

Bioorganic & Medicinal Chemistry Letters 12 (2002) 2451-2454

1-(Bicyclopiperazinyl)ethylindoles and 1-(Homopiperazinyl)ethylindoles as Highly Selective and Potent 5-HT₇ Receptor Ligands

Methvin B. Isaac,* Tao Xin, Anne O'Brien, David St-Martin, Angela Naismith, Neil MacLean, Julie Wilson, Lidia Demchyshyn, Ashok Tehim and Abdelmalik Slassi

NPS Pharmaceuticals Inc., 6850 Goreway Drive, Mississauga, ON, Canada L4V 1V7

Received 14 January 2002; accepted 9 May 2002

Abstract—A novel series of 1-(bicyclopiperazinyl)ethylindole and 1-(homopiperazinyl)ethyl-indole derivatives was synthesized and found to be potent and selective 5-HT₇ receptor ligands. \bigcirc 2002 Elsevier Science Ltd. All rights reserved.

Serotonin (5-hydroxytriptamine, 5-HT) is a neurotransmitter that mediates a wide variety of sensory, motor, and cortical functions through multiple 5-HT receptor subtypes.¹ Recently, application of molecular cloning has led to the identification and isolation of the 5-HT₇ receptor subtype from four mammalian species: rat,² mouse,³ guinea pig,⁴ and human.⁵ The human 5-HT₇ receptor (h5-HT₇) is a 445 amino acid protein with 39–53% sequence homology when compared to other 5-HT receptor subtypes. This receptor is positively coupled to adenylyl cyclase.⁶ The 5-HT₇ receptor is located centrally, in the thalamus, hypothalamus (particularly in the suprachiasmatic nucleus) and several limbic and cortical regions. Such a distribution of this receptor implicates it in the control of circadian rythyms.^{3,7} The affinity of a number of antipsychotic agents for the 5-HT₇ receptor also suggests that this receptor may mediate the therapeutic actions of these compounds.⁴ In addition, high levels of 5-HT₇ receptor mRNA have been found in human coronary arteries suggesting a possible role in the vasodilation of blood vessel.⁸

Figure 1. Selective 5-HT₇ receptor ligands.

*Corresponding author. Fax: +1-905-677-9595; E-mail: misaac@npsp.com

0960-894X/02/\$ - see front matter \odot 2002 Elsevier Science Ltd. All rights reserved. PII: S0960-894X(02)00438-9

Scheme 1. Reagents and conditions: (a) NaH, DMF, $BrCH_2CO_2C_2H_5$, 0 °C; (b) 2 equiv DIBAL-H, THF, rt; (c) (i) MsCl, Et_3N , CH_2Cl_2 , rt; (ii). HNR₁R₂, THF, 70 °C; (d) MsCl, NaH, DMF, 0 °C–rt; (e) NaH, K₂CO₃, toluene, 110 °C; (f) 1.5 equiv DIBAL-H, toluene, -78 °C; (g) NaBH₃CN, NaOAc, HOAc, homopiperazine, rt; (h) NaBH₃CN, NaOAc, HOAc, aldehydes or ketones.

Whilst the 5-HT₇ receptor displays a unique pharmacology, only very recently has the identity of selective ligands been reported (1, 2, 3, 4, and 5).^{9–13} Clearly, the 5-HT₇ receptor may be a valuable, novel therapeutic drug target and the development of potent and selective ligands is highly desirable. As part of our research program directed toward the design and synthesis of potent and selective 5-HT_{1D} receptor ligands, we serendipitously discovered that the intermediate **6** (Fig. 1) was a potent human 5-HT₇ receptor ligand (K_i =70 nM). Compound **6** was identified as an initial lead and optimization was immediately pursued. We report here on the synthesis and structure–activity relationship (SAR) that led to a novel class of selective 5-HT₇ receptor ligands.

The synthesis of a series of aminoethylindoles of general structures 10 and 14 is shown in Scheme 1. *N*-Alkylation of the substituted indoles 7 with ethylbromoacetate afforded compound 8. Subsequent reduction of the ester function with DIBAL-H gave the corresponding alcohol 9. Treatment of 9 with methanesulphonylchloride followed by displacement with the various amines delivered compounds of general structure 10.

Compounds of general structure 14 were synthesized by mesylation of the indole nitrogen followed by treatment with the aminoethylalcohol in the presence of sodium hydride, potassium carbonate in toluene giving the product of structure 14. Alternatively, compound 14 was synthesized from the common and versatile intemediate 8 from partial reduction with DIBAL-H to aldehyde 11, followed by reductive amination with homopiperazine to afford compound 13. Further reductive amination of 13 with various aldehydes and ketones gave compounds of structure 14. The synthesized compounds were primarily evaluated for their binding affinities to the human 5-HT₇ receptor in vitro. The assay protocol entails the incubation of membranes, prepared from HEK293 cells expressing the human 5-HT₇ receptor, with ³H-LSD and using clozapine, a typical 5-HT₇ receptor antagonist, as a standard.

 Table 1. In vitro affinity of piperazinyl and homopiperazinyl ethyl indoles

^aPercent inhibition @1 µM.

Various concentrations of the test compound were incubated with the radioligand (³H-LSD) and the receptor affinity (K_i in nM, or $\mu\%$ inhibition (*a*) 1 uM) was determined.

Initially, we examined the various piperazinylethyl and homopiperazinylethyl indole analogues of 6 (15-22, Table 1) and found that the N-methylhomopiperazine 19 and 6,7-bicyclohomopiperazine 21 retained potency at the human 5-HT₇ receptor with K_{is} of 31 and 3 nM, respectively. The relatively high affinity of 6, 19, and 21 encouraged us to further examine the effect of the position of the bromo substituent on the indole ring system. By keeping the indole nitrogen substituent fixed as the N-methylhomopiperazinylethyl and 6,6bicyclopiperazinylethyl groups, the various bromine substituted indole analogues were examined. It was found that the 5- and 6-bromosubstituted indoles were more potent than the corresponding 4- and 7substituted indoles (Table 2). However, the 6-bromosubstituted indole derivatives (6 and 19) were generally shown to have higher 5-HT₇ receptor affinity than the corresponding 5-sustituted analogues (11 and 14, Table 2).

With the above information in hand, the nitrogen substituent was fixed as a *N*-methylhomopiperazinylethyl group and the steric and electronic effects of the substituents at the 6-position of the indole were thoroughly examined (**29–46**, Table 3). Replacement of the 6-bromo substituent of **19** with chlorine (**30**) resulted in a ligand with very similar 5-HT₇ receptor affinity, whereas the 6fluoro-analogue **29** led to a 9-fold decrease in receptor affinity. However, hydrogen bond donors such as 6hydroxyl (**31**) and 6-amino (**32**) groups were found to be detrimental to receptor activity. Interestingly, the 6-trifluoromethyl group (**34**) led to a slight increase in receptor affinity ($K_i = 23$ nM).

Some other substituents at the 6-position of the indole were also explored (**35–46**, Table 3) demonstrating the electronic and steric flexibility inherent in this novel 5- HT_7 pharmacophore. Nonetheless, the majority of substituents led to ligands with reduced affinity at the 5- HT_7 receptor compared to compound **19**.

 Table 2. In vitro affinity of bromo substituted piperazinyl and homopiperazinylethylindoles

^a% Inhibition @ 1 μ M.

 ${}^{b}K_{i}$, nM (see ref 14).

Removal of the *N*-methyl group from **19** gave ligand **47** with reduced receptor affinity (Table 4). However, introduction of various alkyl and cycloalkyl groups onto the nitrogen atom of the homopiperazine (**47**) afforded a series of 5-HT₇ ligands with enhanced receptor potency. For example, replacement of the methyl group of **19** with a cyclopropylmethyl and cyclopentyl

 Table 3. In vitro affinity of 6-substituted N-methylhomopiperazinyl ethyl indoles

Compd	X	5-HT7 binding	
29	F	60%ª	288 ^b
30	Cl	85%ª	34 ^b
19	Br	93% ^a	31 ^b
31	NH_2	0%ª	_
32	OH	28%ª	_
33	H_2NCO	33%ª	_
34	CF_3	89% ^a	23 ^b
35	NO_2	72% ^a	139 ^b
36	PhCH ₂ O	28%ª	182 ^b
37	CH ₃ O	50%ª	1573 ^b
38	$CH_2 = CH$	79% ^a	109 ^b
39	CH=C	79%ª	140 ^b
40	CH ₃	62%ª	125 ^b
41	CH ₃ CH ₂	66%ª	166 ^b
42	<i>i</i> -Propyl	72%ª	145 ^b
43	<i>i</i> -Propenyl	72%ª	70 ^b
44	1-Hydoxy- <i>i</i> -propyl	6%ª	
45	3-Pyridyl	35% ^a	
46	3-Thienyl	68% ^a	109 ^b

^a% inhibition @ 1 μM.

 ${}^{\mathrm{b}}K_{\mathrm{i}}$, nM (see ref 14).

 Table
 4. In vitro affinity of 6-bromo N-substituted homopiperazinylethylindoles

Compd	R′	5-HT ₇ binding	
19	Methyl	93%ª	31 ^b
47	Н	77% ^a	
48	Isopropyl	92%ª	14 ^b
49	Isobutyl	95% ^a	37 ^b
50	Neopentyl	70% ^a	163 ^b
51	Cyclopropylmethyl	95% ^a	9 ^b
52	Cyclopropyl	96%ª	16 ^b
53	Cyclopentyl	98%ª	10 ^b
54	Cyclohexyl	96%ª	17 ^b
55	Phenyl	18%ª	

 ${}^{a}\%$ inhibition @ 1 $\mu M.$

 ${}^{b}K_{i}$, nM (see ref 14).

Receptor	% Inhibition @ 1 μM	Receptor	% Inhibition @ 1 μM
5-HT _{1A}	1	5-HT7	3 ^a
$5-HT_{1B}$	0	$M_1 + M_2$	35
$5-HT_{1D}$	0	D1	2
$5-HT_{1F}$	0	D2	15
5-HT _{2A}	20	D3	27
5-HT _{2C}	26	D4	4
5-HT_6	4066 ^a	D5	17

 Table 5.
 Receptor binding profile of compound 21

^a K_i values in nM (see ref 14).

Figure 2. Potent 6,7-bicyclohomopiperazine analogues.

led to **51** and **53** with K_{is} 9 and 10 nM, respectively (Table 4). On the contrary, the corresponding *N*-neopentyl (**50**) and *N*-phenyl (**55**) analogue reduced 5-HT₇ receptor affinity.

The information gleaned from the *N*-methylhomopiperazinylethyl indole derivatives and the finding that 6,7-bicyclohomopiperazine **21** was very potent prompted us to synthesize and evaluate the affinity of the 6chloro (**56**) and 6-trifluoromethyl (**57**) analogues of **21**. Both compound were found to be highly potent 5-HT₇ receptor ligands (**56**, $K_i = 10$ nM and **57**, $K_i = 7$ nM, respectively, Fig. 2).

For the most potent compound 21^{15} ($K_i = 3$ nM), the binding affinities at other serotonin receptors, dopamine receptors and muscarinic receptors were measured (Table 5). It can be seen that 21 possesses very good selectivity over the battery of receptors examined.

In conclusion, a novel series of potent and selective 5- HT_7 receptor ligands has been discovered. Compound 21 was the most potent in this series and has demonstrated good in vitro receptor selectivity, thus making it a valuable tool with which to further characterize the distribution and function of 5- HT_7 receptors in native tissue and to elucidate their potential role in disease states. Compound 21 will be further evaluated for its functional activity at this receptor.

References and Notes

1. Barnes, N.; Sharp, T. Neuropharmacology 1999, 38, 1083.

2. Plassat, J.; Amlaiky, N.; Hen, R. Mol. Pharmacol. 1993, 44, 229.

 Lovenberg, T.; Baron, B.; De Lecea, L.; Miller, J.; Prosser, R.; Rea, M.; Foye, P.; Racke, M.; Slone, A.; Siegel, B.; Danielson, P.; Sutcliffe, J.; Erlander, M. *Neuron* **1993**, *11*, 449.
 Tsou, A.; Kosaka, A.; Bach, C.; Zuppan, P.; Yee, C.; Tom, L. J. Neurochem. **1994**, *63*, 456.

5. Bard, J.; Zgombick, J.; Adham, N.; Vaysse, P.; Branchek, T.; Weinshank, R. J. Biol. Chem. **1993**, 268, 23422.

6. Shen, Y.; Monsma, F.; Metcalfe, A.; Jose, P.; Hamblin, M.; Sibley, D. J. Biol. Chem. **1993**, 268, 18200.

7. Ruat, M.; Traiffort, E.; Leurs, R.; Tarddivel-Lacombe, J.; Diaz, J.; Arrang, J.; Schwartz, J. *Proc. Natl. Acad. Sci. U.S.A.* **1993**, *90*, 8547.

 Terron, J.; Falcon-Neri, A. *Br. J. Pharmacol.* **1999**, *127*, 609.
 Linnanen, T.; Brisander, M.; Unelius, L.; Rosqvist, S.; Nordvall, G.; Hacksell, U.; Johansson, A. *J. Med. Chem.* **2001**, *44*, 1337.

Forbes, I.; Dabbs, S.; Duckworth, D.; Jennings, A.; King,
 F.; Lovell, P.; Brown, A.; Collin, L.; Hagan, J.; Middlemiss,
 D.; Riley, G.; Thomas, D.; Upton, N. J. Med. Chem. 1998, 41, 655.

11. Kikuchi, C.; Nagaso, H.; Hiranuma, T.; Koyama, M. J. Med. Chem. **1999**, *42*, 533.

12. Lovell, P.; Bromidge, S; Dabbs, S; Duckworth, D; Forbes, I.; Jennings, A; King, F.; Middlemiss, D.; Rahman, S.; Saunders, D.; Collin, L.; Hagan, J.; Riley, G.; Thomas, D. J. Med. Chem. **2000**, *43*, 342.

13. Poss, M.; Purandare, A.; Mattson, R.; Sun, L. (Bristol-Myers Squibb Co.) Patent WO-00185701, 2001.

14. K_i values in nM are given as the mean of at least two independent determinations performed in triplicate with less than 15% deviation.

15. ¹HNMR (CDCl₃) for compound **21** (a yellow oil): δ 7.51 (s, 1H), 7.46 (d, 1H), 7.18 (d, 1H), 7.13 (d, 1H), 6.46 (d,1H), 4.13 (t, 2H), 2.88 (t, 2H), 2.83–1.16 (m, 17H).