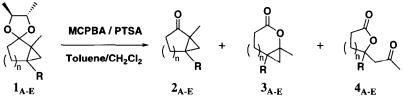


Tetrahedron Letters 40 (1999) 4681-4682

Oxidation of Substituted Spiro[bicyclo[n.1.0]alkane-2,2'-[1,3]dioxolanes]. Formation of Substituted Lactones.

Janine Cossy^{*}, Jean-Luc Ranaivosata, Barbara Gille, Véronique Bellosta^{*}


Laboratoire de Chimie Organique associé au CNRS, ESPCI, 10 rue Vauquelin – 75231 Paris Cedex 05 - France

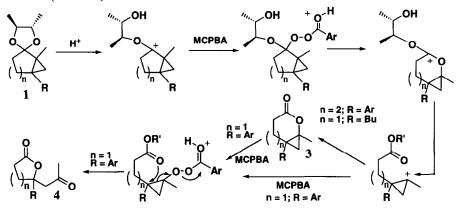
Received 18 March 1999; accepted 2 May 1999

Abstract: 5-(Aryl)-1,4',5'-trimethylspiro[bicyclo[3.1.0]hexane-2,2'-[1,3]dioxolanes] are transformed to substituted ketolactones by treatment with *m*-chloroperbenzoic acid in the presence of *p*-toluenesulfonic acid. @ 1999 Elsevier Science Ltd. All rights reserved. *Keywords*: lactones; ketals; oxidation; cyclopropanes.

Reywords: lactones, relais, ondation, cyclopropates.

Ketals can be transformed into lactones by treatment with peracids in acidic conditions. ¹ We have found that treatment of compounds of type 1^{2} with *m*-chloroperbenzoic acid (MCPBA) ³ in the presence of *p*-toluenesulfonic acid (PTSA) can lead to lactones of type **3** or **4** depending on the nature of substituent R and on the ring size of the spiroketal. Ketones of type **2** can also be isolated as minor products.

When 1_A was treated with MCPBA (2.5 eq) in the presence of PTSA (1.0 eq) lactone 3_A was obtained with high regioselectivity and in good yield (62%); ketone 2_A was also isolated as a minor product (17%). Treatment of 1_B in the same conditions led to ketone 2_B (30% yield) and lactone 3_B (40% yield) with no trace of lactone 4_B .⁴ On the contrary, when 1_C , 1_D , and 1_E were treated for several days with MCPBA (2.5 eq) and PTSA (1.0 eq), only traces of lactones 3_C - 3_D were detected by GC/MS and ketolactones 4_C , 4_D and 4_E were respectively isolated as major products (~ 40% yield). Ketones 2_C - 2_E were also formed as side-products and were isolated in low yields (1% - 25%). The results are summarized in the Table.


e-mail: janine.cossy@espci.fr

Starting material	time	Products (yield % ^b)		
1		2	3	4
$\mathbf{I}_{\mathbf{A}}$ n = 1 ; R = butyl	12 h	(17)	(62)	(-)
$1_{\mathbf{B}} \mathbf{n} = 2$; $\mathbf{R} = p$ -methoxyphenyl	7 d	(30)	(40)	(-)
$1_{\mathbf{C}} \mathbf{n} = 1$; $\mathbf{R} = \text{phenyl}$	7 d	(20)	(-)	(41)
$1_{\mathbf{D}} \mathbf{n} = 1$; $\mathbf{R} = p$ -tolyl	3 h	(24)	(70)	(-)
	7 d	(10)	(-)	(35)
$1_{\mathbf{E}}$ n = 1; R = <i>p</i> -methoxyphenyl	7 d	(traces)	(-)	(40)

Table: Oxidation of lactones $\mathbf{1}_{A} - \mathbf{1}_{E}$ by MCPBA/PTSA^a

^a The reactions were performed at rt in toluene/CH₂Cl₂ (1/1) at 0.1 M in $\mathbf{1}_{A}$ - $\mathbf{1}_{E}$; MCPBA (2.5 eq); PTSA (1.0 eq). ^b Isolated products, after purification by flash-chromatography.

Variation of the aromatic substituent in ketals $1_{C}-1_{E}$ suggests that the yield of ketolactone $4_{C}-4_{E}$ (~ 40%) is almost unaffected by increasing electron density in the cyclopropane. When ketals $1_{C}-1_{E}$ were treated for several days with an excess of MCPBA or with MCPBA in the presence of NaHCO₃, they were recovered in 70% yield and ketones $2_{C}-2_{E}$ were isolated (5 - 10%). No lactones $3_{C}-3_{E}$ or $4_{C}-4_{E}$ were then detected. We have to point out that treatment of ketones $2_{C}-2_{E}$ with MCPBA and PTSA led only to degradation. Treatment of lactone 3_{D} with MCPBA (1.2 eq) and PTSA (1.0 eq) (7 days) furnished ketolactone 4_{D} (40%). When lactone 3_{D} was treated either with MCPBA alone or with PTSA alone, only traces of ketolactone 4_{D} were detected (~ 4%) and the starting lactone was recovered. Therefore, it appears that the transformation of ketals $1_{C}-1_{E}$ to ketolactones $4_{C}-4_{E}$ implies the protonation of the ketal by PTSA. (Scheme)

By applying a simple procedure, 5-(aryl)-1,4',5'-trimethylspiro[bicyclo[3.1.0]hexane-2,2'-[1,3]dioxolanes] can thus be transformed easily into γ -disubstituted γ -lactones (aryl, acetonyl) in moderate yields.

References and notes

- 1. Sugimura, T.; Fujiwara, Y.; Tai, A. Tetrahedron Lett. 1997, 38, 6019-6022 and references therein.
- 2. Compounds of type 1 were prepared by treatment of the corresponding ketone with (±)-2,3-butanediol.
- 3. Commercially available from ACROS (70-75%).
- 4. The presence of lactone 4_B was not detected in the crude reaction mixture by GC/MS or in the ¹H NMR spectra.