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Abstract: A novel l-benzyipiperazin-2-one nitrone has been synthesized. It readily undergoes [3+2] 
cycloaddifions with alkynes and alkenes to give A4-isoxazolines and isoxazolidines, respectively, which 
can be reductively opened to 3-substituted piperazin-2-ones and 1,3-amino alcohols. 
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As part of a project targeting neuroactive compounds, we required a method for synthesi~ng 3- 

substituted piperazin-2-ones 3. These compounds can be viewed as peptide units constrained by an ethylene 

bridge and they have been incorporated into peptides to make enkephlinase inhibitors, t Past syntheses of 3- 

substituted piperazin-2-ones have relied on the addition of various ethylene diamines to a-haloesters 2 and 

unsaturated esters) Alternately, the dianion of a protected piperazin-2-one has been alkylated with reactive 

electrophiles. 4 However, for our purposes, a more versatile approach was required. The method we have 

developed begins with the cycloaddition of nitrone 1 with an alkyne to produce A4-isoxazolines 2, which can 

be opened to 3-substituted piperazin-2-ones (Equation 1). We describe in this report the synthesis of nitrone 1, 

its reactions with alkynes and alkenes, and the reduction of the cycloadducts to give piperazin-2-ones 3. 
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A consideration of our synthetic requirements and an awareness of several potential pitfalls guided us in 

our choice of nitrone 1. For the ultimate targets of this investigation, a nitrone without any carbon 

substitutents was needed. The potential for aromatization problems in such a system was clear from work of 

GnichteL s Gnichtel was able to synthesize gem-dialkyl nitrone 6a from 4a; however, attempts to convert 

analogous 4b into 6b, in which a hydrogen has replaced one of the carbon substituents, gave only dehydration 

product 7 (Equation 2). To minimize pyrazinone formation with our nitrone, the amide nitrogen was 

7339 



7340 

protected with a benzyl group to give a tertiary amide. In addition, the nitrone carbon was placed adjacent to 

the amide carbonyl since the extended conjugation might help stabilize the molecule. Synthetically, oxidative 

generation of the nitrone from an amine should give the desired regioisomer selectively, based on the 

propensity for nitrone generation alpha to a carbonyl. 6 
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(2) 

The synthesis of nitrone 1 started with the known 4 4-(t-butyloxycarbonyl)piperazin-2-one (8) 

(Equation 3). Alkylation with benzyl bromide afforded 9 which was deprotected with neat trifluoroacetic acid 

to give amine 10. Oxidation of 10 was accomplished using 30% aqueous hydrogen peroxide in ethanol with 

catalytic sodium tungstate. 7 Nitrone 1 was isolated as a low melting, crystalline solid s and is stable for at least 

several months at room temperature. A sample heated at reflux in d8-tetrahydrofuran for 24 hours showed no 

evidence of decomposition by IH or 13C NMR. 
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a) Nail (1.1 eq)/PhCH2Br (1.1 eq)/DMF/rt/18 h (74%) b) TFA/0oC/30 rain (84%) 

c) Na2WO 4 2H20 (0.05 eq)/aq. 30% H202 (2.2 eq)/CI-I3CH2OH/rt/24 h (63%) 

Treatment of 1 with monosubstituted alkynes 9 gave A%isoxazolines 2 in moderate to good yield. 

Typically, the nitrone was dissolved in tetrahydrofuran (THF) at 0.4 M concentration and treated with three 

equivalents of a mono-substituted alkyne. After heating at reflux for 3-5 hours under nitrogen, the reaction 

mixture was simply concentrated in vacuo and the crude product was purified by flash chromatography. ~° 
A%Isoxazolines are known to be thermally and photochemically unstable 11 and these cycloadducts occasionally 

required two chromatographies for purification or, in the case of 2c, a further recrystallization to obtain 

sufficiently clean compound. ~2 In all reactions, only the regioisomer arising from addition of the oxygen to the 

more substituted end of the alkyne was isolated. The more usual reduction of the A%isoxazolines with zinc 

dust in aqueous acetic acid ~3 was bypassed in favor of the neutral and milder Mo(CO) 6 in refluxing wet 

aeetonitrile 14 which afforded 3-(2-oxoalkyl)-piperazin-2-ones 3 (see Table). 
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TABLE: [2+3] CYCLOADDITIONS 

REDUCTION 
SUBSTRATE TIME (H) CYCLOADDUCT YIELD (%) PRODUCT YIELD (%) 

o a,n 

°3a H = O 4 [ , , , , j / ~ i . o ~  66 

2a 

54 

H -- -  ' ~ H 3  5 

O Bn 
Bn, NAM,r.~U ~ _N. ~ . .00  

2b CH3 

72 

O 
B n ' N ~ _ . . ~  

H = 0 3 l,,,,~I~i.Op--='=~=~ 38 a Notdone b 

2c 

O Bn 

24 [,,,~I~ ,O,r.... ~ 

11 

74 

~N ~_O O 

42 1.,,~/~ ,O%TI~S 70 ¢ 

13 3a 

a Yield was 68% afte~ chromatography, b Substrate was unstable, c Combined yield of diastea'eomers. 

60 

Nitrone 1 also reacts with alkenes 9 to give isoxazolidines. While these cycloadditions required 24-48 

hours at reflux, the longer reaction times were not problematic since the isoxazolidines were apparently stable 

under these conditions. Treatment of methylenecyclohexane with nitrone 1 afforded isoxazolidine 11 which 

gave 1,3-arnino alcohol 12 on reductive opening. Cycloaddition with 1-phenyl-l-(trirnethylsilyloxy)ethylene 
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produced a 3:1 mixture of diastereomers 13 which was readily separable by flash chromatography) ~ The 

relatively slow reaction rate is likely due to the sterically hindered nature of the silyl enol ether. L6 Reductive 

opening carried out on the major isomer provided an alternative route to 3a, demonstrating that either 

acetylenes or acetophenones (via their enol ethers) can be used as starting materials for compounds 3. 

In conclusion, novel heterocyclic nitrone 1 has been synthesized. It undergoes facile [3+2] cyclo- 

addition reactions with alkynes and alkenes to give A4-isoxazolines and isoxazolidines, respectively. Since 

these eycloadduets can be readily reduced to 3-(2-oxygenated alkyl)piperazin-2-ones, this approach provides a 

novel and very versatile route to this class of compounds. 
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