AGRICULTURAL AND FOOD CHEMISTRY

Design, Synthesis, Antiviral Activity, and Structure–Activity Relationships (SARs) of Two Types of Structurally Novel Phenanthroindo/quinolizidine Analogues

Bo Su,^{||} Fazhong Chen,^{||} Lizhong Wang, and Qingmin Wang*

State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China

Supporting Information

ABSTRACT: To investigate the influence of the variation of the original skeletons of natural phenanthroindo/quinolizidine alkaloids on antiviral activities, two types of structurally totally novel analogues 7a, 7b, 16a, and 16b were designed, synthesized, and evaluated against tobacco mosaic virus (TMV) for the first time. Bioassay results indicated that all four of the newly designed analogues showed good to excellent antiviral activities, among which analogue 16a dispalyed comparable activity with that of ningnanmycin, perhaps one of the most successful commercial antiviral agents, thus emerging as a potential inhibitor of plant virus and serving as a new lead for further optimization. Further structure—activity relationships are also discussed, demonstrating for the first time that the same changes of the original skeletons of phenanthroindolizidine and phenanthroquinolizidine exihibted totally different antiviral activities results, providing some original and useful information about the preferential conformation for maintaining high activities.

KEYWORDS: phenanthroindolizidine alkaloid, phenanthroquinolizidine alkaloid, antiviral activity, tobacco mosaic virus, structure–activity relationship, anti-TMV

INTRODUCTION

Tobacco mosaic virus (TMV) is one of the most well-studied plant viruses worldwide, which can infect 9 plant families and at least 125 individual species, such as tobacco, pepper, cucumber, tomato, and many ornamental flowers.¹ TMV is known as "plant cancer" due to the fact that it is very difficult to control and has brought great disasters to agriculture. The economic loss caused by TMV is up to U.S. \$100 million each year worldwide.²

Ningnanmycin (Figure 1) as a commercial plant-virus inhibitor is perhaps most effective against plant virus and displays 56.0% in vivo curative effect at 500 μ g/mL. Another widely used antiplant viral agent is ribavirin (Figure 1), the inhibitory effect of which is always <50% at 500 μ g/mL.

Figure 1. Chemical structures of ningnanmycin, ribavirin, and representative phenanthroindo/quinolizidine alkaloids.

Because of the great economic loss caused by TMV and the unsatisfactory inhibitory effects (usually 30–60%) of these antiviral agents, much effort has been made toward the development of novel and high effective plant virucides. Consequently, a number of chemicals, such as pyrazole derivatives,³ nucleotides,⁴ α -aminophosphonate derivatives,⁵ 3-acetonyl-3-hydroxyoxindole,⁶ triazolyl compounds,⁷ oxidized polyamines,⁸ and substituted phenylureas,⁹ were reported to possess antiviral activities, few of which have been applied successfully in agriculture.

Compared with synthetic chemicals, natural product-based antiviral agents have many advantages, such as low mammalian toxicity, easy decomposition, friendly to environment, specific to targeted species, unique mode of action, and so on.^{10,11} Phenanthroindo/quinolizdine alkaloids are a small family of natural products isolated mainly from the Cynanchum, Pergularia, and Tylophora species.¹² They exhibit diverse biological activities ranging from anticancer and anti-inflammatory to antiamoebic and antilupus effects.¹³⁻¹⁷ In a program aimed at screening of plants for biologically active natural products as alternatives to conventional synthetic antiviral agents, our group first found that the alcohol extract of Cynanchum komarovii displayed moderate antiviral activity against TMV.18 Further investigation demonstrated that the main active compound was (R)-antofine (Figure 1). Antiviral mechanism studies revealed that antofine has a favorable

Received:	December 10, 2013
Revised:	January 23, 2014
Accepted:	January 27, 2014
Published:	January 27, 2014

interaction with the origin of TMV RNA (oriRNA), exhibiting its virus inhibition by binding to oriRNA and interfering with virus assembly initiation.¹⁹ Moreover, structure–activity relationship (SAR) studies showed that most compounds of the phenanthroindolizidine-based library with structural diversity exhibited antiviral effect against TMV.

In previous work, the SAR studies mainly focused on (1) substituted patterns of methoxyl group on the phenanthrene ring, (2) the number of methoxyl groups on the phenanthrene ring, (3) derivatation at the C-14 position, and (4) D ring opened derivatives.^{20,21} However, there is no investigation on the variation of basic skeletons of phenanthroindo/quinolizines, which will largely change the conformation of the molecules. To study the influence of the variation of basic skeletons and conformations of these phenanthroindo/quinolizidine alkaloids, two types of structurally novel phenanthroindo/quinolizidine alkaloid analogues were designed, synthesized, and evaluated for their antiviral activity against TMV. The SAR study of these compounds against TMV is also discussed.

MATERIALS AND METHODS

Instruments. ¹H NMR spectra were obtained at 400 MHz using a Bruker AC-P 400. Chemical shift values (δ) were given in parts per million and were downfield from internal tetramethylsilane. High-resolution mass spectra (HRMS) were recorded on an FT-ICR MS (Ionspec, 7.0 T). Melting points were determined on an X-4 binocular microscope melting point apparatus (Beijing Tech Instruments Co., Beijing, China) and were uncorrected. Reagents were purchased from commercial sources and were used as received. All anhydrous solvents were dried and purified according to standard techniques just before use.

1-(2,3,6,7-Tetramethoxyphenanthren-9-yl)ethanone 3. To a solution of phenanthryl carboxylic acid (6.84 g, 20 mmol) in THF (100 mL) was added MeLi (28.8 mL, 1.6 M, 46 mmol) dropwise via a syringe at -78 °C under an atmosphere of nitrogen. The reaction mixture was stirred at this temperature for 30 min and then warmed to room temperature. Two hours later, saturated aqueous NH₄Cl (10 mL) was added to quench the reaction. After evaporation of THF, the aqueous layer was extracted with CH_2Cl_2 (80 mL \times 3). The combined organic phase was washed sequentially with diluted aqueous HCl, water, and brine, dried over MgSO4, filtered, and concentrated under reduced pressure. Crude product was recrystallized from MeOH to give compound 3 (5.2 g, 77%) as a white solid: mp 214-215 °C; ¹H NMR (400 MHz, DMŠO) δ 8.44 (s, 1H), 8.41 (s, 1H), 7.98 (s, 1H), 7.95 (s, 1H), 7.53 (s, 1H), 4.07 (s, 3H), 4.04 (s, 3H), 3.94 (s, 3H), 3.89 (s, 3H), 2.77 (s, 3H); ¹³C NMR (100 MHz, DMSO) δ 201.0, 151.2, 148.9, 148.8, 148.8, 130.3, 129.5, 126.5, 124.9, 124.0, 122.4, 109.6, 106.8, 103.7, 103.3, 55.9, 55.7, 55.4, 55.1, 29.5; HRMS (ESI) calcd for C₂₀H₂₀NO₅Na (M + H)⁺ 363.1203, found 263.1205.

tert-Butyl 2-(2-Oxo-2-(2,3,6,7-tetramethoxyphenanthren-9yl)ethyl)pyrrolidine-1-carboxylate 5a. To a solution of compound 3 (0.68 g, 2.0 mmol) and i-Pr₂NEt (0.38 g, 3.0 mmol) in CH_2Cl_2 (50 mL) was added TMSOTf (0.53 g, 2.4 mmol) in CH₂Cl₂ (10 mL) dropwise. The reaction mixture was stirred at room temperature for 4 h and then quenched with water (30 mL). After separation, the organic phase was washed sequentially with water and brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. Crude product 4 was dissolved in CH2Cl2 (50 mL) without further purification, and then compound 2 (0.44 g, 2.18 mmol) was added. BF3·Et2O (3.0 mL, 30%) in CH2Cl2 (10 mL) was added dropwise at -78 °C. The reaction mixture was stirred at this temperature for 1 h, warmed to room temperature, and then quenched with diluted aqueous NaOH. After separation, the organic phase was washed with water and brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give compound 5a (0.73 g, 72%) as a light yellow solid: mp 147-149 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.51 (s, 1H),

8.33 (s, 1H), 7.80 (s, 1H), 7.77 (s, 1H), 7.32 (s, 1H), 4.44 (br, 1H), 4.15 (s, 3H), 4.13(s, 3H), 4.06 (s, 6H), 3.86 (d, *J* = 14.8 Hz, 1H), 3.40 (br, 2H), 3.10–2.98 (m, 1H), 2.13 (br, 1H), 1.89 (br, 3H), 1.48 (s, 9H); ¹³C NMR (100 MHz) δ 199.2, 156.7, 152.2, 151.0, 150.4, 149.0, 130.3, 130.14 126.0, 125.1, 124.9, 123.5, 109.5, 107.2, 105.9, 102.6, 81.2, 56.1, 56.0, 55.9, 55.8, 46.0, 44.3, 33.1, 28.6, 24.9; HRMS (ESI) calcd for $C_{29}H_{36}NO_7$ (M + H)⁺ 510.2486, found 510.2490.

2-(2-(2,3,6,7-Tetramethoxyphenanthren-9-yl)ethyl)pyrrolidine 6a. To a solution of compound 5a (0.37 g, 0.73 mmol) in EtOH (50 mL) was added NaBH₄ (0.1 g, 2.6 mmol). The reaction mixture was stirred at room temperature for 2 h and then quenched with water. After evaporation, the aqueous layer was extracted with CH_2Cl_2 (30 mL × 3). The combined organic phase was washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. Crude product was dissolved in CH2Cl2 (50 mL) without further purification, and then Et₃SiH (0.18 mL, 1.13 mmol) and CF₃COOH (0.33 mL, 4.4 mmol) were added. The reaction mixture was stirred at room temperature overnight and then quenched with diluted aqueous NaOH. After separation, the organic layer was washed with brine, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give compound **6a** (0.27 g, 93%) as a white solid: mp 224-226 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (s, 1H), 7.56 (s, 1H), 7.30 (s, 1H), 7.23 (s, 1H), 7.04 (s, 1H), 4.08 (s, 6H), 4.02 (s, 3H), 3.97 (s, 3H), 3.40-3.30 (m, 1H), 3.28-3.22 (m, 1H), 3.19-3.05 (m, 2H), 2.99-2.88 (m, 1H), 2.22-2.17 (m, 1H), 2.11-1.90 (m, 3H), 1.89-1.76 (m, 1H), 1.57–1.52 (m, 1H); ¹³C NMR (100 MHz, CDCl₂) δ 148.4, 148.4, 148.3, 130.9, 125.9, 124.7, 124.5, 123.2, 122.9, 107.9, 104.1, 102.9, 102.2, 60.6, 56.2, 55.8, 55.8, 44.5, 31.9, 30.8, 30.3, 23.6; HRMS (ESI) calcd for $C_{24}H_{30}NO_4$ (M + H)⁺ 396.2169, found 396.2168.

2,3,6,7-Tetramethoxy-11,12,13,13a,14,15-hexahydro-9Hphenanthro[9,10-e]pyrrolo[1,2-a]azepine 7a. To a solution of compound 6a (0.2 g, 0.51 mmol) in toluene (20 mL) were added formaldehyde (1.0 mL, 30%) and CF₃COOH (0.5 mL, 6.7 mmol). A Dean-Stark trap topped with a reflux condenser was attached to the reaction vessel, and the reaction mixture was heated at reflux. Seven hours later, the solvent was evaporated under reduced pressure, and then aqueous NaOH was added to the residue. The aqueous solution was extracted with CH_2Cl_2 (30 mL \times 3), and the combined organic phase was washed with brine, dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give compound 7a (0.18 g, 87%) as a light yellow solid: mp 178–180 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 2H), 7.53 (s, 2H), 4.69 (s, 1H), 4.12 (s, 3H), 4.11 (s, 3H), 4.06 (s, 3H), 4.05(s, 3H), 3.88–3.83 (m, 1H), 3.65 (dd, J = 15.0, 7.5 Hz, 1H), 3.21 (s, 1H), 3.09 (t, J = 12.0 Hz, 1H), 2.69 (s, 2H), 2.22-2.10 (m, 1H), 2.00 (s, 1H), 1.78 (s, 2H), 1.57–1.40 (m, 2H); $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) δ 148.0, 147.8, 147.7, 147.5, 133.9, 127.4, 124.3, 123.8, 123.7, 122.9, 103.5, 103.2, 102.4, 102.3, 76.3, 76.0, 75.7, 55.0, 54.9, 54.8, 49.3, 30.2, 29.8, 28.7, 25.4, 19.9; HRMS (ESI) calcd for $C_{29}H_{30}NO_4$ (M + H)⁺ 408.2169, found 408.2169.

2-(2,3,6,7-Tetramethoxyphenanthren-9-yl)acetonitrile 9. To a solution of compound 8 (7.2 g, 18.4 mmol) in DMF (150 mL) was added NaCN (1.0 g, 20.4 mmol). The reaction was stirred at room temperature for 5 h, and then solvent was evaporated under reduced pressure. Water and CH2Cl2 were added to the residue, and, after separation, the aqueous layer was extracted with $\mbox{CH}_2\mbox{Cl}_2.$ The combined organic phase was washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. The residue was purified by column chromatography on silica gel to give compound 9 (4.2 g, 68%) as a white solid: mp 198–200 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.77 (s, 1H), 7.70 (s, 1H), 7.23 (s, 1H), 7.14 (s, 1H), 4.14 (s, 3H), 4.13 (s, 3H), 4.12 (s, 2H), 4.07 (s, 3H), 4.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 148.3, 148.1, 148.0, 124.6, 123.9, 123.6, 123.4, 122.7, 120.3, 116.7, 107.2, 102.6, 102.3, 101.6, 55.1, 55.0, 54.9, 21.3; HRMS (ESI) calcd for $C_{20}H_{23}N_2O_4$ (M + NH₄)⁺ 499.2551, found499.2552.

2-(2,3,6,7-Tetramethoxyphenanthren-9-yl)ethanamine 10. To a solution of compound **9** (0.3 g, 0.89 mmol) in THF (30 mL) was added BH_3 (2.7 mL, 1 M in THF) at 0 °C under an atmosphere of

nitrogen. Then, the reaction was heated at reflux for 3 h. After the mixture had cooled to room temperature, diluted aqueous HCl was added to quench the reaction. The mixture was heated at reflux for an additional 0.5 h and then was cooled to room temperature. The mixture was extracted with EtOAc, and the aqueous layer was basified by aqueous NaOH to pH >7. The aqueous layer was extracted with EtOAc and then washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure to give compound **10** (0.25 g, 67%) as a white solid: mp 148–149 °C;¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.75 (s, 1H), 7.44 (s, 1H), 7.38 (s, 1H), 7.17 (s, 1H), 4.11 (s, 3H), 4.09 (s, 3H), 4.05 (s, 3H), 4.02 (s, 3H), 3.21 (m, 4H), 2.2 (br, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 148.9, 148.8, 148.6, 130.8, 126.2, 125.3, 125.0, 124.6, 123.7, 107.9, 104.6, 103.4, 102.7, 56.1, 56.0, 55.9, 55.8, 41.8, 37.1; HRMS (ESI) calcd for C₂₀H₂₄NO₄ (M + H)⁺ 342.1700, found 342.1702.

4-Oxo-4-((2-(2,3,6,7-tetramethoxyphenanthren-9-yl)ethyl)amino)butanoic Acid 12a. To a solution of amine 10 (0.4 g, 1.17 mmol) in CHCl₃ (30 mL) was added dihydrofuran-2,5-dione (0.23 g, 2.34 mmol). The reaction was stirred at room temperature for 2 h, and then water (30 mL) was added and stirred for an additional 1 h. After separation, the aqueous layer was extracted with $CHCl_3$ (30 mL \times 3). The combined organic phase was dried over Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give compound 12a (0.46 g, 89%) as a white solid: mp 203-204 °C; ¹H NMR (400 MHz, DMSO) δ 8.16 (t, J = 5.2 Hz, 1H), 8.03 (s, 1H), 7.97 (s, 1H), 7.65 (s, 1H), 7.47 (s, 1H), 7.33 (s, 1H), 4.03 (s, 3H), 4.01 (s, 3H), 3.98 (s, 3H), 3.89 (s, 3H), 3.42–3.36 (m, 2H), 3.13 (t, J = 8 Hz, 2H), 2.46 (d, J = 6.4 Hz, 2H), 2.35 (t, J = 6.8 Hz, 2H); ¹³C NMR (100 MHz, DMSO) δ 173.6, 171.1, 148.8, 148.7, 148.6, 148.5, 130.6, 125.8, 124.9, 124.5, 124.1, 123.3, 108.1, 105.0, 104.3, 103.7, 55.9, 55.8, 55.5, 55.3, 33.5, 30.1, 29.2; HRMS (ESI) calcd for $C_{24}H_{28}NO_7$ (M + H)⁺ 442.1860, found 442.1866.

1-(2-(2,3,6,7-Tetramethoxyphenanthren-9-yl)ethyl)pyrrolidine-2,5-dione 13a. To a solution of compound 12a (0.46 g, 1.04 mmol) in Ac₂O (20 mL) was added AcONa (0.1 g). The reaction was stirred at 70 °C for 2 h and then cooled to room temperature. The reaction was guenched with water and stirred for an additional 1 h. After separation, the aqueous phase was extracted with CH_2Cl_2 (3 × 30 mL). The combined organic phase was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give compound 13a (0.43 g, 98%) as a white solid: mp 262-263 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.76 (s, 1H), 7.75 (s, 1H), 7.50 (s, 1H), 7.17 (s, 1H), 4.18 (s, 3H), 4.13 (s, 3H), 4.11 (s, 3H), 4.02 (s, 3H), 3.83 (t, J = 8.6 Hz, 2H), 3.25 (t, J = 8.6 Hz, 2H), 2.74 (s, 4H);¹³C NMR (100 MHz, $CDCl_3$) δ 177.2, 149.02, 148.9, 129.4, 126.21, 125.2, 124.8, 124.0, 107.9, 104.7, 103.3, 102.8, 77.3, 77.0, 76.7, 56.2, 56.1, 56.0, 55.9, 39.2, 32.1, 28.2; HRMS (ESI) calcd for C24H26NO6 (M + H)+ 424.1755, found 424,1754.

5-Hydroxy-1-(2-(2,3,6,7-tetramethoxyphenanthren-9-yl)ethyl)pyrrolidin-2-one 14a. To a solution of compound 13a (0.48 g, 1.13 mmol) in CH₂Cl₂ (20 mL) was added LiEt₃BH (1 M, 2.2 mL) at -60 °C. The reaction mixture was stirred for 2 h and then quenched with water. After separation, the aqueous layer was extracted with CH_2Cl_2 (3 × 30 mL). The combined organic phase was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give compound 14a (0.44 g, 92%) as a white solid: mp 187-188 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.75 (s, 1H), 7.68 (s, 1H), 7.44 (s, 1H), 7.13 (s, 1H), 4.99 (s, 1H), 4.12 (s, 3H), 4.11(s, 3H), 4.10 (s, 3H), 4.06-4.02 (m, 1H), 4.00 (s, 3H), 3.82-3.72 (m, 1H), 3.67-3.63 (m, 1H), 3.39–3.29 (m, 2H), 2.63–2.52 (m, 1H), 2.37–2.19 (m, 2H), 1.82–1.77 (m, 1H); ¹³C NMR (100 MHz, $CDCl_3$) δ 173.6, 148.1, 148.0, 147.9, 129.7, 125.2, 123.7, 122.9, 106.8, 103.9, 102.1, 101.8, 83.2, 55.2, 55.1, 55.0, 54.9, 40.7, 31.4, 27.9, 27.8; HRMS (ESI) calcd for $C_{24}H_{28}NO_6$ (M +H)⁺ 426.1911, found 426.1913.

2,3,12,13-Tetramethoxy-5,6,10,10a-tetrahydrodibenzo[f,h]pyrrolo[2,1-a]isoquinolin-8(9H)-one 15a. To a solution of compound 14a (0.4 g, 0.94 mmol) in CH₂Cl₂ (20 mL) was added TMSI (0.44 g, 2.1 mmol) at -55 °C. The reaction was stirred for 1 h and then quenched with diluted aqueous NaOH. After separation, the aqueous layer was extracted with CH₂Cl₂ (3 × 30 mL). The combined organic phase was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give compound **15a** (0.3 g, 80%) as a light yellow solid: mp 222–224 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.83 (s, 1H), 7.29 (s, 1H), 7.25 (s, 1H), 5.45 (br, 1H), 4.66 (d, *J* = 11.7 Hz, 1H), 4.13 (s, 6H), 4.06 (s, 3H), 4.05 (s, 3H), 3.18 (br, 2H), 3.14–2.98 (m, 2H), 2.71 (br, 1H), 2.48 (br, 1H), 1.80 (br, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.1, 148.7, 148.6, 128.9, 125.9, 125.5, 124.3, 123.7, 123.2, 123.1, 104.6, 104.2, 103.7, 103.3, 56.2, 56.1, 56.0, 36.6, 29.7, 29.1, 26.6; HRMS (ESI) calcd for C₂₄H₂₆NO₅ (M + H)⁺ 408.1805, found 408.1805.

2,3,12,13-Tetramethoxy-5,6,8,9,10,10a-hexahydrodibenzo-[f,h]pyrrolo[2,1-a]isoquinoline 16a. To a solution of compound 15a (0.29 g, 0.71 mmol) in THF (30 mL) was added LiAlH₄ (50.0 mg, 1.3 mmol). The reaction mixture was heated at reflux for 2 h and then quenched with diluted aqueous NaOH after cooling to room temperature. After separation, the aqueous layer was extracted with CH_2Cl_2 (3 × 30 mL). The combined organic phase was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give compound 16a (0.23 g, 82%) as a light yellow solid: mp 155-158 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.83 (s, 1H), 7.35 (s, 1H), 7.30 (s, 1H), 4.66 (t, J = 8.1 Hz, 1H), 4.12 (s, 6H), 4.05 (s, 6H), 3.25-3.16 (m, 2H), 3.15-3.04 (m, 4H), 2.73-2.69 (m, 1H), 2.04-1.92 (m, 2H), 1.84–1.72 (m, 1H); $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₂) δ 147.8, 147.5, 147.3, 147.2, 129.3, 124.5, 124.2, 123.5, 122.9, 122.4, 104.1, 103.2, 102.4, 102.3, 58.8, 55.1, 55.0, 54.9, 54.8, 51.9, 44.2, 31.2, 23.4, 22.4; HRMS (ESI) calcd for C₂₄H₂₈NO₄ (M + H)⁺ 394.2013, found 394.2018.

2-(Piperidin-2-yl)-1-(2,3,6,7-tetramethoxyphenanthren-9-yl)ethanone 5b. The synthetic procedure was similar to that of compound **5a**, and compound **5b** was obtained as a light yellow solid (73%): mp 203–205 °C; ¹H NMR (400 MHz, DMSO) δ 8.55 (s, 1H), 8.45 (s, 1H), 8.07 (s, 1H), 8.03 (s, 1H), 7.64 (s, 1H), 4.09 (s, 3H), 4.06 (s, 3H), 3.95 (s, 3H), 3.90 (s, 3H), 3.85–3.77 (m, 1H), 3.69 (s, 1H), 3.57–3.55 (m, 1H), 3.26 (s, 2H), 2.97 (s, 1H), 1.94–1.91 (m, 1H), 1.77–1.75 (m, 4H); ¹³C NMR (100 MHz, DMSO) δ 200.1, 151.5, 149.1, 149.0, 148.8, 130.0, 128.9, 126.7, 125.0, 123.9, 122.3, 109.7, 106.7, 103.8, 103.4, 56.0, 55.8, 55.5, 55.2, 52.6, 44.3, 28.9, 22.6, 22.2, 14.0; HRMS (ESI) calcd for C₂₅H₃₀NO₅ (M + H)⁺ 424.2118, found 424.2123.

2-(2-(2,3,6,7-Tetramethoxyphenanthren-9-yl)ethyl)piperidine 6b. The synthetic procedure was similar to that of compound **6a**, and compound **6b** was obtained as a white solid (88%): mp 175–176 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 1H), 7.76 (s, 1H), 7.41 (s, 1H), 7.40 (s, 1H), 7.16 (s, 1H), 4.11 (s, 6H), 4.05 (s, 3H), 4.03 (s, 3H), 3.09 (t, *J* = 8.0 Hz, 3H), 2.71–2.59 (m, 2H), 1.89– 1.82 (m, 4H), 1.64–1.61 (m, 2H), 1.52–1.32 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 148.5, 134.0, 126.4, 125.4, 124.9, 123.5, 107.9, 104.8, 103.4, 102.8, 77.3, 77.0, 76.7, 56.9, 56.1, 56.0, 55.9, 55.8, 47.2, 37.8, 33.0, 29.8, 26.7, 24.8; HRMS (ESI) calcd for C₂₅H₃₂NO₄ (M + H)⁺ 410.2326, found 410.2331.

2, **3**, **6**, **7** - **Tetramethoxy**-**9**, **11**, **12**, **13**, **14**, **14a**, **15**, **16**-**octahydrophenanthro**[**9**, **10**-*e*]**pyrido**[**1**, **2**-*a*]**azepine 7b**. The synthetic procedure was similar to that of compound 7a, and compound 7b was obtained as a white solid (68%): mp 216–218 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (s, 2H), 7.50 (s, 1H), 7.45 (s, 1H), 4.37 (d, *J* = 14.9 Hz, 1H), 4.16–4.02 (m, 13H), 3.56–3.53 (m, 1H), 3.30–3.19 (m, 1H), 3.06–3.04 (m, 1H), 2.60–2.41 (m, 2H), 2.01 (s, 1H), 1.68–1.60 (m, 5H), 1.49 (s, 1H), 1.34–1.31 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 148.6, 148.5, 148.3, 125.7, 124.2, 123.7, 104.6, 104.3, 103.4, 103.3, 94.5, 77.3, 77.0, 76.7, 56.8, 56.0, 55.9, 55.8, 55.7, 33.9, 33.5, 26.8, 26.5, 23.8; HRMS (ESI) calcd for C₂₆H₃₂NO₄ (M + H)⁺ 422.2326, found 422.2332.

5-Oxo-5-((2-(2,3,6,7-tetramethoxyphenanthren-9-yl)ethyl)amino)pentanoic acid 12b. The synthetic procedure was similar to that of compound 12a, and compound 12b was obtained as a white

Scheme 1. Synthetic Route for Compounds 7a and 7b

Scheme 2. Synthetic Route for Compounds 16a and 16b

solid (78%): mp 158–160 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.74 (s, 1H), 7.54 (s, 1H), 7.37 (s, 1H), 7.14 (s, 1H), 5.92 (s, 1H), 4.10 (s, 3H), 4.09 (s, 3H), 4.08 (s, 3H), 4.01 (s, 3H), 3.67 (d, *J* = 6.8 Hz, 2H), 3.25 (t, *J* = 6.8 Hz, 2H), 2.39 (t, *J* = 6.8 Hz, 2H), 2.25 (t, *J* = 7.2 Hz, 2H), 1.98–1.90 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 176.0, 171.7, 147.9, 129.3, 123.5, 106.9, 103.8, 102.4, 101.8, 55.2, 55.1, 55.0, 54.9, 38.9, 34.3, 32.5, 28.9, 19.7, 15.3; HRMS (ESI) calcd for C₂₅H₃₀NO₄(M + H)⁺ 456.2017, found 456.2018.

1-(2-(2,3,6,7-Tetramethoxyphenanthren-9-yl)ethyl)piperidine-2,6-dione 13b. The synthetic procedure was similar to that of compound 13a, and compound 13b was obtained as a white solid (86%): mp 261–263 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.89 (s, 1H), 7.83 (s, 1H), 7.78 (s, 1H), 7.54 (s, 1H), 7.19 (s, 1H), 4.21 (s, 3H), 4.13–4.08 (m, 8H), 4.03 (s, 3H), 3.28–3.16 (m, 2H), 2.71 (t, *J* = 8.4 Hz, 4H), 2.04–1.93 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 148.0, 147.9, 147.8, 147.7, 129.4, 125.3, 124.6, 124.2, 123.7, 122.9, 106.9, 104.3, 102.1, 101.7, 55.3, 55.1, 55.0, 54.9, 39.5, 31.8, 31.5, 16.2; HRMS (ESI) calcd for calcd for $C_{25}H_{27}NO_6Na^+~(M$ + Na)^+ 460.1731, found 460.1735.

6-Hydroxy-1-(2-(2,3,6,7-tetramethoxyphenanthren-9-yl)-ethyl)piperidin-2-one 14b. The synthetic procedure was similar to that of compound **14a**, and compound **14b** was obtained as a white solid (86%): mp 202–204 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.80 (s, 1H), 7.76 (s, 1H), 7.45 (s, 1H), 7.14 (s, 1H), 4.74 (s, 1H), 4.18–4.09 (m, 9H), 4.01 (s, 3H), 3.91–3.81 (m, 1H), 3.71–3.64 (m, 1H), 3.41–3.35 (m, 2H), 2.56–2.46 (m, 1H), 2.40–2.27 (m, 2H), 1.99–1.89 (m, 1H), 1.82–1.73 (m, 1H), 1.73–1.65 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 148.9, 148.9, 148.8, 148.8, 131.7, 126.3, 125.7, 124.8, 123.8, 107.8, 105.4, 103.2, 102.8, 81.1, 56.3, 56.1, 56.0, 55.9, 47.5, 32.6, 31.1, 15.9; HRMS (ESI) calcd for C₂₅H₃₀NO₆⁺ (M + H)⁺ 440.2068, found 440.2064.

2,3,13,14-Tetramethoxy-9,10,11,11a-tetrahydro-5*H*dibenzo[*f*,*h*]pyrido[2,1-*a*]isoquinolin-8(6*H*)-one 15b. The synthetic procedure was similar to that of compound 15a, and compound **15b** was obtained as a white solid (80%): mp 153–155 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.82 (s, 1H), 7.32 (s, 1H), 7.21 (s, 1H), 5.35 (d, *J* = 10.8 Hz, 1H), 5.18 (dd, *J* = 12.4, 3.2 Hz, 1H), 4.13 (s, 6H), 4.05 (s, 3H), 4.04 (s, 3H), 3.19 (t, *J* = 16.0 Hz, 1H), 3.14–3.03 (m, 1H), 2.85–2.75 (m, 1H), 2.76–2.66 (m, 2H), 2.60–2.48 (m, 1H), 2.09–1.93 (m, 2H), 1.40–1.35 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 169.8, 149.2, 148.6, 148.53, 128.2, 127.6, 125.5, 124.5, 123.5, 123.3, 104.2, 104.1, 103.8, 103.3, 56.2, 56.1, 56.1, 56.0, 56.9, 38.0, 32.1, 31.6, 26.8, 20.0, 14.2; HRMS (ESI) calcd for C₂₅H₂₇NO₅ (M + H)⁺ 422.1962, found 422.1959.

2,3,13,14-Tetramethoxy-6,8,9,10,11,11a-hexahydro-5*H***-dibenzo**[*f*,*h*]**pyrido**[**2,1**-*a*]**isoquinoline 16b.** The synthetic procedure was similar to that of compound **16a**, and compound **16b** was obtained as a white solid (60%): mp 89–92 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.83 (s, 1H), 7.82 (s, 1H),7.32 (s, 1H), 7.25 (s, 1H), 4.26 (d, *J* = 9.7 Hz, 1H), 4.11 (s, 6H), 4.04 (s, 3H), 4.03 (s, 3H), 3.47–3.39 (m, 1H), 3.28–3.25 (m, 1H), 3.21–3.13 (m, 2H), 2.93–2.87 (m, 1H), 2.21 (d, *J* = 11.9 Hz, 1H), 1.96–1.63 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 149.5, 149.3, 148.8, 131.1, 126.6, 126.5, 124.7, 124.5, 124.2, 105.4, 104.8, 104.3, 103.9, 60.5, 56.8, 56.7, 56.6, 56.5, 46.3, 29.2, 28.5, 26.6, 22.5; HRMS (ESI) calcd for C₂₅H₃₀NO₄ (M + H)⁺ 408.2169, found 408.2170.

Antiviral Biological Assay. The procedure of purifying TMV and the method to test the anti-TMV activity of the synthesized compounds were the same with those reported previously in the literature.²²

RESULTS AND DISCUSSION

Chemistry. The synthesis of D-ring expanded phenanthroindo/quinolizidine alkaloid analogues 7a and 7b is shown in Scheme 1, which features a Mukaiyama-Aldol reaction and a Pictet-Spengler cyclization. The precursors 2 of the Mukaiyama-Aldol reaction were prepared from commercially available lactams through literature protocols.²³ Silylenol ether 4 was synthesized from acetophenanthrone 3, which was obtained from readily available phenanthryl acid.²⁴ After extensive reaction screening, it was found that boron trifluoride was the optimal Lewis acid for the desired Mukaiyama-Aldol reactions, giving compounds 5 in good yields. Ketones 5 were reduced to alcohols by sodium borohydride, followed by deprotection and further reduction of the benzylic hydroxyl by triethylsilicane under acidic conditions, furnishing amines 6 efficiently. It is worth noting that the following Pictet-Spengler cyclization did not occur when concentrated hydrochloric acid was used as catalyst in ethanol, which may be due to the energy of the seven-membered ring transition state being too high. When the reaction was performed in a high boiling point solvent (toluene) using much stronger acid CF₃COOH as catalyst, the desired cyclized products 7 were obtained in good vields.

The synthesis of the isomerized phenanthroindo/quinolizidine analogues **16a** and **16b** is shown in Scheme 2, featuring a Bischler–Napieralski cyclization. Using readily available phenanthryl bromide **8** as starting material,²⁵ intermediate **10** could be easily be prepared via sequential nucleophilic substitution and reduction. With the phenanthrylethylamine **10** in hand, we initially attempted to construct the pentacyclic skeleton through Pictet–Spengler cyclization/condensation sequence. Unfortunately, although much effort was devoted to the screening of reaction conditions, including catalysts, solvents, and reaction temperature, all attempts to perform the desired Pictet–Spengler cyclization failed. The main difficulty was proposed to be the Pictet–Spengler cyclization, presumably because reactivity of the key intermediate formed through condensation of amine and aldehyde was so slow that selfcondensation of the aldehyde occurred quickly. To improve the reactivity of the intermediate of the cyclization, we turned to an alternative Bischler–Napieralski cyclization approach, which employed highly reactive acyl iminium as key intermediate. Imides 13 prepared from amine 10 and corresponding anhydride were subjected to partial reduction, affording compounds 14. The subsequent Bischler–Napieralski cyclization went smoothly when trimethyliodosilane was employed. After reduction, isomerized phenanthroindo/quinolizidine alkaloid analogues 16 were obtained in good yields.

Antiviral Activity. To make a judgment of the designed structurally novel phenanthroindo/quinolizidine alkaloid analogues 7a, 7b, 16a, and 16b, two commercially available antiviral agents were used as control. To further investigate the influence of the variation of the basic skeletons of the natural alkaloids on the antiviral effects, corresponding tylophorine I and phenanthroquinolizidine II (Figure 1) were also used for comparison, which were synthesized using methods reported previously by our group.²⁴ The in vitro and in vivo (protection, inactivation, and curative effect) antiviral results against TMV of phenanthroindo/quinolizidine alkaloids I and II, analogues 7a, 7b, 16a, and 16b, ribavirin, and ningnanmycin are listed in Table 1. All of the compounds were tested at both 500 and 100 μ g/mL.

Table 1. In `	Vitro an	d in Vi	vo Antivi	ral Activi	ity of
Compounds	7a, 7b,	16a, an	d 16b ag	ainst TM	IV

		inhibition rate (%)				
compd	concn (µg/mL)	in vitro effect	protection effect	inactivation effect	curative effect	
I	500	38.5	40.4	45.2	42.6	
	100	15.3	18.2	17.5	13.1	
7a	500	43.8	46.5	47.3	42.5	
	100	20	21.6	20.3	10.6	
16a	500	60	54.1	55.8	58.6	
	100	30.6	24.1	26.7	30	
II	500	67.5	65.8	64.2	68.9	
	100	32.4	32.1	30	34.7	
7b	500	54.7	48.3	52.6	50.7	
	100	27.6	26.9	28.9	21.7	
16b	500	37.7	42.9	41.7	39.5	
	100	10	17.5	18.3	12.4	
ribavirin	500	41.3	38.9	37.2	39.4	
	100	18.5	15.6	11.9	14.7	
ningnanmycin	500	69.3	57.9	54.2	58.7	
, our	100	26.8	38.4	20.0	23.1	

The first in vitro anti-TMV bioassay demonstrated that all of the synthesized sturcturally novel analogues except for **16b** exhibted higher activity than ribavirin at both high (500 μ g/ mL) and low (100 μ g/mL) concentrations. Especially, although compounds **16a** and **7b** showed only comparable inhibitory effect with that of ningnanmycin at 500 μ g/mL, they exhibited higher antiviral activity at 100 μ g/mL. Further in vivo anti-

Journal of Agricultural and Food Chemistry

TMV bioassay indicated that all of the newly designed analogues displayed protection and inactivation effects superior to those of ribavirin at both concentrations, and all of them also showed preferable curative effects except for 7a and 16b at 100 μ g/mL. Compared with ningnanmycin, perhaps the most effective commercial plant virucide, analogue 16a can also exhibt higher inactivation effect at both concentrations, and 7b and 16a showed inactivation and curative effects superior to those of ningnanmycin at 100 μ g/mL.

The SARs demonstrated that phenanthroindolizidine analogue 7a with the six-membered D-ring of natural alkaloid expanded to seven-membered ring that showed higher in vitro, protection, and inactivation effects than tylophorine I at both concentrations. The isomerized analogue 16a also displayed preferable antiviral effects both in vitro and in vivo relative to its precursor I at both high and low concentrations. Then, we can conclude that for natural phenanthroindolizidine alkaloid I, no matter how the six-membered D-ring was expanded to sevenmembered or the fused pattern of D/E rings was changed, analogues 7a and 16a showed superior antiviral activity to that of the precursor I, which indicated that the original conformation of the phenanthroindolizidine was not optimal and deserved further optimization. However, no matter how the D-ring was expanded from six-membered to sevenmembered or the fused pattern of D/E rings was changed, both phenanthroquinolizidine analogues 7b and 16b exhibited inferior inhibitory effects against TMV, indicating that the original conformation of the phenanthroquinolizidine was a relatively preferential conformation. Another interesting result was that although six-membered E ring compound 7b showed higher activity than five-membered E ring compound 7a, their corresponding counterparts 16b and 16a displayed reverse bioactive results, which suggested that the fused pattern of D/E rings of phenanthroquinolizidine alkaloid also has a great effect on its activity, and the original fused pattern is relatively optimal.

In summary, two types of structurally totally novel analogues of phenanthroindo/quinolizidines were synthesized and evaluated for their antiviral activities aganist TMV for the first time. The bioassay results indicated that most of the four designed structural analogues showed good to excellent in vivo anti-TMV activity, among which analogue 16a dispalyed comparable activity with that of one of the most successful commercial antiviral agents, ningnanmycin, thus emerging as a potential inhibitor of plant virus. Further structure-activity relationships demonstrated for the first time that the original skeleton of the pentacyclic structure of phenanthroindolizidine is not optimal, and further optimization for preferential conformation is needed, whereas changes of the original skeleton of the phenanthroquinolizidine descreased its antiviral activity, indicating that the original conformation is a relative preferential conformation. Further investigations on structual optimization and mode of action are currently underway in our laboratories.

ASSOCIATED CONTENT

Supporting Information

 1 H and 13 C NMR spectra of compounds 3–7, 9, 10, and 12–16. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*(Q.W.) Phone: +86-022-23503952. Fax: +86-022-23503952. E-mail: wangqm@nankai.edu.cn.

Author Contributions

^{II}B.S. and F.C. contributed equally to this work.

Funding

We are grateful to the National Key Project for Basic Research (2010CB126100), the National Natural Science Foundation of China (21132003, 21121002, 21372131, 21002053), Tianjin Natural Science Foundation (11JCZDJC20500), and Specialized Research Fund for the Doctoral Program of Higher Education (20130031110017).

Notes

The authors declare no competing financial interest.

REFERENCES

(1) Hari, V.; Das, P. Ultra microscopic detection of plant viruses and their gene products. In *Plant Disease Virus Control*; Hadidi, A., Khetarpal, R. K., Koganezawa, H., Eds.; APS Press: St. Paul, MN, USA, 1998; pp 417–427.

(2) Bos, L. 100 years of virology: from vitalism via molecular biology to genetic engineering. *Trends Microbiol.* **2000**, *8*, 82–87.

(3) Ouyang, G. P.; Cai, X. J.; Chen, Z.; Song, B. A.; Bhadury, P. S.; Yang, S.; Jin, L. H.; Xue, W.; Hu, D. Y.; Zeng, S. Synthesis and antiviral activities of pyrazole derivatives containing an oxime moiety. *J. Agric. Food Chem.* **2008**, *56*, 10160–10167.

(4) Reichman, M.; Devash, Y.; Suhadolnik, R. J.; Sela, I. Human leukocyte interferon and the antiviral factor (AVF) from virus-infected plants stimulate plant tissues to produce nucleotides with antiviral activity. *Virology* **1983**, *128*, 240–244.

(5) Chen, M. H.; Chen, Z.; Song, B. A.; Bhadury, P. S.; Yang, S.; Cai, X. J.; Hu, D. Y.; Xue, W.; Zeng, S. Synthesis and antiviral activities of chiral thiourea derivatives containing an α -aminophosphonate moiety. *J. Agric. Food Chem.* **2009**, *57*, 1383–1388.

(6) Li, Y. M.; Zhang, Z. K.; Jia, Y. T.; Shen, Y. M.; He, H. P.; Fang, R. X.; Chen, X. Y.; Hao, X. J. 3-Acetonyl-3-hydroxyoxindole: a new inducer of systemic acquired resistance in plants. *Plant Biotechnol. J.* **2008**, *6*, 301–308.

(7) Sidwell, R. W.; Huffman, J. H.; Khare, G. P.; Allen, L. B.; Witkowski, J. T.; Robins, R. K. Broad-spectrum antiviral activity of virazole: $1-\beta$ -D-ribofuranosyl-1,2,4-triazole-3-carboxamide. *Science* **1972**, 177, 705–706.

(8) Bachrach, U. Antiviral activity of oxidized polyamines. *Amino Acids* **2007**, *33*, 267–272.

(9) De Meester, C. Genotoxic potential of β -carbolines: a review. *Mutat. Res.* **1995**, 339, 139–153.

(10) Qian, X. H.; Lee, P. W.; Cao, S. China: forward to the green pesticides via a basic research program. J. Agric. Food Chem. 2010, 58, 2613–2623.

(11) Seiber, J. N. Sustainability and agricultural and food chemistry. J. Agric. Food Chem. **2011**, 59, 1–2.

(12) Gellert, E. The indolizidine alkaloids. *J. Nat. Prod.* **1982**, *45*, 50–73.

(13) Gellert, E.; Rudzats, R. The antileukemia activity of tylocrebrine. *J. Med. Chem.* **1964**, *7*, 361–362.

(14) Damu, A. G.; Kuo, P. C.; Shi, L. S.; Li, C. Y.; Kuoh, C. S.; Wu, P. L.; Wu, T. S. Phenanthroindolizidine alkaloids from the stems of *Ficus septica*. *J. Nat. Prod.* **2005**, *68*, 1071–1075.

(15) Yang, C. W.; Chen, W. L.; Wu, P. L.; Tseng, H. Y.; Lee, S. J. Antiinflammatory mechanisms of phenanthroindolizidine alkaloids. *Mol. Pharmacol.* **2006**, *69*, 749–758.

(16) Baumgartner, B.; Erdelmeier, C. A. J.; Wright, A. D.; Rali, T.; Sticher, O. An antimicrobial alkaloid from *Ficus septica*. *Phytochemistry* **1990**, *29*, 3327–3330.

Journal of Agricultural and Food Chemistry

(17) Choi, J. Y.; Gao, W.; Odegard, J.; Shiah, H. S.; Kashgarian, M.; McNiff, J. M.; Baker, D. C.; Cheng, Y. C.; Craft, J. Abrogation of skin disease in LUPUS-prone MRL/FASIpr mice by means of a novel tylophorine analog. *Arthritis Rheum.* **2006**, *54*, 3277–3283.

(18) An, T. Y.; Huang, R. Q.; Yang, Z.; Zhang, D. K.; Li, G. R.; Yao, Y. C.; Gao, J. Alkaloids from *Cyanachum komarovii* with inhibitory activity against the tobacco mosaic virus. *Phytochemistry* **2001**, *58*, 1267–1269.

(19) Xi, Z.; Zhang, R. Y.; Yu, Z. H.; Ouyang, D. The interaction between tylophorine B and TMV RNA. *Bioorg. Med. Chem. Lett.* **2006**, *16*, 4300–4304.

(20) Wang, Z.; Wei, P.; Xizhi, X.; Liu, Y.; Wang, L.; Wang, Q. Design, synthesis, and antiviral activity evaluation of phenanthrene-based antofine derivatives. *J. Agric. Food Chem.* **2012**, *60*, 8544–8551.

(21) Wang, K.; Su, B.; Wang, Z.; Wu, M.; Li, Z.; Hu, Y.; Fan, Z.; Mi, N.; Wang, Q. Synthesis and antiviral activities of phenanthroindolizidine alkaloids and their derivatives. *J. Agric. Food Chem.* **2009**, *58*, 2703–2709.

(22) Wang, Z.; Wang, L.; Ma, S.; Liu, Y.; Wang, L.; Wang, Q. Design, synthesis, antiviral activity, and SARs of 14-aminophenanthroindolizidines. J. Agric. Food Chem. **2012**, 60, 5825–5831.

(23) Pichon, M.; Figadère, B.; Cavé, A. C-Glycosylation of cyclic *N*-acyliminium ions with trimethylsilyloxyfuran. *Tetrahedron Lett.* **1996**, *37*, 7963–7966.

(24) Wang, K.; Lv, M.; Wang, Q.; Huang, R. Iron(III) chloride-based mild synthesis of phenanthrene and its application to total synthesis of phenanthroindolizidine alkaloids. *Tetrahedron* **2008**, *64*, 7504–7510.

(25) Su, B.; Cai, C.; Wang, Q. Enantioselective approach to 13*a*methylphenanthroindolizidine alkaloids. *J. Org. Chem.* **2012**, *77*, 7981–7987.