This article was downloaded by: [North Dakota State University] On: 17 November 2014, At: 18:52 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Bioscience, Biotechnology, and Biochemistry Publication details, including instructions for authors and subscription information: <u>http://www.tandfonline.com/loi/tbbb20</u>

Systematic Synthesis of Sulfur-containing p-Nitrophenyl a-Maltopentaoside Derivatives for a Differential Assay of Human a-Amylases

Kaori Ozawa^a, Yukako Taki^a, Hideharu Ishida^a, Yukari Yamagata^{ab}, Shinji Satomura^{ab}, Makoto Kiso^a & Akira Hasegawa^a

^a Department of Applied Bioorganic Chemistry, Gifu University, Gifu 501-11, Japan

^b Osaka Research Laboratory, Wako Pure Chemical Industries Ltd., Takada-cho, Amagasaki, Hyogo 661, Japan

Published online: 12 Jun 2014.

To cite this article: Kaori Ozawa, Yukako Taki, Hideharu Ishida, Yukari Yamagata, Shinji Satomura, Makoto Kiso & Akira Hasegawa (1993) Systematic Synthesis of Sulfur-containing p-Nitrophenyl α-Maltopentaoside Derivatives for a Differential Assay of Human α-Amylases, Bioscience, Biotechnology, and Biochemistry, 57:5, 821-828, DOI: <u>10.1271/bbb.57.821</u>

To link to this article: <u>http://dx.doi.org/10.1271/bbb.57.821</u>

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Systematic Synthesis of Sulfur-containing *p*-Nitrophenyl α -Maltopentaoside Derivatives for a Differential Assay of Human α -Amylases

Kaori Ozawa, Yukako Taki, Hideharu Ishida, Yukari Yamagata,* Shinji Satomura,* Makoto Kiso, and Akira Hasegawa[†]

Department of Applied Bioorganic Chemistry, Gifu University, Gifu 501-11, Japan

*Osaka Research Laboratory, Wako Pure Chemical Industries Ltd., Takada-cho, Amagasaki, Hyogo 661, Japan Received December 22, 1992

For use in a differential assay of human α -amylases, a variety of 6⁵-S-substituted *p*-nitrophenyl α -maltopentaoside derivatives (6-54) were systematically synthesized *via* the key intermediate, *p*-nitrophenyl O-(2,3-di-O-acetyl-6-S-acetyl-4-O-benzoyl-6-thio- α -D-glucopyranosyl)-(1 \rightarrow 4)-tris[O-(2,3,6-tri-O-acetyl- α -D-glucopyranosyl)-(1 \rightarrow 4)]-2,3,6-tri-O-acetyl- α -D-glucopyranoside (4), which was easily prepared from *p*-nitrophenyl α -maltopentaoside (G5P) in four steps. The sulfoxide and sulfone derivatives were prepared by oxidizing the corresponding sulfides with *m*-chloroperbenzoic acid.

An assay of the human pancreatic and salivary α -amylases [α -1,4-glucan 4-glucanohydrolase, EC 3.2.1.1; HPA and HSA] in human serum and urine is used for the diagnosis of such diseases as acute pancreatitis and parotitis. Not only a total assay of α -amylases but also a differential assay of HPA and HSA activity have become important for more accurate diagnosis. Some differential assay methods exist using electrophoresis,^{1,2)} monoclonal antibodies,^{3,4)} enzyme inhibitors,⁵⁾ and synthetic substrates.⁶⁻¹⁰⁾ A kinetic method utilizing the difference of substrate specificity between HPA

and HSA has particularly been noted because of its simple and rapid application to an automatic assay system. We report here the systematic synthesis of a variety of 6^5 -S-substituted *p*-nitrophenyl α -maltopentaoside derivatives for use in the differential assay of human α -amylases.

p-Nitrophenyl α -maltopentaoside (G5P, 1) was treated with benzaldehyde dimethylacetal in the presence of *p*-toluenesulfonic acid monohydrate in *N*,*N*-dimethylformamide (DMF), and the resulting 4⁵,6⁵-O-benzylidene derivative was successively acetylated to give the per-

Compound No.	Xª	Compound No.	Xª	Compound No.	Xª
6, 37, 43, 49	CH ₂ -CH ₂ -	19, 41, 47, 53 20, 42, 48, 54	$CH_{3}(CH_{2})_{5}-$ $CH_{3}(CH_{2})_{6}-$	28	CH ₃ >N–CH ₂ CH ₂ – CH ₃
7	CH ₂ CH ₂ -	21 22	$CH_{3}(CH_{2})_{11}^{-}$ $CH_{3}(CH_{2})_{17}^{-}$	29	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ -
8	CH2CH2CH2-	23	CH ₃ >CH– CH ₃		CH ₃
9, 38, 44, 50	CH ₃ -CH ₂ -	24	CH ₃ >CHCH ₂ -	30	O_N−CH ₂ CH ₂ −
10	$Me - C - CH_2 $	750	CH ₃ CH ₂ *	31	N-CH ₂ CH ₂ -
	Me $\stackrel{\text{CH}_3}{=} *1$	23	CH ₃ CH-	32	N-CH ₂ CH ₂ CH ₂ -
11, 12"	NO ₁	26	CH ₃ >CHCH ₂ CH ₂ - CH ₃	33	HN_N-CH ₂ CH ₂ CH ₂ -
13	CH ₂ -CH ₂ -	27	CH ₃ CH ₂ CH ₂ CH ₂ N-CH ₂ CH ₂ -	34	CH ₂ -CH ₂ -
14	CH_3 -		CH ₃ CH ₂	35	N= CH
16 40 46 52	CH_3CH_2 -				
17	$CH_{3}(CH_{2})_{2}^{-}$			26	
18	CH ₃ (CH ₂) ₄ -			30	N_CH ₂ -

Table I. Structures of the 6⁵-S-Substituents

^a See Fig.

^b Diastereoisomeric pair.

^c Diastereoisomeric mixture.

[†] To whom correspondence should be addressed.

Abbreviations: HPA, human pancreatic α -amylase; HSA, human salivary α -amylase; G5P, p-nitrophenyl α -maltopentaoside.

Downloaded by [North Dakota State University] at 18:52 17 November 2014

Fig. Fundamental Structure of the Modified G5P Derivatives. Bzd, benzylidene; Bz, benzoyl; X, substituents shown in Table I. **** Chiral sulfoxides.

Table II. Selected Physical Data for the 6^5 -S-Alkyl and -Aralkyl Derivatives (7-26)

Com- pound No.	Yield (%)	[α] _D (MeOH)	Molecular formula (MW)	Found C	(calcd.) H	% of N
7	65	+ 168°	C44H63O27NS	49.49	6.20	1.33
		(c 0.21)	(1070.03)	(49.39)	(5.93)	(1.31)
8	81	+156°	C45H65O27NS	49.86	6.04	1.29
		(c 0.20)	(1084.06)	(49.83)	(5.74)	(1.21)
9	68	+ 193°	$C_{44}H_{63}O_{27}NS$	49.36	5.63	1.23
		(c 0.20)	(1070.03)	(49.39)	(5.93)	(1.31)
10	79	+182°	$C_{47}H_{69}O_{27}NS$	50.51	6.21	1.55
		(c 0.19)	(1112.12)	(50.76)	(6.25)	(1.26)
11	13ª	+116°	$C_{44}H_{63}O_{27}NS$	49.32	6.14	1.57
		(c 0.21)	(1070.03)	(49.39)	(5.93)	(1.31)
12	12ª	+221°	$C_{44}H_{63}O_{27}NS$	49.23	5.87	1.08
		(c 0.22)	(1070.03)	(49.39)	(5.93)	(1.31)
13	70	+148°	$C_{42}H_{66}O_{28}N_2S$	46.90	5.49	2.54
		(c 0.20)	(1084.06)	(46.66)	(5.45)	(2.83)
14	85	+164°	$C_{37}H_{57}O_{27}NS$	45.35	5.86	1.43
		$(c \ 0.20^{b})$	(979.91)	(45.21)	(6.03)	(1.25)
15	79	+166°	$C_{38}H_{59}O_{27}NS$	46.13	5.86	1.59
		(c 0.43)	(993.94)	(45.92)	(5.98)	(1.41)
16	65	+183°	$C_{39}H_{61}O_{27}NS$	46.20	5.80	1.34
		(c 0.39)	(1007.96)	(46.47)	(6.10)	(1.39)
17	46	+176°	$C_{40}H_{63}O_{27}NS$	46.99	6.30	1.21
		(c 0.39)	(1021.99)	(47.01)	(6.21)	(1.37)
18	62	+172°	$C_{41}H_{65}O_{27}NS$	47.27	6.48	1.50
		(c 0.45)	(1036.02)	(47.53)	(6.32)	(1.35)
19	74	+174°	$C_{42}H_{67}O_{27}NS$	47.96	6.61	1.29
		(c 0.50)	(1050.04)	(48.04)	(6.43)	(1.33)
20	67	+183°	$C_{43}H_{69}O_{27}NS$	48.34	6.26	1.34
		$(c \ 0.21)$	(1064.07)	(48.54)	(6.54)	(1.32)
21	50	$+163^{\circ}$	C ₄₈ H ₇₉ O ₂₇ NS	50.92	6.89	1.22
		$(c \ 0.19)$	(1134.21)	(50.83)	(7.20)	(1.23)
22	35	$+139^{\circ}$	$C_{54}H_{91}O_{27}NS$	53.24	/.04	1.04
••	20	$(c \ 0.30)$	(1218.37)	(53.23)	(7.53)	(1.15)
23	32	$+179^{\circ}$	$C_{39}H_{61}O_{27}NS$	46.66	5.94	1.25
•		$(c \ 0.40)$	(1007.96)	(46.47)	(0.10)	(1.39)
24	31	$+1/9^{\circ}$	$C_{40}H_{63}O_{27}NS$	46.95	6.23	1.49
	27	$(c \ 0.40)$	(1021.99)	(47.01)	(0.21)	(1.37)
25°	31		$C_{40}H_{63}U_{27}NS$	47.00	0.02	1.52
24	45	- 1700	(1021.99) C H O MC	(47.01)	(0.21)	(1.37)
20	45	+1/9°	$U_{41}H_{65}U_{27}NS$	4/.44	0.42	1.27
		(<i>c</i> 0.46)	(1036.02)	(47.55)	(0.32)	(1.35)

⁴ See Experimental section.

^b 1,4-Dioxane- H_2O solvent (5:1).

^f Diastereoisomeric mixture.

Table III. Selected Physical Data for the 6^5 -S-Aminoalkyl and -Aminoaralkyl Derivatives (28–36)

Com- pound No.	Yield (%)	[α] _D (MeOH)	Molecular formula (MW)	Found C	(calcd.) H	% of N
28	51	+130°	C40H64O27N2S	46.23	6.38	2.71
		(c 0.42)	(1037.01)	(46.33)	(6.22)	(2.70)
29	22	+ 121°	$C_{41}H_{66}O_{27}N_{2}S$	46.98	6.28	2.67
		(c 0.42)	(1051.03)	(46.85)	(6.33)	(2.67)
30	69	+ 125°	C42H66O28N2S	46.99	6.23	2.56
		(c 0.72)	(1079.04)	(46.75)	(6.17)	(2.60)
31	63	+112°	$C_{43}H_{68}O_{27}N_2S$	48.14	6.44	2.49
		(c 0.55)	(1077.07)	(47.95)	(6.36)	(2.50)
32	31	+126°	$C_{44}H_{70}O_{27}N_{2}S$	48.44	6.33	2.45
		(c 0.37)	(1091.10)	(48.44)	(6.47)	(2.57)
33	25	+138°	C43H69O27N3S	47.04	6.39	3.65
		(c 0.22)	(1092.09)	(47.29)	(6.37)	(3.85)
34	69	+111°	$C_{42}H_{60}O_{27}N_2S$	47.47	5.53	2.50
		(c 0.21)	(1057.00)	(47.73)	(5.72)	(2.65)
35	71	+161°	$C_{42}H_{60}O_{27}N_2S$	47.65	5.90	2.61
		(c 0.21)	(1057.00)	(47.73)	(5.72)	(2.65)
36	87	+ 167°	$C_{42}H_{60}O_{27}N_2S$	47.92	5.56	2.51
		(c 0.21)	(1057.00)	(47.73)	(5.72)	(2.65)

acetylated $4^5, 6^5$ -O-benzylidene derivative (2) in an 85% vield. Treatment of 2 with N-bromosuccinimide and barium carbonate in carbon tetrachloride¹¹⁾ under reflux afforded the 4^5 -O-benzoyl- 6^5 -bromo- 6^5 -deoxy derivative (3, 95%). The SN2 replacement reaction in 3 with potassium thioacetate was performed in acetone in the presence of Drierite to give the key intermediate, p-nitrophenyl O-(2,3di-O-acetyl-6-S-acetyl-4-O-benzoyl-6-thio-a-D-glucopyranosyl)- $(1 \rightarrow 4)$ -tris[O-(2,3,6-tri-O-acetyl- α -D-glucopyranosyl)- $(1 \rightarrow 4)$]-2,3,6-tri-O-acetyl- α -D-glucopyranoside (4) in a 93% yield. Compound 4 was treated with sodium methoxide in methanol to form the 6⁵-SNa-G5P derivative (5) in situ, which was then coupled with benzyl, alkyl, and aminoalkyl halides to give a variety of 6⁵-S-substituted G5P derivatives (6-36) in 22-87% yields as shown in the experimental section and Tables II and III.

Treatment of compounds 6, 9, 15, 16, 19, and 20 with *m*-chloroperbenzoic acid (MCPBA) in acetic acid gave mixtures of corresponding chiral sulfoxides 37-42 and 43-48 and sulfones 49-54, which were separated by high-performance liquid chromatography (HPLC). Selected physical data for the 6^5 -sulfoxide and -sulfone derivatives are shown in Table IV. When the oxidation was performed with excess MCPBA (more than three equivalents), the corresponding sulfones were obtained almost quantitatively.

The structures of the synthetic compounds were confirmed by their spectral data and elemental analysis. In the ¹H-NMR data (see the experimental section and Tables V-X), the chemical shifts of H-6⁵ and H-6^{'5} were most characteristic. For example, the H-6⁵ and H-6^{'5} signals in **3** (the 6⁵-Br derivative) were each observed at $\delta 3.43$ $(J_{5^5,6^5}=5.7 \text{ Hz}, J_{gem}=13.3 \text{ Hz}, \text{ H-6^5})$ and $\delta 3.52$ $(J_{5^5,6'5}=3.3 \text{ Hz}, J_{gem}=13.3 \text{ Hz}, \text{ H-6^5})$. By introducing the S-acetyl group in **4**, both the signals were shifted to a higher magnetic field, $\delta 3.13$ $(J_{5^5,6^5}=5.7 \text{ Hz}, J_{gem}=13.3 \text{ Hz}, \text{ H-6^5})$ and $\delta 3.26$ $(J_{5^5,6'5}=3.3 \text{ Hz}, J_{gem}=13.3 \text{ Hz}, \text{ H-6^5})$, respectively. After introducing a series of S-substituents, the signals appeared in a higher magnetic field, $\delta 2.38-2.72$ (H-6⁵) and $\delta 2.83-3.06$

Table	IV.	Selected Phy	vsical Data	for the 6 ⁴	⁵ -Sulfoxide and	-Sulfone	Derivatives ((38-42,	44-48,	and 50-54	1)
			-					· /			_

Compound	Yield	σ]۵	tp	Molecular	5	Found (calcd.) % c	of
No.	(%)	(MeOH)	(min)	formula (MW)	С	H	N
38ª	33	+173°	16.0	C44H63O28NS	48.62	6.10	1.50
		(c 0.21)		(1086.03)	(48.66)	(5.85)	(1.29)
44 ^b	25	+174°	17.3	C44H63O28NS	48.87	5.85	1.01
		(c 0.20)		(1086.03)	(48.66)	(5.85)	(1.29)
50	quant.	+91°	17.7	C44H63O29NS	48.15	5.99	1.25
		(c 0.077)		(1102.03)	(47.96)	(5.76)	(1.27)
39 ^a	28	$+250^{\circ}$	10.4	C38H59O28NS	44.99	5.61	1.41
		(c 0.040)		(1009.93)	(45.19)	(5.89)	(1.39)
45 ^b	32	$+150^{\circ}$	10.7	C ₃₈ H ₅₉ O ₂₈ NS	45.28	5.76	1.38
		(c 0.080)		(1009.93)	(45.19)	(5.89)	(1.39)
51	quant.	$+200^{\circ}$	11.2	C38H59O29NS	44.50	5.91	1.26
		(c 0.070)		(1025.93)	(44.49)	(5.80)	(1.37)
40 ^a	33	+267°	11.8	C39H61O28NS	45.90	6.11	1.37
		(c 0.030)		(1023.96)	(45.75)	(6.00)	(1.37)
46 ^b	32	$+200^{\circ}$	12.3	C39H61O28NS	45.65	6.16	1.38
		(c 0.050)		(1023.96)	(45.75)	(6.00)	(1.37)
52	quant.	+ 140°	12.9	C39H61O29NS	45.17	5.86	1.25
		(c 0.050)		(1039.96)	(45.04)	(5.91)	(1.35)
41 ^{<i>a</i>}	25	+138°	17.1	$C_{42}H_{67}O_{28}NS$	47.56	6.40	1.27
		(c 0.080)		(1066.04)	(47.32)	(6.34)	(1.31)
47 ^b	21	$+150^{\circ}$	18.3	$C_{42}H_{67}O_{28}NS$	47.53	6.22	1.49
		$(c \ 0.080)$		(1066.04)	(47.32)	(6.34)	(1.31)
53	quant.	+156°	18.7	C42H67O29NS	46.35	5.94	1.24
		(c 0.077)		(1082.04)	(46.62)	(6.24)	(1.29)
42 ^{<i>a</i>}	30	+173°	19.0	$C_{43}H_{69}O_{28}NS$	47.68	6.61	1.12
		(c 0.043)		(1080.07)	(47.82)	(6.44)	(1.30)
48 ^b	27	+163°	20.4	$C_{43}H_{69}O_{28}NS$	47.79	6.14	1.22
		(c 0.040)		(1080.07)	(47.82)	(6.44)	(1.30)
54	quant.	+162°	20.7	$C_{43}H_{69}O_{29}NS$	46.87	6.31	1.57
	-	(c 0.043)		(1096.07)	(47.12)	(6.35)	(1.28)

^{*a,b*} Chiral sulfoxide pair.

Table V. Selected ¹H-NMR (CD₃OD) Data for the 6⁵-S-Aralkyl Derivatives (7-13)

	~									
Compound No. (substituent)	Chen (coupli	nical Shift in ng constants	i ppm 5 in Hz)	H-6 ⁵	H-6′ ⁵	H-4 ⁵	H-1 ⁵	H-1 ³ ,1 ⁴	H-1 ²	H-11
7	PhCH ₂ CH		Ph	2.63	3.01	3 22	5 10	513 514	5 21	5.66
(Phenethyl)	2.83. broad	Ís 7.	.12–7.28. m	dd	dd	t 5.22	d	2d	d	d
(=				(7.7, 12.2)	(2.1, 14.3)	(9.2)	(3.8)	(46.40)	(39)	(37)
				(, -=)	(200, 100)	(,,,,,)	(0.0)	(1.0, 1.0)	(5.7)	(3.7)
8	PhCH ₂ CH ₂ C	CH ₂ - PhC	H ₂ CH ₂ CH ₂ -	2.65	2.95	3.20	5.06	5.12, 5.14	5.21	5.67
(3-Phenylpropyl)	1.87, p	-	2.57, t	dd	dd	t	d	2d	d	d
	(7.4)		(7.2)	(7.4, 13.5)	$(\sim 0, 11.9)$	(9.3)	(3.7)	(3.7, 3.9)	(3.7)	(3.7)
	PhCH ₂ CH ₂ C	CH_2-	P h					(,,	()	(0.07)
	2.65, ~d	d 7.	.10–7.26, m							
	(7.4, 13.5) .								
9	Me		Ph	2.51	2.83	3.19	5.11	5.13. 5.15	5 20	5.66
(p-Methylbenzyl)	2.28. s	7.	.05-7.19. m	dd	dd	t	d	2d	d	b
Q				(7.9, 11.7)	(3.9, 12.0)	(9.3)	(3.5)	(4.0, 4.0)	(3.8)	(3.7)
					((,)	(0.0)	(011)
10	Me ₃ C		Ph	2.51	2.86	3.18	5.09	5.13, 5.14	5.19	5.65
$\{p-(t-Butyl)-benzyl\}$	1.29, s	7.	.20–7.39, m	dd	dd	t	d	2d	d	d
	<u> </u>		_	(8.0, 12.0)	(2.0, 12.5)	(9.3)	(3.7)	(3.5, 3.8)	(3.9)	(3.7)
	Me	СН	Ph	2 38	2 78	3 09	5.09	5 12 5 15	5 20	5.66
$(\alpha$ -methylbenzyl ^a)	1.50. d	4.10. a	7.17–7.30 m	dd	2:/0 dd	5.05 t	с0.С d	2d	J.20 d	оо.с Ь
(**************************************	(7.1)	(7.1)		(8.2, 11.4)	(2.3, 11.9)	(9.4)	(3,5)	(3737)	(35)	(33)
	(,)	(,)		(0.2, 11.1)	(2.5, 11.5)		(5.5)	(5.7, 5.7)		(3.3)
12	Me	CH	Ph	2.44	2.68	3.21	5.11	5.14, 5.14	5.21	5.66
$(\alpha$ -Methylbenzyl ^b)	1.50, d	4.06, g	7.18–7.37, m	dd	dd	t	d	2d	d	d
	(7.0)	(7.0)	^	(7.0, 12.3)	(2.4, 12.6)	(9.2)	(3.5)	(3.9, 3.5)	(3.9)	(3.7)
									. ,	
13	-CH ₂ S-	4-Ph	5-Ph	2.44	2.68	3.21	5.11	5.14, 5.14	5.21	5.66
(2-Nitrobenzyl)	4.13, s	7.44, ∼dt	7.58, dt	dd	dd	t	d	2d	d	d
		(2.2, 7.7)	(1.5, 7.7)	(7.0, 12.3)	(2.4, 12.6)	(9.2)	(3.5)	(3.9, 3.5)	(3.9)	(3.7)
	6-Ph	3-Ph								
	7.53, dd	7.93, dd								
	(1.8, 7.7)	(1.1, 8.0)								

^{*a,b*} Diastereoisomeric pair.

Compound No. (substituent)) (cc	Chemical Shift in ppropulsion of the second	m Hz)	H-6 ⁵	H-6′ ⁵	H-4 ⁵	H-15	H-1 ³ ,1 ⁴	H-1 ²	H-11
14 ^a (Methyl)	Me 2.14, s			2.61 dd (7.8, 14.2)	2.93 dd (2.2, 14.1)	3.23 t (9.3)	5.12 d (3.7)	5.14, 5.17 2d (4.0, 4.2)	5.23 d (3.9)	5.69 d (3.7)
15 (Ethyl)	Me 1.22, t (7.3)	MeCH ₂ - 2.60, dd (7.3, 13.1)		2.62 dd (8.0, 11.6)	2.97 dd (2.6, 12.0)	3.20 t (9.3)	5.09 d (3.7)	5.13, 5.15 2d (4.7, 4.0)	5.21 d (3.7)	5.66 d (3.7)
16 (Propyl)	Me 0.95, t (7.3)	MeCH ₂ CH ₂ - 1.58, dt (7.3, 12.6)	-CH ₂ S- 2.55, t (7.3)	2.59 dd (7.9, 13.6)	2.94 dd (~0, 11.9)	3.20 t (9.2)	5.09 d (3.7)	5.13, 5.15 2d (5.1, 4.0)	5.21 d (3.7)	5.67 d (3.7)
17 (n-Butyl)	Me 0.90, t (7.2)	Me(<i>CH</i> ₂) ₂ CH ₂ - 1.35-1.57, m	-CH ₂ S- 2.57, t (7.2)	2.58 dd (8.0, 11.7)	2.94 dd (~0, 11.7)	3.20 t (9.3)	5.09 d (3.8)	5.13, 5.14 2d (5.1, 4.0)	5.21 d (3.9)	5.66 d (3.7)
18 (n-Pentyl)	Me 0.89, t (7.0)	Me(<i>CH</i> ₂) ₃ CH ₂ - 1.25-1.65, m	-CH ₂ S- 2.56, t (7.2)	2.59 dd (8.1, 11.9)	2.94 dd (~0, 11.5)	3.20 t (9.2)	5.09 d (3.7)	5.13, 5.14 2d (4.6, 4.2)	5.21 d (3.7)	5.67 d (3.7)
19 (<i>n</i> -Hexyl)	Me 0.89, t (6.8)	$\frac{\text{Me}(CH_2)_4 \text{ CH}_2-}{1.28-1.58, \text{ m}}$	-CH ₂ S- 2.57, t (7.2)	2.59 dd (8.1, 13.9)	2.94 dd (2.2, 14.1)	3.20 t (9.3)	5.09 d (3.7)	5.12, 5.14 2d (4.6, 4.0)	5.20 d (3.7)	5.66 d (3.7)
20 (<i>n</i> -Heptyl)	Me 0.90, t (6.6)	Me(<i>CH</i> ₂) ₅ CH ₂ - 1.25-1.56, m	-CH ₂ S- 2.57, t (7.2)	2.60 dd (8.0, 12.5)	2.95 dd (~0, 12.0)	3.21 t (9.4)	5.08 d (3.7)	5.12, 5.13 2d (4.2, 4.2)	5.20 d (3.7)	5.66 d (3.5)
21 (Dodecyl)	Me 0.94, t (7.7)	$\frac{\text{Me}(CH_2)_{10}\text{CH}_2-}{1.24-1.60, \text{ m}}$	CH ₂ S- 2.57, t (7.2)	2.60 dd (8.2, 12.5)	2.95 dd (~0, 12.0)	3.21 t (9.2)	5.08 d (3.9)	5.12, 5.13 2d (3.9, 3.7)	5.20 d (3.7)	5.66 d (3.7)
22 (Octadecyl)	Me 0.89, t (7.0)	$\frac{\text{Me}(CH_2)_{16}\text{CH}_2-}{1.28-1.61, \text{ m}}$	-CH ₂ S- 2.57, t (7.2)	2.60 dd (7.9, 12.5)	2.95 dd (2.0, 14.1)	3.21 t (9.3)	5.09 d (3.9)	5.12, 5.14 2d (3.8, 4.2)	5.20 d (3.7)	5.66 d (3.7)

Table VI. Selected ¹H-NMR (CD₃OD) Data for the 6⁵-S-Alkyl Derivatives (14-22)

^a CD₃OD-D₂O solvent (5:1).

Table VII. Selected ¹H-NMR (CD₃OD) Data for the 6⁵-S-Alkyl and -Aminoalkyl Derivatives (23-26 and 28-30)

Compound No. (substituent)	Chemical (coupling co	Shift in ppm onstants in Hz)	H-6 ⁵	H-6′ ⁵	H-4 ⁵	H-15	H-1 ³ ,1 ⁴	H-1 ²	H-11
23 (1-Methylethyl)	2Me – 1.23, d 2.98- (6.6)	CH- -3.08, m —	2.62 dd (8.1, 11.8)	2.99 dd (2.5, 12.0)	3.20 t (9.3)	5.09 d (3.7)	5.14, 5.15 2d (4.4, 4.4)	5.22 d (3.7)	5.67 d (3.7)
24 (2-Methylpropyl)	2Me – 0.96, d 1.70- (6.6)	CH- -1.84, m 2.46, d - (7.3)	2.57 dd (7.9, 11.6)	2.94 dd (2.4, 13.9)	3.21 t (9.2)	5.10 d (3.9)	5.13, 5.15 2d (3.7, 4.0)	5.21 d (4.0)	5.66 d (3.7)
25 (1-Methylpropyl)	<i>Me</i> CH ₂ - 0.95, 0.96, 2t (7.5, 7.3) - <i>CH</i> ₂ CH- 1.50, 1.59, 2m (13.9, 7.0)	-CH(Me)- 1.22, d (7.0) -CHS- 2.76, 2.77, 2 sex (6.7, 6.6)	2.61 dd (7.9, 11.3)	2.97 dd (1.8, 13.8)	3.20, 3.21 2t (9.3, 9.2)	5.10 d (3.5)	5.11, 5.15 2d (3.5, 4.0)	5.22 d (3.7)	5.67 d (3.7)
26 (3-Methylbutyl)	2Me -CH <i>CH</i> ₂ - 0.88, d 1.35- (6.7) 1.48, m	$\begin{array}{rcrc} -CHCH_2- & -CH_2S-\\ 1.58- & 2.58, t\\ 1.70, m & (7.7) \end{array}$	2.59 dd (8.0, 12.8)	2.95 dd (2.0, 13.8)	3.21 t (9.3)	5.09 d (4.0)	5.13, 5.15 2d (3.7, 4.0)	5.21 d (3.7)	5.66 d (3.7)
28 (N,N-Dimethyl- aminoethyl)	2Me -0 2.72, s 2.9	$\begin{array}{cccc} CH_2S- & -NCH_2CH_2-\\ 01, \sim t & 3.15, \sim t\\ (7.1) & (7.8) \end{array}$	2.67 dd (8.0, 12.3)	3.06 dd (~0, 12.3)	3.22 t (9.3)	5.	15–5.16 3d	5.22 d (3.9)	5.67 d (3.7)
29 (N,N-Dimethyl- aminopropyl)	2Me 2.76, s $-NCH_2CH_2-$ 3.07, ~t (8.0)	$\begin{array}{c} -CH_2S-\\ 2.67, ~ \sim t\\ (7.1)\\ -NCH_2-\\ 3.25, ~ \sim t\\ (6.8) \end{array}$	2.66 dd (7.6, 12.1)	2.98 dd (~0, 12.3)	3.22 t (9.0)	5.10 d (3.7)	5.14, 5.16 2d (3.9, 4.0)	5.22 d (3.9)	5.67 d (3.7)
30 {2-(Morpholino)ethyl}	$O(CH_2CH_2)_2N-2.46-2.50, m$	CH ₂ CH ₂ S- 2.55-2.77, m 	2.67 dd (6.6, 12.3)	2.99 dd (2.4, 12.1)	3.22 t (9.0)	5.09 d (3.7)	5.12, 5.14 2d (3.9, 3.8)	5.20 d (4.0)	5.66 d (3.7)

14

824

NII-Electronic Library Service

(H-6⁵). The chemical shifts of H-6⁵ and H-6⁵ from oxidation of the sulfur atom were to a significantly lower magnetic field, which was observed at $\delta 2.88-2.96$ (H-6⁵) for sulfoxides **37–42**, and at $\delta 2.85-2.86$ (H-6⁵) and $\delta 3.20-3.22$ (H-6⁵) for sulfoxides **43–48**.

In conclusion, a variety of novel sulfur-containing *p*nitrophenyl α -maltopentaoside derivatives (6-54) were synthesized by using key intermediate 4. These G5P derivatives have been employed for a differential assay of human α -amylases, and the results of this application will be published in the near future.

Experimental

Specific rotation values were determined with a Union PM-201 polarimeter at 25°C, and IR spectra were recorded with a Jasco IRA-100 spectrophotometer. ¹H-NMR spectra were recorded at 270 MHz with a JEOL JNM-GX 270 spectrometer. Preparative chromatography was performed on silica gel (Wako Pure Chemical Industries, 200 mesh) with the solvent systems specified, concentration being conducted *in vacuo*. High-performance liquid chromatography (HPLC) was performed with Shimadzu Model LC-8A equipment. A column (20 × 250 mm) packed with Wakosil 10C₁₈ (reversed phase) was equilibrated with 10% acetonitrile in a 50 mM ammonium acetate solution, and eluted with a linear gradient of acetonitrile from 10 to 60%.

p-Nitrophenyl O-(2,3-di-O-acetyl-4,6-O-benzylidene- α -D-glucopyranosyl)-(1 \rightarrow 4)-tris[O-(2,3,6-tri-O-acetyl- α -D-glucopyranosyl)-(1 \rightarrow 4)]-2,3,6-tri-O-

acetyl- α -D-glucopyranoside (2). To a solution of p-nitrophenyl α -maltopentaoside (1, 5.0 g, 5.27 mmol) in dry DMF (75 ml) were added benzaldehyde dimethylacetal (6 ml, 40.0 mmol) and p-toluenesulfonic acid monohydrate (0.75 g). The mixture was stirred overnight at 25°C, and then neutralized with Amberlite IRA 410 (OH⁻) resin, before the resin was filtered out and washed with methanol. The filtrate and washings were combined and concentrated to a syrup, which was acetylated with acetic anhydride (50 ml) and pyridine (100 ml) for two days at room temperature. After completing the reaction, methanol (30 ml) was added to the mixture at 0°C, which was then concentrated and extracted with dichloromethane. The extract was successively washed with 2 M HCl and water, dried (sodium sulfate), and concentrated. Column chromatography (100:1 dichloromethane-methanol) of the product on silica gel gave 2 (7.28 g, 85%) as an amorphous mass; $[\alpha]_D + 165^\circ$ (c 0.21, CHCl₃); IR ν_{max} (film) cm⁻¹: 3050 (aromatic CH), 2950 (CH), 1750 and 1220 (ester), 1520 and 1360 (NO₂), and 850 and 700 (phenyl); NMR (CDCl₃): δ 1.97–2.20 (14s, 42H, 14Ac), 3.62 (t, 1H, $J_{3^5,4^5} = J_{4^5,5^5} = 9.3$ Hz, H-4⁵), 3.72 (t, 1H, $\begin{array}{l} J_{55,65} = J_{gem} = 10.1 \text{ Hz}, \text{ H-5}^{5}, 3.81 \text{ (dd, 1H, } J_{55,6'} = 4.0 \text{ Hz}, J_{gem} = 9.9 \text{ Hz}, \\ H-6^{'5}, 3.89 - 4.08 \text{ (m, 8H, } H-4^{2-4} \text{ and } 5^{1-5}), 4.10 \text{ (t, 1H, } J_{3^{1},4^{1}} = \\ J_{4^{1},5^{1}} = 9.9 \text{ Hz}, H-4^{1}), 4.16 - 4.33 \text{ (m, 4H, } H-6^{1-4}), 4.46 - 4.60 \text{ (m, 4H, } \\ \end{array}$ $H-6^{\prime 1-4}$, 4.71, 4.72, 4.74 (3dd, 3H, J=4.0, 10.3, 4.2, 10.3, 3.8, 10.1 Hz, H-2²⁻⁴), 4.87 (dd, 1H, $J_{1^5,2^5}$ =4.1 Hz, $J_{2^5,3^5}$ =10.3 Hz, H-2⁵), 4.95 (dd, 1H, $J_{1^1,2^1}$ =3.7 Hz, $J_{2^1,3^1}$ =10.1 Hz, H-2¹), 5.27 (~d, 2H, J=3.9 Hz, H-1³), 14), 5.33 (d, 1H, $J_{1^2,2^2}$ =4.2 Hz, H-1²), 5.37 (d, 1H, $J_{1^5,2^5}$ =4.2 Hz, H-1⁵), 5.36, 5.38, 5.39 (3t, 3H, J=10.7, 9.8, 9.2 Hz, H-3²⁻⁴), 5.45 (t, 1H, $J_{2^{5},3^{5}} = J_{3^{5},4^{5}} = 10.0$ Hz, H-3⁵), 5.48 (s, 1H, PhCH), 5.73 (t, 1H, $J_{2^{1},3^{1}} = J_{3^{1},4^{1}} = 9.3$ Hz, H-3¹), 5.74 (d, 1H, $J_{1^{1},2^{1}} = 3.5$ Hz, H-1¹), 7.33-7.45 (m, 5H, PhCH), 7.25 (2d, 2H, J=9.3 Hz, p-OPhNO₂ o-Ph proton), 8.25 (2d, 2H, J = 9.2 Hz, p-OPhNO₂ m-Ph proton).

Anal. Found: C, 52.45; H, 5.16; N, 1.14%. Calcd. for C₇₁H₈₇O₄₂N

Table VIII. Selected ¹H-NMR (CD₃OD) Data for the 6⁵-S-Aminoalkyl and -Aminoaralkyl Derivatives (31-36)

Compound No. (substituent)	Chemical S (coupling co	Shift in ppm nstants in Hz)	H-6 ⁵	H-6′ ⁵	H-4 ⁵	H-1 ³ ,1 ⁴ ,1 ⁵	H-1 ²	H-11
31 {2-(Piperidino)ethyl}	<i>CH</i> ₂ (CH ₂ CH ₂) ₂ N- 1.62-1.69, m -CH ₂ S- 2.93-3.00, m	$\begin{array}{c} {\rm CH}_2({\rm CH}_2{\rm CH}_2)_2{\rm N}-\\ 1.78-1.87, {\rm m}\\ {\rm CH}_2({\rm CH}_2{\rm CH}_2)_2-\\ {\rm N}{\rm CH}_2-\\ 3.14-3.29, {\rm m} \end{array}$	2.72 dd (7.3, 12.3)	3.03 dd (1.8, 12.5)		5.14–5.17 3d —	5.22 d (3.9)	5.67 d (3.7)
32 {3-(Piperidino)propyl}	$\begin{array}{c} CH_2(CH_2CH_2)_2N-\\ 1.67-1.93, m\\ -CH_2S-\\ 2.69, ~t\\ (6.7) \end{array}$	$-NCH_2CH_2CH_2-$ 2.01–2.07, m $CH_2(CH_2CH_2)_2-$ NCH_2- 3.14–3.26, m	2.67 dd (8.4, 12.1)	2.99 dd (~0, 12.1)		5.10, 5.12, 5.15 3d (3.5, 3.3, 3.5)	5.21 d (4.0)	5.67 d (3.7)
33 ^a {3-(Piperazino)propyl}	- <i>CH</i> ₂ CH ₂ S- 1.77-1.83, m HN(CH ₂ <i>CH</i> ₂); 2.61-	HN(<i>CH</i> ₂ CH ₂) ₂ N- 3.19-3.25, m N <i>CH</i> ₂ CH ₂ CH ₂ - 2.69, m	2.59 dd (7.8, 13.6)	2.98 dd (~0, 12.3)		5.15, 5.18, 5.19 3d (3.7, 3.3, 3.8)	5.25 d (3.5)	5.71 d (3.5)
34 {(2-Piridyl)methyl}	5-Ph 7.25–7.27, m 4-Ph 7.78, dt (1.8, 7.7)	3-Ph 7.48, d (7.9) 6-Ph 8.43, ~d (3.9)	2.60 dd (7.6, 12.4)	2.92 dd (2.5, 14.1)	3.21 t (9.1)	5.09, 5.14, 5.15 3d (3.7, 3.8, 3.9)	5.21 d (3.5)	5.66 d (3.7)
35 {(3-Piridyl)methyl}	5-Ph 4 7.34-7.39, m 7.84 — (0 2-Ph 8.48, ~s	-Ph 6-Ph 4, ~d 8.38, ~d 7.9) (4.4)	2.54 dd (7.4, 12.3)	2.84 dd (2.2, 12.3)	3.22 t (9.2)	5.13, 5.14, 5.16 3d (3.7, 3.8, 4.0)	5.21 d (4.0)	5.66 d (3.7)
36 {(4-Piridyl)methyl}	3-Ph 7.42, ~d (5.9)	2-Ph 8.43, ∼d (5.7)	2.54 dd (7.1, 12.4)	2.83 dd (~0, 12.4)	3.22 t (9.3)	5.12, 5.14, 5.16 3d (3.7, 3.8, 3.9)	5.21 d (3.9)	5.66 d (3.5)

^a CD_3OD-D_2O solvent (3:1).

826

Table IX. Selected ¹H-NMR (CD₃OD) Data for the 6⁵-Sulfoxide and -Sulfone Derivatives (38, 39, 44, 45, 50, and 51)

Compound No. (substituent)	Chen (coupli	nical Shift in ppm ng constants in Hz)	H-6 ⁵	H-6′ ⁵	H-4 ⁵	H-5 ⁵	H-1 ³ ,1 ⁴	H-15	H-1 ²	H-11
38 {(p-Methylbenzyl)- sulfinyl ^a }	Me 2.32, s —	MePhCH ₂ SO- 4.06, 4.20, 2d (13.0, 13.2) Ph 7.15-7.25, m	2.85 dd (7.3, 13.7)		3.26 t (9.7)	4.07 m	5.13, 5.14 2d (4.0, 4.0)	5.23 d (3.7)	5.20 d (3.8)	5.66 d (3.7)
44 {(p-Methylbenzyl)- sulfinyl ^b }	Me 2.32, s —	MePh <i>CH</i> ₂ SO- 3.98, 4.14, 2d (13.2, 13.2) Ph 7.15-7.24, m	2.82 dd (10.7, 13.4)	3.20 dd (~0, 13.0)	3.13 t (9.2)	4.05 m 	5.10, 5.13 2d (3.8, 3.8)	5.17 d (3.7)	5.21 d (3.9)	5.66 d (3.7)
50 {(<i>p</i> -Methylbenzyl)- sulfonyl}	Me 2.34, s —	$\begin{array}{c} \text{MePh}CH_2\text{SO}_2-\\ 4.38, 4.50, 2d\\ (14.3, 13.9)\\ \text{Ph}\\ 7.31-7.39, m\\ -\end{array}$	_ _ _	* *	3.11 t (9.3)	4.14 dt (2.3, 8.6)	5.13, 5.15 2d (3.5, 3.7)	5.37 d (3.3)	5.21 d (3.9)	5.66 d (3.7)
39 (Ethylsulfinyl ^a)	Me 1.32, t (7.5)	MeCH ₂ 2.87, 2.94, 2dd (7.7, 12.7, 7.6, 13.3)	2.95 dd (7.3, 12.9)	 		4.04 dt (2.1, 8.0)	5.13, 5.15 2d (4.0, 4.0)	5.	21 - d .9)	5.66 d (3.7)
45 (Ethylsulfinyl ^b)	Me 1.32, t (7.5)	MeCH ₂ - 2.75, 2.92, 2dd (7.2, 11.2, 7.6, 11.2)	2.85 dd (10.8, 11.2)	3.22 dd (~0, 11.2)	3.16 t (9.0)	4.07 m	5.11, 5.14 2d (3.9, 4.2)	5.18 d (3.7)	5.20 d (3.7)	5.66 d (3.7)
51 (Ethylsulfonyl)	Me 1.33, t (7.4)	MeCH ₂ - 3.21, dd (7.4, 12.9)			3.14 t (9.3)	4.10 m	5.12, 5.14 2d (3.9, 3.8)	5.25 d (3.7)	5.21 d (3.8)	5.66 d (3.7)

^{*a,b*} Chiral sulfoxide pair.

(1626.44): C, 52.43; H, 5.39; N, 0.86%.

p-Nitrophenyl O-(2,3-di-O-acetyl-4-O-benzoyl-6-bromo-6-deoxy-a-Dglucopyranosyl)- $(1 \rightarrow 4$)- $tris[O-(2,3,6-tri-O-acetyl-\alpha-D-glucopyranosyl) (1\rightarrow 4)$]-2,3,6-tri-O-acetyl- α -D-glucopyranoside (3). To a solution of 2 (6.74 g, 4.14 mmol) in dry carbon tetrachloride (85 ml) were added N-bromosuccinimide (1.03 g, 5.79 mmol) and barium carbonate (3.27 g, 16.6 mmol). The suspension was heated under reflux while stirring for 3 h, and then the precipitate was filtered out and washed with dichloromethane. The filtrate and washings were combined and concentrated. Column chromatography (100:1 dichloromethane-methanol) of the residue on silica gel gave 3 (6.71 g, 95%) as an amorphous mass; $[\alpha]_{\rm D}$ + 176° (c 0.20, CHCl₃); IR v_{max} (film) cm⁻¹: 3100 (aromatic CH), 2950 (CH), 1750 and 1240 (ester), 1520 and 1380 (NO₂), and 850 and 710 (phenyl); NMR (CDCl₃): δ 1.98–2.19 (14s, 42H, 14Ac), 3.42 (dd, 1H, $J_{5^5,6^5}$ = 5.9 Hz, $J_{gem} = 11.5 \text{ Hz}, \text{ H-6}^{5}$), 3.50 (dd, 1H, $J_{55,6'5} = 2.4 \text{ Hz}, J_{gem} = 11.4 \text{ Hz}, \text{ H-6}^{\prime 5}$), 3.85–4.18 (m, 9H, H-4¹⁻⁴ and 5¹⁻⁵), 4.21–4.33 (m, 4H, H-6¹⁻⁴), 4.46– 4.58 (m, 4H, H-6'¹⁻⁴), 4.70–4.78 (3dd, 3H, H- 2^{2-4}), 4.90 (dd, 1H, $J_{1^5,2^5} = 3.9 \text{ Hz}, J_{2^5,3^5} = 10.4 \text{ Hz}, \text{ H-}2^5), 4.95 \text{ (dd, 1H, } J_{1^1,2^1} = 3.9 \text{ Hz},$ $J_{2^{1},3^{1}} = 10.3 \text{ Hz}, \text{ H-}2^{1}$, 5.25 (t, 1H, $J_{3^{5},4^{5}} = J_{4^{5},5^{5}} = 10.3 \text{ Hz}, \text{ H-}4^{5}$), 5.28, 5.29 (2d, 2H, J=4.2, 4.5 Hz, H-1³, 1⁴), 5.33 (d, 1H, $J_{1^2,2^2}=4.0$ Hz, H-1²), 5.38, 5.39, 5.40 (3t, 3H, J=9.0, 8.9, 9.1 Hz, H-3²⁻⁴), 5.48 (d, 1H, $J_{1^5,2^5} = 3.9 \text{ Hz}, \text{ H-1}^5), 5.55 \text{ (t, 1H, } J_{2^5,3^5} = J_{3^5,4^5} = 10.0 \text{ Hz}, \text{ H-3}^5), 5.73 \text{ (t,}$ 1H, $J_{2^1,3^1} = J_{3^1,4^1} = 9.2$ Hz, H-3¹), 5.74 (d, 1H, $J_{1^1,2^1} = 3.3$ Hz, H-1¹), 7.25 (2d, 2H, J=9.3 Hz, p-OPhNO₂ o-Ph proton), 7.46 (t, 2H, J=7.6 Hz, PhCO *m*-Ph proton), 7.61 (t, 1H, J=7.3 Hz, PhCO *p*-Ph proton), 8.00 (d, 2H, J=7.1 Hz, PhCO o-Ph proton), 8.24 (2d, 2H, J=9.1 Hz, p-OPhNO₂ *m*-Ph proton)

Anal. Found: C, 50.00; H, 5.22; N, 0.62%. Calcd. for $C_{71}H_{86}O_{42}NBr$ (1705.35): C, 50.01; H, 5.08; N, 0.82%.

p-Nitrophenyl O-(2,3-di-O-acetyl-6-S-acetyl-4-O-benzoyl-6-thio-a-D-

glucopyranosyl)- $(1 \rightarrow 4$)- $tris[O-(2,3,6-tri-O-acetyl-\alpha-D-glucopyranosyl) (1\rightarrow 4)$]-2,3,6-tri-O-acetyl- α -D-glucopyranoside (4). To a solution of 3 (5.97 g, 3.50 mmol) in dry acetone (180 ml) were added Drierite (6 g) and potassium thioacetate (2.40 g, 21 mmol), and the mixture was stirred overnight at 25°C. The Drierite was filtered out and washed with dichloromethane. The filtrate and washings were combined and concentrated, and column chromatography (1:1 ethyl acetate-hexane) of the residue on silica gel gave 4 (5.54 g, 93%) as an amorphous mass; $[\alpha]_{\rm D}$ + 171° (c 0.18, CHCl₃); IR $v_{\rm max}$ (film) cm⁻¹: 3100 (aromatic CH), 2950 (CH), 1740 and 1220 (CH), 1 (CH), 1740 and 1220 (ester), 1700 (SAc), 1520 and 1380 (NO₂), and 850 and 710 (phenyl); NMR (CDCl₃): δ 1.89–2.20 (14s, 42H, 14Ac), 2.33 (s, 3H, SAc), 3.13 (dd, 1H, $J_{5^5,6^5} = 5.7$ Hz, $J_{gem} = 13.3$ Hz, H-6⁵), 3.26 (dd, 1H, $J_{5^{5},6^{\prime 5}} = 3.3$ Hz, $J_{gem} = 13.6$ Hz, H-6^{'5}), 3.88-4.07 (m, 8H, H-4²⁻⁴ and 5^{1-5} , 4.10 (t, 1H, $J_{31,41} = J_{41,51} = 9.5$ Hz, H-4¹), 4.24–4.33 (m, 4H, H-6¹⁻⁴), 4.45–4.53 (m, 4H, H-6¹⁻⁴), 4.70–4.78 (3dd, 3H, H-2²⁻⁴), 4.87 (dd, 1H, $J_{1^{5},2^{5}} = 3.8 \text{ Hz}, J_{2^{5},3^{5}} = 10.3 \text{ Hz}, \text{ H-2}^{5}), 4.95 \text{ (dd, 1H, } J_{1^{1},2^{1}} = 3.7 \text{ Hz},$ $J_{2^{1},3^{1}} = 10.3 \text{ Hz}, \text{H-}2^{1}), 5.18 \text{ (t, 1H, } J_{3^{5},4^{5}} = J_{4^{5},5^{5}} = 9.9 \text{ Hz}, \text{H-}4^{5}), 5.28, 5.29 \text{ (2d, 2H, } J = 3.7 \text{ Hz}, 4.0 \text{ Hz}, \text{H-}1^{3}, 1^{4}), 5.33 \text{ (d, 1H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36, 5.38, 5.40 \text{ (3t, 3H, } J = 10.3, 9.2, 9.3 \text{ Hz}, \text{H-}3^{2^{-4}}), 5.39 \text{ (d, 1H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36, 5.38, 5.40 \text{ (3t, 3H, } J = 10.3, 9.2, 9.3 \text{ Hz}, \text{H-}3^{2^{-4}}), 5.39 \text{ (d, 1H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 1H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 1H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 1H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 1H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 2H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 2H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 1H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 2H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 2H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 2H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 2H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 2H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 2H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 2H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 2H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 2H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 2H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 2H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 2H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 2H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 2H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 2H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 2H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 2H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text{H-}1^{2}), 5.36 \text{ (d, 2H, } J_{1^{2},2^{2}} = 4.0 \text{ Hz}, \text$ $J_{1^5,2^5} = 4.0$ Hz, H-1⁵), 5.50 (t, 1H, $J_{2^5,3^5} = J_{3^5,4^5} = 10.1$ Hz, H-3⁵), 5.73 (t, 1H, $J_{2^{1},3^{1}} = J_{3^{1},4^{1}} = 9.2$ Hz, H-3¹), 5.74 (d, 1H, $J_{1^{1},2^{1}} = 3.7$ Hz, H-1¹), 7.26 (2d, 2H, J=9.2 Hz, p-OPhNO₂ o-Ph proton), 7.46 (t, 2H, J=7.5 Hz, PhCO m-Ph proton), 7.60 (t, 1H, J=7.5 Hz, PhCO p-Ph proton), 8.01 (d, 2H, J=7.3 Hz, PhCO o-Ph proton), 8.25 (2d, 2H, J=9.2 Hz, p-OPhNO₂ m-Ph proton).

Anal. Found: C, 51.29; H, 5.49; N, 0.64%. Calcd. for $C_{73}H_{89}O_{43}NS$ (1700.54): C, 51.56; H, 5.28; N, 0.82%.

p-Nitrophenyl O-(6-S-benzyl-6-thio- α -D-glucopyranosyl)-(1 \rightarrow 4)-tris[O- α -D-glucopyranosyl-(1 \rightarrow 4)]- α -D-glucopyranoside (6). To a solution of 4 (500 mg, 0.294 mmol) in dry methanol (10 ml) was added a solution of sodium methoxide (0.294 mmol) in dry methanol (2 ml), and the mixture

Downloaded by [North Dakota State University] at 18:52 17 November 2014

Compound No. (substituent)	C (cou Me -	hemical Shift in ppling constant $-(CH_2)_nCH_2S$ -	n ppm s in Hz) -CH ₂ S-	H-6 ⁵	H-6′ ⁵	H-4 ⁵	H-5 ⁵	H-1 ³ ,1 ⁴	H-1 ⁵	H-1 ²	H-1 ¹
40 (Propylsulfinyl ^a)	1.08 t (7.4)	1.74–1.83 m —	2.81–2.89 m —	2.96 dd (7.0, 12.3)			4.06 m 	5.13, 5.14 2d (4.4, 4.4)	5.21 ~d (3.9))	5.66 d (3.7)
46 (Propylsulfinyl ^b)	1.09 t (7.4)	1.72–1.83 m —	2.70–2.91 m —	2.85 dd (11.5, 12.1)	3.22 dd (1.5, 12, 1)	3.16 t (9.3)	4.07 m 	5.11, 5.13 2d (4.0, 3.9)	5.19, 5. 2d (3.9, 4)	.21 .2)	5.66 d (3.7)
52 (Propylsulfonyl)	1.06 t (7.4)	1.78—1.89 m —	3.15—3.21 m			3.13 t (9.2)	4.07 m	5.12, 5.14 2d (3.7, 4.0)	5.26 d (3.7)	5.21 d (3.9)	5.66 d (3.7)
41 {(<i>n</i> -Pentyl)sulfinyl ^a }	0.90 t (7.1)	1.28–1.77 m —	2.87 t (7.5)	2.96 dd (7.1, 11.9)	 		4.07 m —	5.12, 5.14 2d (3.9, 3.9)	5.20 ~d (3.7))	5.66 d (3.5)
47 {(n-Pentyl)sulfinyl ^b }	0.91 t (7.1)	1.28–1.81 m —	2.70–2.89 m	2.85 dd (10.8, 12.5)	3.22 dd (~0, 11.9)	3.16 t (9.3)	4.07 m	5.11, 5.13 2d (3.9, 4.2)	5.19, 5 2d (4.0, 4	.20	5.66 d (3.7)
53 {(n-Pentyl)sulfonyl}	0.91 t (6.6)	1.28–1.81 m —	3.16–3.23 m			3.13 t (9.3)	4.07 m	5.12, 5.14 2d (3.7, 3.5)	5.28 d (3.5)	5.21 d (3.8)	5.66 d (3.5)
42 (Heptylsulfinyl ^e)	0.90 t (6.9)	1.20–1.80 m —	2.87 t (7.7)	2.96 dd (7.3, 11.8)			4.07 m	5.12, 5.14 2d (4.2, 4.2)	5.21 ~d (2.9))	5.66 d (3.5)
48 (Heptylsulfinyl ^b)	0.90 t (6.8)	1.28–1.78 m —	2.72–2.89 m —	2.86 dd (10.9, 12.0)	3.22 dd (1.0, 11.7)	3.16 t (9.2)	4.07 m	5.11, 5.13 2d (3.8, 3.9)	5.19, 5 2d (3.8, 4	.20 .0)	5.66 d (3.9)
54 (Heptylsulfonyl)	0.90 t (6.7)	1.28–1.81 m —	3.18–3.25 m —			3.13 t (9.6)	4.07 m	5.12, 5.13 2d (4.3, 4.3)	5.26 d (3.1)	5.21 d (3.7)	5.66 d (3.7)

Table X. Selected ¹H-NMR (CD₃OD) Data for the 6⁵-Sulfoxide and -Sulfone Derivatives (40-42, 46-48, and 52-54)

^{*a,b*} Chiral sulfoxide pair.

was kept for 7 h at 25°C. After all of the starting material had been converted into 5 (detected by TLC, 4:2:1 buthanol-ethanol-water), benzyl bromide (0.035 ml, 0.294 mmol) was added, and the mixture was stirred for 1.5 h at 40°C under nitrogen and then concentrated. Column chromatography (methanol) of the residue on Sephadex LH-20 gave 6 (145 mg, 47%) as an amorphous mass; $[\alpha]_D + 182^{\circ}$ (c 0.19, MeOH); IR v_{max} (KBr) cm⁻¹: 3400 (OH), 2900 (CH), 1510 and 1340 (NO₂), and 850 and 700 (phenyl); NMR (CD₃OD): δ 2.52 (dd, 1H, $J_{55,65} = 7.9$ Hz, $J_{gem} = 11.9$ Hz, H-6⁵), 2.85 (dd, 1H, $J_{55,6'5} = 2.1$ Hz, $J_{gem} = 11.9$ Hz, H-6⁵), 3.20 (t, 1H, $J_{35,45} = J_{45,55} = 8.9$ Hz, H-4⁵), 4.10 (t, 1H, $J_{21,31} = J_{31,41} = 8.9$ Hz, H-3¹), 5.12 (d, 1H, $J_{15,25} = 4.0$ Hz, H-1⁵), 5.13, 5.15 (2d, 2H, J = 4.6, 4.2 Hz, H-1³, 1⁴), 5.21 (d, 1H, $J_{1^2,2^2} = 3.9$ Hz, H-1²), 5.66 (d, 1H, $J_{1^1,2^1} = 3.5$ Hz, H-1¹), 7.18-7.34 (m, 5H, PhCH₂), 7.33 (2d, 2H, J = 9.2 Hz, p-OPhNO₂ *m*-Ph proton), 8.21 (2d, 2H, J = 9.2 Hz, p-OPhNO₂ *m*-Ph proton).

Anal. Found: C, 48.77; H, 5.99; N, 1.15%. Calcd. for $C_{43}H_{61}O_{27}NS$ (1056.01): C, 48.91; H, 5.82; N, 1.33%.

p-Nitrophenyl O-[6-S-(α -methylbenzyl)-6-thio- α -D-glucopyranosyl]-(1 \rightarrow 4)-tris[O- α -D-glucopyranosyl-(1 \rightarrow 4)]- α -D-glucopyranosides (11 and 12). To a solution of 4 (500 mg, 0.294 mmol) in dry methanol (10 ml) was added a solution of sodium methoxide (0.294 mmol) in dry methanol (2 ml), the mixture then being processed as described for 6 to give a diastereoisomeric mixture of 11 and 12 (190 mg, 60%). The product was chromatographed by HPLC to give 11 (t_R 19.0 min, 40.6 mg, 13%) and 12 (t_R 19.4 min, 38.4 mg, 12%) as amorphous mass. The physical and ¹H-NMR data are shown in Tables II and V. Other p-nitrophenyl O-(6-S-alkyl-6-thio- α -D-glucopyranosyl)-(1 \rightarrow 4)tris[O- α -D-glucopyranosyl-(1 \rightarrow 4)]- α -D-glucopyranosides (7–10 and 13–26). The title compounds were prepared according to the procedure described for 6. The yields, physical and ¹H-NMR data are shown in Tables II, V, VI, and VII.

p-Nitrophenyl O-[6-S-(N,N-diethylaminoethyl)-6-thio- α -D-glucopyranosyl]- $(1 \rightarrow 4)$ -tris[$O - \alpha$ -D-glucopyranosyl- $(1 \rightarrow 4)$]- α -D-glucopyranoside (27). To a solution of 4 (300 mg, 0.176 mmol) in dry MeOH (10 ml) was added a solution of sodium methoxide (0.440 mmol) in dry methanol (3.8 ml), and the mixture was kept for 1.5 h at 25°C. After all of the starting material had been converted into 5, 2-chlorotriethylamine hydrochloride (45 mg, 0.264 mmol) was added, and the mixture was stirred for 1 h at 40°C under nitrogen, before being processed as described for 6 to give 27 (133 mg, 71%) as an amorphous mass; $[\alpha]_D + 127^\circ$ (c 0.62, MeOH); IR ν_{max} (KBr) cm⁻¹: 3400 (OH), 2920 (CH), 1400 (NCH₂), 1520 and 1350 (NO₂), and 870 (phenyl); NMR (CD₃OD): $\delta 1.26 \{t, 6H, J_{CH_3,CH_2} = 7.2 \text{ Hz},$ $(CH_3CH_2)_2NCH_2CH_2S$, 2.71 (dd, 1H, $J_{5^{5},6^{5}} = 7.4$ Hz, $J_{gem} = 12.5$ Hz, H-6⁵), 2.91 {m, 2H, $(CH_3CH_2)_2NCH_2CH_2S$ }, 3.02 (dd, 1H, $J_{5^5,6'^5} =$ ~0 Hz, $J_{gem} = 12.5$ Hz, H-6^{'5}), 3.12 {dd, 4H, $J_{CH_3,CH_2} = 7.2$ Hz, $J_{gem} = 12.6$ Hz, $(CH_3CH_2)_2NCH_2CH_2S$ }, 3.21–3.27 {m, 3H, $(CH_3CH_2)_2NCH_2CH_2S$, and H-4⁵), 4.10 (t, 1H, $J_{2^{1},3^{1}}=J_{3^{1},4^{1}}=9.0$ Hz, H-3¹), 5.13–5.15 (3d, 3H, H-1³⁻⁵), 5.20 (d, 1H, $J_{1^{2},2^{2}}=3.9$ Hz, H-1²), 5.66 (d, 1H, $J_{1^{1},2^{1}}=3.7$ Hz, H-11), 7.31 (2d, 2H, J=9.4 Hz, p-OPhNO₂ o-Ph proton), 8.22 (2d, 2H, J=9.2 Hz, p-OPhNO₂ m-Ph proton).

Anal. Found: C, 47.51; H, 6.55; N, 2.63%. Calcd. for $C_{42}H_{68}O_{27}N_2S$ (1065.06): C, 47.36; H, 6.44; N, 2.63%.

Other p-nitrophenyl O-(6-S-aminoalkyl-6-thio- α -D-glucopyranosyl)-($1 \rightarrow 4$)-tris[O- α -D-glucopyranosyl-($1 \rightarrow 4$)]- α -D-glucopyranosides (28-36). The title compounds were prepared according to the procedure described for 27. The yields, physical and ¹H-NMR data are shown in Tables III, VII, and VIII.

p-Nitrophenyl O-(6-benzylsulfinyl-6-deoxy- α -D-glucopyranosyl)-(1 \rightarrow 4)tris[O- α -D-glucopyranosyl-(1 \rightarrow 4)]- α -D-glucopyranosides (37 and 43). To a solution of 6 (60 mg, 0.0568 mmol) in acetic acid (5 ml) was added *m*-chloroperbenzoic acid (9.8 mg, 0.0568 mmol) at 0°C in the dark. The mixture was stirred for 1 h at room temperature in the dark and then extracted with water-dichloromethane. The aqueous layer was concentrated, and the residue was chromatographed by HPLC to give 37 (t_R 14.5 min, 13.2 mg, 22%), 43 (t_R 15.3 min, 12.1 mg, 20%), and furtheroxidized sulfone 49 (t_R 15.9 min, 6.7 mg, 11%) as an amorphous mass. Unreacted 6 (t_R 18.1 min, 9.9 mg, 17%) was recovered.

37: $[\alpha]_{\rm D}$ + 188° (c 0.22, MeOH); IR $\nu_{\rm max}$ (KBr) cm⁻¹: 3400 (OH), 2940 (CH), 1520 and 1340 (NO₂), 1030 (SO), and 860 and 700 (phenyl); NMR (CD₃OD): δ 2.88 (dd, 1H, $J_{5^5,6^5}$ = 7.3 Hz, $J_{\rm gem}$ = 12.2 Hz, H-6⁵), 4.08 (dt, 1H, $J_{4^5,5^5}$ = $J_{5^5,6^5}$ = 7.8 Hz, $J_{5^5,6^5}$ = 2.0 Hz, H-5⁵), 4.10 (t, 1H, $J_{2^1,3^1}$ = $J_{3^1,4^1}$ = 8.1 Hz, H-3¹), 4.09, 4.25 (2d, 2H, $J_{\rm gem}$ = 13.2, 13.2 Hz, PhCH₂SO), 5.13, 5.14 (2d, 2H, J = 4.0, 4.8 Hz, H-1³, 1⁴), 5.21 (d, 1H, $J_{1^2,2^2}$ = 3.8 Hz, H-1²), 5.24 (d, 1H, $J_{1^2,2^2}$ = 3.5 Hz, H-1⁵), 5.66 (d, 1H, $J_{1^1,2^1}$ = 3.7 Hz, H-1¹), 7.31 (2d, 2H, J = 9.4 Hz, p-OPhNO₂ o-Ph proton), 7.30–7.35 (m, 5H, *Ph*CH₂SO), 8.22 (2d, 2H, J = 9.3 Hz, p-OPhNO₂ m-Ph proton).

Anal. Found: C, 48.04; H, 5.91; N, 1.13%. Calcd. for $C_{43}H_{61}O_{28}NS$ (1072.01): C, 48.18; H, 5.74; N, 1.31%.

43: $[\alpha]_{D}$ + 167° (*c* 0.20, MeOH); IR ν_{max} (KBr) cm⁻¹: 3400 (OH), 2940 (CH), 1520 and 1340 (NO₂), 1050 (SO), and 860 and 700 (phenyl); NMR (CD₃OD): δ 2.86 (dd, 1H, $J_{5^{5},6^{5}}$ = 10.9 Hz, J_{gem} = 13.2 Hz, H-6⁵), 3.13 (t, 1H, $J_{3^{5},4^{5}}$ = $J_{4^{5},5^{5}}$ =9.4 Hz, H-4⁵), 3.20 (dd, 1H, $J_{5^{5},6^{5}}$ =1.7 Hz, J_{gem} = 13.2 Hz, H-6⁵), 4.02, 4.10 (2d, 2H, J_{gem} = 13.2, 13.2 Hz, PhCH₂SO), 4.06 (dt, 1H, $J_{4^{5},5^{5}}$ = $J_{5^{5},6^{5}}$ =11.5 Hz, $J_{5^{5},6^{5}}$ =1.7 Hz, H-5⁵), 4.10 (t, 1H, $J_{2^{1},3^{1}}$ = $J_{3^{1},4^{1}}$ =9.2 Hz, H-3¹), 5.10, 5.13 (2d, 2H, J=3.7, 3.8 Hz, H-1³, 1⁴), 5.18 (d, 1H, $J_{1^{1},2^{1}}$ =3.5 Hz, H-1⁵), 5.21 (d, 1H, $J_{1^{2},2^{2}}$ =3.7 Hz, H-1²), 5.67 (d, 1H, $J_{1^{1},2^{1}}$ =3.5 Hz, H-1¹), 7.32 (2d, 2H, J=9.4 Hz, *p*-OPhNO₂ *m*-Ph proton).

Anal. Found: C, 48.15; H, 5.44; N, 1.23%. Calcd. for $C_{43}H_{61}O_{28}NS$ (1072.01): C, 48.18; H, 5.74; N, 1.31%.

p-Nitrophenyl O-(6-S-benzylsulfonyl-6-deoxy- α -D-glucopyranosyl)-(1 \rightarrow 4)tris[O- α -D-glucopyranosyl-(1 \rightarrow 4)]- α -D-glucopyranoside (49). To a solution of 6 (30 mg, 0.0284 mmol) in acetic acid (2.5 ml) was added *m*chloroperbenzoic acid (14.7 mg, 0.085 mmol) at 0°C in the dark. The mixture was stirred for 1 h at room temperature in the dark, and then worked up as just described to give **49** (t_R 15.9 min, 30 mg, quant.) as an amorphous mass; [α]_D + 169° (c 0.21, MeOH); IR v_{max} (KBr) cm⁻¹: 3400 (OH), 2940 (CH), 1520 and 1340 (NO₂), 1300 and 1110 (SO₂), and 850 and 700 (phenyl); NMR (CD₃OD): δ 3.12 (t, 1H, $J_{35,45} = J_{45,55} = 9.4$ Hz, H-4⁵), 4.11 (t, 1H, $J_{21,31} = J_{3',4'} = 9.1$ Hz, H-3¹), 4.15 (dt, 1H, $J_{45,55} = J_{55,65} = 9.1$ Hz, $J_{55,6'5} = 2.0$ Hz, H-5⁵), 4.44, 4.55 (2d, 2H, $J_{gem} = 13.7$, 14.1 Hz, PhCH₂SO₂), 5.14, 5.15 (2d, 2H, $J_{13,23} = J_{14,24} = 3.3$ Hz, H-1³, 1⁴), 5.21 (d, 1H, $J_{12,22} = 3.7$ Hz, H-1²), 5.39 (d, 1H, $J_{15,25} = 3.3$ Hz, H-1⁵), 5.66 (d, 1H, $J_{11,21} = 3.9$ Hz, H-1¹), 7.32 (2d, 2H, J = 9.3 Hz, p-OPhNO₂ m-Ph proton), 7.35-7.46 (m, 5H, PhCH₂SO₂), 8.21 (2d, 2H, J = 9.3 Hz, p-OPhNO₂ m-Ph proton).

Anal. Found: C, 47.22; H, 5.61; N, 1.58%. Calcd. for $C_{43}H_{61}O_{29}NS$ (1088.00): C, 47.47; H, 5.65; N, 1.29%.

Other p-nitrophenyl O-(6-S-alkylsulfinyl-6-thio- α -D-glucopyranosyl)-($1 \rightarrow 4$)-tris[O- α -D-glucopyranosyl-($1 \rightarrow 4$)]- α -D-glucopyranosides (38-42 and 44-48). The title compounds were prepared according to the procedure described for 37 and 43. The yields, physical and ¹H-NMR data are shown in Tables IV, IX, and X.

Other p-nitrophenyl O-(6-S-alkylsulfonyl-6-deoxy- α -D-glucopyranosyl)-($1 \rightarrow 4$)-tris[O- α -D-glucopyranosyl-($1 \rightarrow 4$)]- α -D-glucopyranosides (50-54). The title compounds were prepared according to the procedure described for 49. The yields, physical and ¹H-NMR data are shown in Tables IV, IX, and X.

References

- 1) S. Nørby, Exp. Cell Res., 36, 663-666 (1964).
- J. E. Berk, S. Hayashi, R. L. Searcy, and N. C. Hightower, Am. J. Dig. Dis., 11, 695-701 (1966).
- K. Ito, M. Katayama, N. Minamiura, and T. Yamamoto, J. Biochem., 97, 1357-1362 (1985).
- 4) T. E. Mifflin, D. C. Benjamin, and D. E. Bruns, *Clin. Chem.*, 31, 1283–1288 (1985); M. Gerber, K. Naujoks, H. Lenz, W. Gerhardt, and K. Wullf, *ibid.*, 31, 1331–1334 (1985).
- M. D. O'Donnell, O. FitzGerald, and K. F. McGeeney, Clin. Chem., 23, 560-566 (1977).
- 6) K. Omichi and T. Ikenaka, J. Biochem., 94, 1797-1802 (1983).
- 7) K. Omichi and T. Ikenaka, Clin. Chim. Acta, 138, 197-203 (1984).
- 8) K. Omichi and T. Ikenaka, J. Biochem., 100, 1353-1358 (1986).
- S. Tokutake, K. Kotani, K. Saito, and N. Yamaji, Chem. Pharm. Bull., 40, 2531–2536 (1992).
- K. Ogawa, H. Matsui, and T. Usui, Biosci. Biotech. Biochem., 56, 1933-1936 (1992).
- 11) S. Hanessian, Carbohydr. Res., 2, 86-88 (1966).