Cl₂, 2:1or 3:1) to yield BODIPY 3.

4,4-Difluoro-3-(4-methylphenyl)-5-phenyl-8-trifluoromethyl-4-bora-

3a,4a-diaza-s-indacene (3ac): Yield 0.129 g (55%) as a dark blue 711 solid with metallic luster, m.p. 90–92 °C. IR (KBr): $\tilde{v}_{max} = 2924$, 2853, 1739, 1708, 1566, 1477, 1454, 1300, 1277, 1228, 1178, 1142, 1087, 1054, 970, 949, 750 cm⁻¹. ¹H NMR (CDCl₃): $\delta = 7.88$ (m, 2 H, Ph-2b,6b), 7.82 (m, 2 H, Ph-2a,6a), 7.45 (m, 1 H, 1-H), 7.44 (m, 3 H, Ph-3b,4b,5b), 7.43 (m, 1 H, 7-H), 7.25 (m, 2 H, Ph-3a,5a), 716

Difluorobora-s-diazaindacene Dyes

6.70 (d, J = 4.5 Hz, 1 H, 6-H), 6.74 (d, J = 4.5 Hz, 1 H, 2-H), 2.40 (s, 3 H, Me) ppm. ¹³C NMR (CDCl₃): $\delta = 162.4$ (C-3), 161.1 (C-5), 141.2 (C-4a), 133.8 (C-8a), 133.1 (C-7a), 132.0 (C-1b), 130.5 (C-1), 130.2 (C-4b), 129.8 (C-7), 129.7 (t, J = 4.2 Hz, C-2a,6a), 129.6

- 721 (t, J = 3.8 Hz, C-2b,6b), 129.3 (C-3a,5a), 129.1 (C-1a), 128.3 (C-3b,5b), 126.2 (q, J = 33.6 Hz, C-8), 123.1 (C-2), 122.7 (q, J = 275.9 Hz, CF₃), 122.6 (C-6), 21.6 (Me) ppm. ¹⁹F NMR (CDCl₃): $\delta = -132.4$ (m, $J_{\rm BF} = 31.1$ Hz, BF₂), -54.5 (t, $J_{\rm HF} = 2.3$ Hz, CF₃) ppm. ¹⁵N NMR (CDCl₃): $\delta = -193.4$ ppm. C₂₃H₁₆BF₅N₂ (426.19): calcd. C 64.82, H 3.78, B 2.54, F 22.29, N 6.57; found C
- 65.10, H 3.68, F 22.16, N 6.36.

4,4-Difluoro-3-(4-methoxyphenyl)-5-phenyl-8-trifluoromethyl-4bora-3a,4a-diaza-s-indacene (3ad): Yield 0.110 g (75%) as dark blue needles with metallic luster, m.p. 136–138 °C. IR (KBr): \tilde{v}_{max} =

- 731 1604, 1562, 1474, 1452, 1434, 1398, 1299, 1272, 1222, 1188, 1171, 1134, 1086, 1070, 1052, 838, 795, 750, 735, 730 cm⁻¹. ¹H NMR (CDCl₃): δ = 7.89 (m, 2 H, Ph-2a,6a), 7.83 (m, 2 H, Ph-2b,6b), 7.43 (m, 1 H, 7-H), 7.42 (m, 3 H, Ph-3b,4b,5b), 7.37 (m, 1 H, 1-H), 6.94 (m, 2 H, Ph-3a,5a), 6.75 (d, *J* = 4.5 Hz, 1 H, 6-H), 6.67 (d,
- 736 J = 4.4 Hz, 1 H, 2-H), 3.83 (s, 3 H, Me) ppm. ¹³C NMR (CDCl₃): δ = 162.5 (C-5), 161.9 (C-4a), 160.2 (C-3), 134.1 (C-7a), 132.8 (C-8a), 132.3 (C-1b), 131.8 (t, J = 4.0 Hz, C-2a,6a), 130.7 (C-1), 130.5 (C-4b), 129.6 (t, J = 4.2 Hz, C-2b,6b), 129.2 (C-7), 128.4 (C-3b,5b), 126.0 (q, J = 32.8 Hz, C-8), 124.1 (C-1a), 123.3 (C-6), 122.8 (q, J
- 741 = 276.7 Hz, CF₃), 122.2 (C-2), 114.2 (C-3a,5a), 55.4 (Me) ppm. ¹⁹F NMR (CDCl₃): δ = -132.8 (m, J_{BF} = 30.1 Hz, BF₂), -54.5 (CF₃) ppm. C₂₃H₁₆F₅N₂O (431.38): calcd. C 62.47, H 3.65, B 2.44, F 21.48, N 6.34; found C 62.67, H 3.30, F 21.73, N 6.17.

4,4-Difluoro-3-(4-chlorophenyl)-5-phenyl-8-trifluoromethyl-4-bora-

- 746 **3a,4a-diaza-s-indacene (3ae):** Yield 0.155 g (83%) as a dark blue solid with metallic luster, m.p. 136–137 °C. IR (KBr): \tilde{v}_{max} = 1595, 1562, 1509, 1478, 1452, 1432, 1299, 1275, 1224, 1173, 1139, 1086, 1070, 1053, 970, 947, 763, 748, 731, 698 cm⁻¹. ¹H NMR (CDCl₃): δ = 7.84 (m, 2 H, Ph-2b,6b), 7.77 (m, 2 H, Ph-2a,6a), 7.46 (m, 1
- 751 H, 7-H), 7.45 (m, 1 H, Ph-4b), 7.44 (m, 2 H, Ph-3b,5b), 7.42 (m, 1 H, 1-H), 7.38 (m, 2 H, Ph-3a,5a), 6.73 (d, J = 4.5 Hz, 1 H, 6-H), 6.67 (d, J = 4.4 Hz, 1 H, 2-H) ppm. ¹³C NMR (CDCl₃): $\delta = 162.7$ (C-5), 159.9 (C-3), 136.7 (C-4a), 133.8 (C-7a), 133.4 (C-8a), 131.5 (C-1b), 131.0 (C-2a,6a), 130.9 (C-4b), 130.8 (C-7), 130.4 (C-1a),
- 756 130.2 (C-1), 129.7 (t, J = 4.2 Hz, C-2b,6b), 128.8 (C-3a,5a), 128.6 (C-3b,5b), 126.7 (q, J = 33.5 Hz, C-8), 122.5 (q, J = 276.0 Hz, CF₃), 123.3 (C-6), 122.4 (C-2) ppm. ¹⁹F NMR (CDCl₃): $\delta = -132.4$ (m, $J_{BF} = 30.5$ Hz, BF₂), -54.6 (CF₃) ppm. C₂₂H₁₃BClF₅N₂ (446.61): calcd. C 59.16, H 2.93, B 2.42, Cl 7.94, F 21.27, N 6.27; found C
- 761 59.42, H 2.80, Cl 7.89, F 21.12, N 6.04.

4,4-Difluoro-3-[(1,1-biphenyl)-4-yl]-5-phenyl-8-trifluoromethyl-4bora-3a,4a-diaza-s-indacene (3af): Yield 0.084 g (75%) as a dark blue solid with metallic luster, m.p. 204–206 °C. IR (KBr): \tilde{v}_{max} = 1603, 1570, 1522, 1471, 1448, 1410, 1372, 1329, 1292, 1272, 1236,

- 766 1205, 1154, 1122, 1082, 1043, 970, 907, 839, 819, 796, 763, 724, 683 cm⁻¹. ¹H NMR (CDCl₃): δ = 7.95 (m, 2 H, Ph-2a,6a), 7.85 (m, 2 H, Ph-2c,6c), 7.64 (m, 2 H, Ph-3a,5a), 7.60 (m, 2 H, Ph-2b,6b), 7.45 (m, 1 H, 1-H), 7.43 (m, 2 H, Ph-3b,5b), 7.41 (m, 2 H, Ph-3c,5c), 7.40 (m, 2 H, 7-H, Ph-4c), 7.35 (m, 1 H, Ph-4b), 6.78 (d, J
- 771 = 4.6 Hz, 1 H, 2-H), 6.70 (d, J = 4.5 Hz, 1 H, 6-H) ppm. ¹³C NMR (CDCl₃): δ = 161.7 (C-5), 161.5 (C-3), 143.3 (C-4a), 140.3 (C-1b), 139.8 (C-8a), 133.5 (C-7a), 132.0 (C-1c), 130.7 (C-7), 130.4 (C-1,4c), 130.2 (C-1a,2a,6a), 129.6 (t, J = 4.2 Hz, C-2c,6c), 128.4 (C-3c,5c), 128.9 (C-3b,5b), 128.0 (C-4b), 127.3 (C-2b,6b), 127.2 (C-
- 776 3a,5a), 126.5 (q, J = 33.3 Hz, C-8), 123.1 (C-6), 122.8 (q, J = 275.7 Hz, CF₃), 122.9 (C-2) ppm. ¹⁹F NMR (CDCl₃): δ = -132.4 (m, J_{BF} = 31.3 Hz, BF₂), -54.5 (CF₃) ppm. ¹⁵N NMR (CDCl₃): δ

= -192.8 ppm. $C_{28}H_{18}BF_5N_2$ (488.26): calcd. C 68.88, H 3.72, B 2.21, F 19.46, N 5.74; found C 69.25, H 3.42, F 19.41, N 5.40.

4,4-Difluoro-3-[(1,1-biphenyl)-4-yl]-2,5-diphenyl-8-trifluoromethyl-4-781 bora-3a,4a-diaza-s-indacene (3ag): Yield 0.047 g (73%) as a dark blue solid with metallic luster, m.p. 212–214 °C. IR (KBr): \tilde{v}_{max} = 1602, 1562, 1520, 1479, 1471, 1451, 1410, 1398, 1251, 1224, 1208, 1138, 1126, 1087, 1073, 1064, 1006, 998, 881, 844, 772, 753, 744, 738, 699, 687 cm⁻¹. ¹H NMR (CDCl₃): δ = 7.83 (m, 2 H, Ph-2d,6d), 786 7.60 (m, 2 H, Ph-2b,6b), 7.56 (m, 4 H, Ph-2a,6a,3a,5a), 7.53 (m, 1 H, 1-H), 7.47 (m, 1 H, 7-H), 7.40 (m, 5 H, Ph-3d, 5d, 4d, 3b, 5b), 7.33 (m, 1 H, Ph-4b), 7.22 (m, 3 H, Ph-3c,4c,5c), 7.09 (m, 2 H, Ph-2c,6c), 6.73 (d, J = 4.5 Hz, 1 H, 6-H) ppm. ¹³C NMR (CDCl₃): δ = 162.3 (C-5), 159.4 (C-3), 142.3 (C-4a), 140.3 (C-1b), 136.8 (C-791 1c), 133.9 (C-7a), 133.2 (C-2), 131.9 (C-8a), 131.8 (C-1d), 130.9 (C-2a,6a), 130.6 (C-4d), 130.5 (C-7), 130.1 (C-1a), 129.7 (t, J = 4.2 Hz, C-2d,6d), 128.9 (C-3b,5b), 128.6 (C-2c,6c), 128.5 (C-3c,5c,3d,5d), 127.9 (C-4b), 127.8 (C-1), 127.7 (C-4c), 127.2 (C-2b,6b), 126.6 (C-3a,5a), 126.4 (q, J = 33.3 Hz, C-8), 123.1 (C-6), 122.7 (q, J = 796 276.2 Hz, CF₃) ppm. ¹⁹F NMR (CDCl₃): δ = -132.3 (m, J_{BF} = 30.5 Hz, BF₂), -54.6 (CF₃) ppm. C₃₄H₂₂BF₅N₂ (564.36): calcd. C 72.36, H 3.93, B 1.92, F 16.83, N 4.96; found C 72.18, H 3.59, F 17.20, N 4.69.

4,4-Difluoro-3-[(1,1-biphenvl)-4-vl]-5-(2-thienvl)-8-trifluoromethyl-801 4-bora-3a,4a-diaza-s-indacene (3bf): Yield 0.133 g (79%) as dark green needles with metallic luster, m.p. 214-216 °C. IR (KBr): vmax = 1566, 1527, 1473, 1296, 1275, 1138, 1119, 1102, 1088, 1045, 1036, 852, 841, 790, 755 cm⁻¹. ¹H NMR (CDCl₃): δ = 8.24 (dd, J = 3.9, 1.0 Hz, 1 H, 3-H of thiophene), 8.07 (m, 2 H, Ph-2a,6a), 7.74 (m, 806 2 H, Ph-3a,5a), 7.70 (m, 2 H, Ph-2b,6b), 7.60 (dd, J = 4.9, 1.0 Hz, 1 H, 5-H of thiophene), 7.50 (m, 2 H, Ph-3b,5b), 7.43 (m, 1 H, 7-H), 7.42 (m, 1 H, 1-H), 7.40 (m, 1 H, Ph-4b), 7.20 (dd, J = 3.9, 4.9 Hz, 1 H, 4-H of thiophene), 6.96 (d, J = 4.5 Hz, 1 H, 6-H), 6.82 (d, J = 4.6 Hz, 1 H, 2-H) ppm. ¹³C NMR (CDCl₃): $\delta = 159.9$ 811 (C-3), 153.6 (C-5), 153.6 (C-2 of thiophene), 142.9 (C-4a), 140.3 (C-1b), 134.3 (C-7a), 133.9 (C-2 of thiophene), 133.8 (C-3 of thiophene), 133.6 (C-8a), 131.8 (C-5 of thiophene), 131.0 (C-1a), 130.2 (C-2a,6a), 130.1 (C-7), 129.7 (C-4 of thiophene), 129.2 (C-1), 128.9 (C-3b,5b), 127.9 (C-4b), 127.3 (C-2b,6b), 127.2 (C-3a,5a), 124.5 (q, 816 *J* = 33.2 Hz, C-8), 123.2 (C-6), 122.6 (C-2), 122.8 (q, *J* = 275.8 Hz, CF₃) ppm. ¹⁹F NMR (CDCl₃): δ = -135.9 (m, J_{BF} = 32.0 Hz, BF₂), -54.5 (CF₃) ppm. C₂₆H₁₆BF₅N₂S (494.29): calcd. C 63.18, H 3.26, B 2.19, F 19.22, N 5.67, S 6.49; found C 63.38, H 3.22, F 19.09, N 5.70, S 6.31. 821

4,4-Difluoro-3-[(1,1-biphenyl)-4-yl]-2-phenyl-5-(2-thienyl)-8-trifluoromethyl-4-bora-3a,4a-diaza-s-indacene (3bg): Yield 0.066 g (87%) as a dark green solid with metallic luster, m.p. 214-215 °C. IR (KBr): $\tilde{v}_{max} = 1563, 1526, 1482, 1470, 1451, 1426, 1415, 1283, 1252, 1236,$ 1167, 1142, 1117, 1052, 1029, 915, 850, 755, 719, 696, 687 cm⁻¹. ¹H 826 NMR (CDCl₃): $\delta = 8.14$ (dd, J = 3.9, 1.0 Hz, 1 H, 3-H of thiophene), 7.65 (m, 2 H, Ph-2b,6b), 7.62 (m, 2 H, Ph-2a,6a), 7.59 (m, 2 H, Ph-3a,5a), 7.54 (dd, J = 4.9, 1.0 Hz, 1 H, 5-H of thiophene), 7.53 (m, 1 H, 1-H), 7.43 (m, 3 H, Ph-3b,5b, 7-H), 7.35 (m, 1 H, Ph-4b), 7.22 (m, 3 H, Ph-3c, 4c, 5c), 7.20 (dd, J = 3.9, 4.9 Hz, 1 H, 831 4-H of thiophene), 7.12 (m, 2 H, Ph-2c,6c), 6.94 (d, J = 4.5 Hz, 1 H, 6-H) ppm. ¹³C NMR (CDCl₃): δ = 157.5 (C-3), 154.2 (C-5), 142.1 (C-4a), 140.4 (C-1b), 136.2 (C-1c), 136.1 (C-7a), 134.7 (C-8a), 133.9 (C-3 of thiophene), 133.8 (C-2 of thiophene), 133.4 (C-2), 132.0 (C-5 of thiophene), 131.2 (C-2a,6a), 130.5 (C-7), 129.9 836 (C-1a), 129.7 (C-4 of thiophene), 128.9 (C-3b,5b), 128.6 (C-2c,6c), 128.5 (C-3c,5c), 127.8 (C-4b), 127.5 (C-4c), 127.2 (C-2b,6b), 126.7 (C-1), 126.5 (C-3a,5a), 125.9 (q, J = 33.2 Hz, C-8), 123.3 (C-6), 122.9 (q, J = 275.3 Hz, CF₃) ppm. ¹⁹F NMR (CDCl₃): $\delta = -136.4$

FULL PAPER

841 (m, J_{BF} = 31.3 Hz, BF₂), -54.5 (CF₃) ppm. C₃₂H₂₀BF₅N₂S (570.38): calcd. C 67.38, H 3.53, B 1.90, F 16.65, N 4.91, S 5.62; found C 67.77, H 3.25, F 16.93, N 4.71, S 5.49.

4,4-Difluoro-3,5-bis(4-methylphenyl)-8-trifluoromethyl-4-bora-3a,4a-diaza-s-indacene (3cc): Yield 0.114 g (89%) as a dark blue

- 846 solid with metallic luster, m.p. 118–120 °C. IR (KBr): \tilde{v}_{max} = 1565, 1474, 1426, 1392, 1301, 1275, 1226, 1170, 1139, 1085, 1052, 968, 946, 888, 822, 788, 750, 729 cm⁻¹. ¹H NMR (CDCl₃): δ = 7.81 (m, 4 H, Ph-2a,6a), 7.44 (m, 2 H, 1,7-H), 7.26 (m, 4 H, Ph-3a,5a), 6.72 (d, J = 4.6 Hz, 2 H, 2,6-H), 2.40 (s, 6 H, Me) ppm. ¹³C NMR
- 851 (CDCl₃): δ = 161.7 (C-3,5), 140.9 (C-4a,4a'), 133.4 (C-8a,7a), 130.0 (C-1,7), 129.6 (t, J = 4.0 Hz, C-2a,6a,2a',6a'), 129.2 (C-3a,5a,3a',5a'), 129.1 (C-1a,1a'), 125.8 (q, J = 33.2 Hz, C-8), 122.8 (q, J = 276.1 Hz, CF₃) 122.7 (C-2,6), 21.6 (Me,Me') ppm. ¹⁹F NMR (CDCl₃): δ = -132.5 (m, $J_{BF} = 31.1$ Hz, BF₂), -54.5 (t, J_{HF}
- 856 = 2.3 Hz, CF₃) ppm. ¹⁵N NMR (CDCl₃): δ = -193.5 ppm. C₂₄H₁₈BF₅N₂ (440.22): calcd. C 65.48, H 4.12, B 2.46, F 21.58, N 6.36; found C 65.21, H 4.02, F 21.92, N 6.12.

4,4-Difluoro-3,5-bis(4-methoxyphenyl)-8-trifluoro-methyl-4-bora-3a,4a-diaza-s-indacene (3dd): Yield 0.113 g (57%) as a dark blue

- 861 solid with metallic luster, m.p. 180–182 °C. IR (KBr): $\tilde{v}_{max} = 1604$, 1564, 1474, 1429, 1395, 1297, 1265, 1221, 1179, 1137, 1083, 1045, 833, 791, 742, 620 cm⁻¹. ¹H NMR (CDCl₃): $\delta = 7.87$ (m, 4 H, Ph-2a,6a), 7.38 (m, 2 H, 1,7-H), 6.94 (m, 4 H, Ph-3a,5a), 6.70 (d, J =4.6 Hz, 2 H, 2,6-H), 3.84 (s, 6 H, OMe) ppm. ¹³C NMR (CDCl₃):
- 866 δ = 161.7 (C-4a,4a), 160.9 (C-3,5), 133.4 (C-8a,7a), 131.5 (t, *J* = 4.0 Hz, C-2a,6a,2a',6a'), 129.2 (C-1,7), 126.3 (q, *J* = 33.2 Hz, C-8), 124.3 (C-1a,1a'), 122.6 (q, *J* = 276.0 Hz, CF₃), 122.5 (C-2,6), 114.1 (C-3a,5a,3a',5a'), 55.4 (OMe,OMe') ppm. ¹⁹F NMR (CDCl₃): δ = -132.9 (m, *J*_{BF} = 31.2 Hz, BF₂), -54.5 (t, *J*_{HF} =
- 871 2.3 Hz, CF₃) ppm. $C_{24}H_{18}BF_5N_2O_2$ (472.22): calcd. C 61.04, H 3.84, B 2.29, F 20.12, N 5.93; found C 60.73, H 3.59, F 20.47, N 5.58.

4,4-Difluoro-3,5-bis(4-chlorophenyl)-8-trifluoromethyl-4-bora-3a,4adiaza-s-indacene (3ee): Yield 0.088 g (88%) as a lustrous bronze

- 876 solid, m.p. 176–178 °C. IR (KBr): \tilde{v}_{max} = 1593, 1569, 1559, 1471, 1429, 1313, 1299, 1277, 1224, 1145, 1112, 1081, 1053, 1012, 969, 888, 838, 791, 751, 728 cm⁻¹. ¹H NMR (CDCl₃): δ = 7.77 (m, 4 H, Ph-2a,6a), 7.44 (m, 2 H, 1,7-H), 7.39 (m, 4 H, Ph-3a,5a), 6.69 (d, J = 4.6 Hz, 2 H, 2,6-H) ppm. ¹³C NMR (CDCl₃): δ = 160.7 (C-
- 881 3,5), 137.0 (C-4a,4a'), 133.7 (C-8a,7a), 130.9 (t, J = 4.2 Hz, C-2a,6a,2a',6a'), 130.7 (C-1,7), 130.1 (C-1a,1a'), 128.9 (C-3a,5a,3a',5a'), 127.0 (q, J = 33.4 Hz, C-8), 122.9 (C-2,6), 122.6 (q, J = 276.2 Hz, CF₃) ppm. ¹⁹F NMR (CDCl₃): $\delta = -132.3$ (m, $J_{BF} =$ 31.3 Hz, BF₂), -54.6 (t, $J_{HF} = 2.1$ Hz, CF₃) ppm. C₂₂H₁₂BCl₂F₅N₂
- 886 (481.06): calcd. C 54.93, H 2.51, B 2.25, Cl 14.74, F 19.75, N 5.82; found C 54.55, H 2.48, Cl 14.49, F 20.10, N 5.71.

4,4-Difluoro-3,5-bis[(1,1-biphenyl)-4-yl]-8-trifluoromethyl-4-bora-3a,4a-diaza-s-indacene (3ff): Yield 0.102 g (36%) as dark blue needles with metallic luster, m.p. 234–236 °C. IR (KBr): $\tilde{v}_{max} = 1604$,

- 891 1573, 1544, 1525, 1487, 1470, 1411, 1384, 1374, 1330, 1292, 1275, 1245, 1205, 1156, 1122, 1082, 1046, 972, 908, 837, 819, 800, 764, 733, 725, 694 cm⁻¹. ¹H NMR (CDCl₃): δ = 7.98 (m, 4 H, Ph-2a,6a), 7.66 (m, 4 H, Ph-3a,5a), 7.61 (m, 4 H, Ph-2b,6b), 7.46 (m, 2 H, 1,7-H), 7.45 (m, 4 H, Ph-3b,5b), 7.35 (m, 2 H, Ph-4b), 6.80 (d, *J* =
- 896 4.6 Hz, 2 H, 2,6-H) ppm. ¹³C NMR (CDCl₃): δ = 161.1 (C-3,5), 143.1 (C-4a,4a'), 140.1 (C-1b,1b'), 133.8 (C-8a,7a), 130.0 (C-1,7), 129.9 (C-2a,6a,2a',6a'), 130.5 (C-1a,1a'), 127.1 (C-2b,6b,2b',6b'), 128.6 (C-3b,5b,3b',5b'), 127.8 (C-4b,4b'), 126.9 (C-3a,5a,3a',5a'), 126.1 (q, J = 33.4 Hz, C-8), 122.9 (C-2,6), 122.7 (q, J = 276.2 Hz,
- 901 CF₃) ppm. ¹⁹F NMR (CDCl₃): δ = -132.4 (m, J_{BF} = 31.3 Hz, BF₂), -54.5 (t, J_{HF} = 2.1 Hz, CF₃) ppm. ¹⁵N NMR (CDCl₃): δ =

 $-192.8~ppm.~C_{34}H_{22}BF_5N_2$ (564.36): calcd. C 72.36, H 3.93, B 1.92, F 16.83, N 4.96; found C 71.98, H 3.90, F 17.18, N 4.65.

4,4-Difluoro-3,5-bis[(1,1-biphenyl)-4-yl]-2,6-diphenyl-8-trifluoromethyl-4-bora-3a,4a-diaza-s-indacene (3gg): Yield 0.071 g (90%) as 906 dark green needles with metallic luster, m.p. 296-298 °C. IR (KBr): $\tilde{v}_{max} = 1570, 1406, 1275, 1245, 1226, 1141, 1082, 1002, 966, 919,$ 842, 748, 629 cm⁻¹. ¹H NMR (CDCl₃): δ = 7.57 (m, 4 H, Ph-2b,6b), 7.53 (m, 8 H, Ph-3a, 5a, 2a, 6a), 7.52 (m, 2 H, 1, 7-H), 7.39 (m, 4 H, Ph-3b,5b), 7.31 (m, 2 H, Ph-4b), 7.22 (m, 6 H, Ph-3c,5c,4c), 7.10 911 (m, 4 H, Ph-2c,6c) ppm. ¹³C NMR (CDCl₃): δ = 159.7 (C-3,5), 142.4 (C-4a,4a'), 140.3 (C-1b,1b'), 136.9 (C-1c,1c'), 133.2 (C-2,6), 132.1 (C-8a,7a), 131.0 (C-2a,6a,2a',6a'), 130.0 (C-1a,1a'), 128.9 (C-3b,5b,3b',5b'), 128.7 (C-2c,6c,2c',6c'), 128.5 (C-3c,5c,3c',5c'), 127.8 (C-4b,4b'), 127.9 (C-1,7), 127.8 (C-4c,4c'), 127.2 (C-916 2b,6b,2b',6b'), 126.6 (C-3a,5a,3a',5a'), 126.3 (q, *J* = 33.4 Hz, C-8), 125.5 (q, J = 276.4 Hz, CF₃) ppm. ¹⁹F NMR (CDCl₃): $\delta = -131.7$ (m, $J_{BF} = 29.8 \text{ Hz}$, BF_2), -54.6 (t, $J_{HF} = 2.0 \text{ Hz}$, CF_3) ppm. C46H30BF5N2 (716.56): calcd. C 77.10, H 4.22, B 1.51, F 13.26, N 3.91; found C 77.02, H 3.98, F 13.62, N 3.52. 921

Supporting Information (see footnote on the first page of this article): Analytical data for compounds 6 and analytical data and absorption and fluorescence spectra of compounds 3 are reported.

Acknowledgments

The authors thank Presidium of RAS (project numbers 8.2 and 926 5.9.1) for the support of this research.

- a) R. Ziessel, G. Ulrich, A. Harriman, New J. Chem. 2007, 31, 496–501; b) A. Loudet, K. Burgess, Chem. Rev. 2007, 107, 4891–4932; c) G. Ulrich, R. Ziessel, A. Harriman, Angew. Chem. 2008, 120, 1202–1219; Angew. Chem. Int. Ed. 2008, 47, 1184–1201; d) A. C. Benniston, G. Copley, Phys. Chem. Chem. Phys. 2009, 11, 4124–4131; N. Boens, V. Leen, W. Dehaen, Chem. Soc. Rev. 2012, 41, 1130–1172.
- [2] a) G. Meng, S. Velayudham, A. Smith, R. Luck, H. Liu, *Macromolecules* 2009, *42*, 1995–2001; b) Y. Shiraishi, H. Maehara, 7. Sugii, D. Wang, T. Hirai, *Tetrahedron Lett.* 2009, *50*, 4293–4296; c) S. Atilgan, I. Kutuk, T. Ozdemir, *Tetrahedron Lett.* 2010, *51*, 892–894; d) M. Kamiya, K. Johnsson, *Anal. Chem.* 2010, *82*, 6472–6479.
- [3] a) M. C. Yee, S. C. Fas, M. M. Stohlmeyer, T. J. Wandless, 941
 K. A. Cimprich, J. Biol. Chem. 2005, 280, 29053–29059; b)
 M. S. T. Gonçalves, Chem. Rev. 2009, 109, 190–212.
- [4] a) M. D. Yilmaz, O. A. Bozdemir, E. U. Akkaya, Org. Lett.
 2006, 8, 2871–2873; b) O. A. Bozdemir, M. D. Yilmaz, O. Buyukcakir, A. Siemiarczuk, M. Tutasd, E. U. Akkaya, New J. 946 Chem. 2010, 34, 151–155.
- [5] a) R. Y. Lai, A. J. Bard, J. Phys. Chem. B 2003, 107, 5036–5042; b) A. Hepp, G. Ulrich, R. Schmechel, H. Von Seggern, R. Ziessel, Synth. Met. 2004, 146, 11–15; c) D. Zhang, Y. Wen, Y. Xiao, G. Yu, Y. Liu, X. Qian, Chem. Commun. 2008, 4777–951 4779.
- [6] a) B. Kim, B. Ma, V. R. Donuru, H. Liu, J. M. J. Fréchet, *Chem. Commun.* 2010, 46, 4148–4150; b) T. Rousseau, A. Cravino, T. Bura, G. Ulrich, R. Ziessel, J. Roncali, *J. Mater. Chem.* 2009, 19, 2298–2300; c) T. Rousseau, A. Cravino, T. Bura, G. Ulrich, R. Ziessel, J. Roncali, *Chem. Commun.* 2009, 1673– 1675.
- [7] a) I. A. Boldyrev, X. Zhai, M. M. Momsen, H. L. Brockman, R. E. Brown, J. G. Molotkovsky, J. Lipid Res. 2007, 48, 1518– 1532; b) C. O. Ferrusola, L. G. Fernández, J. M. Morrell, C. S. Sandoval, B. M. García, H. Rodríguez-Martinez, J. A. Tapia, F. J. Peña, Reproduction 2009, 138, 55–63; c) Y. Ohsaki, Y. Shinohara, M. Suzuki, T. Fujimoto, Histochem. Cell Biol. 2010, 133, 477–480.

966

Difluorobora-s-diazaindacene Dyes

Pages: 13

- K. Suzuki, Chem. Eur. J. 2009, 15, 1096-1106; d) S. G. Awuah,
- J. Polreis, V. Biradar, Y. You, Org. Lett. 2011, 13, 3884-3887. 996
- Anal. Biochem. 1996, 243, 1-7; b) K. Perronet, P. Bouyer, N. Westbrook, N. Soler, D. Fourmy, S. Yoshizawa, J. Lumin. 2007, 127, 264-268.

[8] a) S. Z. Schade, M. E. Jolley, B. J. Sarauer, L. G. Simonson,

- [9] a) C. Wanninger-Weiß, F. D. Pasquale, T. Ehrenschwender, A. 971 Marx, H. A. Wagenknecht, Chem. Commun. 2008, 48-50; b) S. Kurata, T. Kanagawa, K. Yamada, M. Torimura, T. Yoko
 - maku, Y. Kamagata, R. Kurane, Nucleic Acids Res. 2001, 29, E34. 1-5.
 - [10] a) Y. Luo, G. D. Prestwich, Bioconjugate Chem. 1999, 10, 755-
- 976 763; b) E. W. Adams, J. Ueberfeld, D. M. Ratner, B. R. O'Keefe, D. R. Walt, P. H. Seeberger, Angew. Chem. 2003, 115, 5475-5478; Angew. Chem. Int. Ed. 2003, 42, 5317-5320.
 - [11] a) Z. Li, E. Mintzer, R. J. Bittman, Org. Chem. 2006, 71, 1718-1721; b) Z. Li, R. Bittman, J. Org. Chem. 2007, 72, 8376-8382.
- 981 [12] a) J. V. Frangioni, Curr. Opin. Chem. Biol. 2003, 7, 626-634; b) B. Ballou, L. A. Ernst, A. S. Waggoner, Curr. Med. Chem. 2005, 12, 795-805; c) K. R. Bhushan, F. Liu, P. Misra, J. V. Frangioni, Chem. Commun. 2008, 4419-4421.
- [13] a) A. Burghart, H. Kim, M. B. Welch, L. H. Thoresen, J. Reib-986
 - enspies, K. Burgess, J. Org. Chem. 1999, 64, 7813-7819; b) K. Rurack, M. Kollmannsberger, J. Daub, New J. Chem. 2001, 25, 289-292
 - [14] O. Galangau, C. Dumas-Verdes, R. Méallet-Renault, G. Clavier, Org. Biomol. Chem. 2010, 8, 4546-4553.
- 991 [15] a) K. Umezawa, Y. Nakamura, H. Makino, D. Citterio, K. Suzuki, J. Am. Chem. Soc. 2008, 130, 1550-1551; b) L. Li, B. Nguyen, K. Burgess, Bioorg. Med. Chem. Lett. 2008, 18, 3112-3116; c) K. Umezawa, A. Matsui, Y. Nakamura, D. Citterio,

- [16] L. N. Sobenina, A. M. Vasil'tsov, O. V. Petrova, K. B. Petrushenko, I. A. Ushakov, G. Clavier, R. Meallet-Renault, A. I. Mikhaleva, B. A. Trofimov, Org. Lett. 2011, 13, 2524-2527.
- [17] a) P. H. Lee, Bull. Korean Chem. Soc. 2008, 29, 261–264; b) D. Kang, D. Eom, J. Mo, H. Kim, P. Sokkalingam, Ch. H. Lee, 1001 P. H. Lee, Bull. Korean Chem. Soc. 2010, 31, 507-510.
- [18] a) The Chemistry of Hydroxylamines. Oximes and Hydroxamic Acids (Eds.: Z. Rappoport, J. F. Liebman), Wiley, Chichester, UK, 2008, p. 241; b) Z. Wang, Comprehensive Organic Name Reactions and Reagents, part 3, Wiley, London, 2009, p. 2793; 1006 c) B. A. Trofimov, A. I. Mikhaleva, E. Yu. Schmidt, L. N. Sobenina, Adv. Heterocycl. Chem. 2010, 99, 210-254.
- [19] E. Yu. Schmidt, A. M. Vasil'tsov, N. V. Zorina, A. V. Ivanov, A. I. Mikhaleva, B. A. Trofimov, Chem. Heterocycl. Compd. 1011 2012, 47, 1300-1303.
- [20] T. P. Wijesekera, Can. J. Chem. 1996, 74, 1868-1871.
- [21] X. Zhang, H. Yu, Y. Xiao, J. Org. Chem. 2012, 77, 669-673.
- [22] B. H. Brandsen, C. J. Joachain, Physics of Atoms and Molecules, Longman Group Limited, London, 1983.
- [23] a) R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Chem. 1016 Phys. Lett. 1989, 162, 165-169; b) Turbomole, v.6.1, University of Karlsruhe, Germany, 2009.
- [24] S. E. Korostova, A. I. Mikhaleva, L. N. Sobenina, S. G. Shevchenko, M. V. Sigalov, I. M. Karataeva, B. A. Trofimov, Chem. Heterocycl. Compd. 1989, 25, 39-43. Received: February 8, 2013