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Dynamics of Pushing 

Denis Rancourt 
Neville Hogan 
Laval University 
Sainte-Foy, Quebec 
Massachusetts Institute of Technology 
Cambridge, MA 

ABSTRACT. A standing individual can use several strategies for 
modulating pushing force magnitude. Using a static model, 
researchers have shown that the efficacy of those strategies varies 
considerably. In the present article, the authors propose a human 
motor crmtrol dynamic model for analyzing transients that occur 
when an individual is asked to modulate force magnitude. Accord- 
ing to the model, the impedances of both the upper and the lower 
limbs inithence the time course of force variations and foot place- 
ment has a profound effect on pushing force dynamics. With a 
feet-together posture, the center of pressure has a limited range of 
motion m d  changes in force may be preceded by initial changes in 
the opposite direction; that is, to decrease force, an individual must 
first increase force. When the feet are placed apart, individuals can 
move the center of pressure over a much larger range, thereby 
modulating pushing force magnitude, without reversing behavior, 
over a larger range of force magnitudes. Therefore, the best way to 
control pushing force at the hand may be by using the foot. 
Key words: equilibrium-point hypothesis, foot placement, force 
conml. hand stiffness, pushing force 

he biomechanics of force production by the upper limb T hah been the object of several studies. Dempster (1958) 
reported investigations as far back as 1924. The constant 
interest from the community is not surprising because force 
product,ion (often reduced to the action of pulling or push- 
ing) is a physical action present in most of our daily activi- 
ties as well as in the workplace environment. To properly fit 
tools, environments, and workplaces to humans’ motor con- 
trol capabilities, one needs to know what factors limit push- 
ing and pulling and to have a better understanding of the 
mechanics of force exertion. 

Using a free-body diagram in a static analysis, Dempster 
(1958) observed that while individuals are standing, their 
maximum pulling force magnitude is limited by their abili- 
ty to dihplace their center of mass (CM) horizontally away 
from the center of pressure (CP) at the foot. That finding, of 
course. IS valid only when individuals perform constant 

pulling force tasks. Others have shown that standing indi- 
viduals can also take advantage of the angular momentum 
H of their body to produce force impulses (Michaels & Lee, 
1996; Wing, Flanagan, & Richardson, 1997). That motor 
control strategy can be easily captured by a simple inverted 
pendulum model for the standing subject (Pai & Patton, 
1997). By providing angular momentum to their body prior 
to producing a pulling or pushing force, individuals can 
greatly increase their pulling or pushing force capability, 
because momentum H will compensate for the opposing 
angular momentum subsequently produced by the impulse 
hand interaction force. The allowable peak force is physi- 
cally limited, in part because of the constraint that individ- 
uals must maintain stability following force exertion (Pai & 
Patton, 1997). However, the momentum strategy is effective 
only when brief transient forces are desired. For constant 
pushing force exertion, Grieve (1983) showed that the CM 
motion is not the only strategy that individuals can use to 
modulate force magnitude. Other strategies exist, and those 
will be described in more detail in the next section. 

In many studies, researchers have investigated different 
biomechanical factors that may influence the pushing or 
pulling force capabilities of a human subject. Results have 
shown that the individual’s weight and height (Chaffin, 
Andres, & Garg, 1983), floor friction coefficient (Kroemer, 
Kroemer, & Kroemer-Elbert, 1994), pushing height (Chaf- 
fin, Andres, & Garg, 1983; Kumar, 1995), body posture 
(Dams, 1993), pushing frequency and duration (Snook & 
Ciriello, 1991), and foot placement (Warwick, Novak, & 
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Schultz, 1980) all influence the maximum force produced. 
Force magnitude may also be limited by the instability 
induced by the force itself under certain conditions, such as 
pushing on a pivoting stick. In fact, Bober, Kornecki, Lehr, 
and Zawadzki (1982) reported a decrease of up to 26% in 
pushing force magnitude in such conditions. Even more sig- 
nificant diminutions, of over 50%, were observed in a 
recent study by Roy (1999). 

To our knowledge, hand force exertion studies have so far 
been limited to the context of impulsive and constant pulling 
or pushing force conditions. Our aim in the present study 
was to extend the biomechanical analysis of hand pushing 
force by considering the problem of dynamically controlling 
its magnitude. That issue is important in hand tool opera- 
tions such as drilling, sanding, and grinding, because tool 
operators often have to change the hand-tool interaction 
force to properly perform the task. The analysis presented 
here is based on a simple dynamic human motor control 
model. The advantage of such a model is that it is valid for 
both static and dynamic force exertion situations and it 
incorporates limb mechanical impedance as an important 
biomechanical factor in the physics of force exertion. 

In this article, we first present a static analysis of the 
pushing force of a standing individual to explain different 
strategies that can be used to modulate pushing force mag- 
nitude. Although a similar analysis was reported in an ear- 
lier article (Grieve, 1983), the static analysis is an essential 
part in the development of a dynamic model of pushing. In 
particular, the static analysis provides estimates on how 
much each motor control strategy might be effective at 
varying force magnitude. 

One well-known strategy that a standing individual can 
use to modulate pushing force is to displace the CM of the 
body away from the CP. If the hand is not making contact 
with a stable environment, the individual must maintain the 
CM within the base of support (BOS) at steady state to 
ensure static postural stability (e.g., Pai & Patton, 1997). 
When the BOS is restricted to the foot surface, the physical 
range of pushing force variations is therefore limited if the 
CP must remain within the BOS; that limitation, however, 
is usually not required. Larger variations in pushing force 
are feasible when an individual moves one leg forward so 
that the size of the BOS is increased. In the present article, 
the resulting posture is called a feet-upart posture (Figure 1, 
left) as opposed to a feet-together or parallel-feet posture 
(cf. Figure 1, right). We will show that such a posture is 
convenient not only to increase the range of allowable force 
variations but also for proper control of pushing force. 
Indeed, that stance prevents the occurrence of unwanted 
dynamics when pushing force magnitude must be changed. 
That nonintuitive physical phenomenon is well represented 
by the dynamic model developed in this article. The model 
is based on the fact that the upper limb has a nonzero out- 
put mechanical impedance (e.g., Bizzi, Accornero, Chap- 
ple, & Hogan, 1982; Feldman, 1966), which is critical for 
the stability of the limb and body. The model clearly 

, 

FIGURE 1. Human pushing on a fixed handle in (left) feet- 
apart posture and (right) parallel-feet posture. 

lemonstrates the influence of body posture, in particular 
foot placement, on the ability of an individual to dynami- 
cally control pushing force. In addition, it demonstrates the 
influence of limb stiffness in the pushing force task, an 
issue that was introduced in an earlier article (Michaels & 
Lee, 1996). 

Theoretical Analysis 
Different Strategies for Producing Pushing Force 

One can best achieve a description of different strategies 
for exerting or controlling a pushing force for a standing 
individual by using a static analysis of a person who push- 
es on a fixed object, such as a handle fixed on a wall (see 
Figure 1). In our analysis, we considered at least five dif- 
ferent ways to produce a pushing force. In this section, we 
describe four of the strategies by modeling a standing indi- 
vidual as a simple inverted pendulum (see Figure 2), and we 
discuss the fifth strategy in the next section. 

Static equilibrium of the pendulum in the sagittal plane 
leads to the following moment balance equation about the 
contact point, that is, the CP: 

( 1 )  

where F, is the horizontal component of the interactive 
force between the hand and the wall; Fy is its vertical com- 
ponent; m is the individual's body mass; g is the gravita- 
tional acceleration; kM is the distance between the CM and 
the CP; L1 is the shoulder height for a straight-standing sub- 
ject; 8 is the sway angle of the pendulum about the hori- 
zontal, that is, the body tilt angle, where 90" is upright; and 
z is the moment interaction between the hand and the wall. 
If we consider the horizontal component of the interactive 
force, F,, then 

F,L, sin 0 - mg& cos 0 - FYLl cos 0 - T = 0, 

z 
F~~~~ = F, = mg ctge + - r, sine'  
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Dynamics of Pushing 

Fy I 

IRY 
FIGURE 2. Inverted pendulum model of an individual push- 
ing, point contact model. See “Theoretical Analysis” for defi- 
nitioris. 

Equation 2 indicates that F, can be produced or con- 
trolled either by the action of gravity, the action of a verti- 
cal force F, or a moment z. Hence, one can control pushing 
force by modifying either &M, 8, Fy, or z. Those observa- 
tions were previously described by Grieve (1983) in the 
context of slipping caused by manual exertion. 

One can increase &M, for example, by raising one leg 
along the body (i.e., flexing the hip and the knee to raise the 
leg upward) or by moving one lower limb forward without 
making contact with the ground. The body tilt angle 8 is 
mainly determined by the position of the contact point (i.e., 
the CP). the upper limb configuration, and the height of the 
hand, three variables that can be chosen within a certain 
range by the individual. Once the hand location, feet pat- 
tern, acid location are defined, one can still modulate push- 
ing force by changing the upper limb configuration; that 
strategy, which is commonly described as “pushing with the 
body,” makes the body tilt forward or backward, thereby 
modifying pushing force magnitude. One can also modify 
pushing force magnitude by changing the vertical force Fy 
exerted on the wall. We speculate that that strategy may be 
associated with what most people perceive as pushing with 
the arm. We base that hypothesis on two observations: First, 
the pushing with the arm strategy does not require any mod- 
ificatiolri of body tilt angle. Second, because of the large 
momelit arm of vertical force F, relative to the shoulder, 
upper limb muscles become significantly loaded, thereby 
associating pushing force with upper limb muscle activa- 
tion. Such a strategy for controlling pushing force is not 
alwayh desirable; for example, in horizontal drilling, an 
individual who uses such a strategy would exert side loads 
on the drill that might break the bit. Finally, one can change 
pushing force magnitude by modulating the magnitude of 

the moment z produced by the hand on the wall. That strat- 
egy is often not practical in tool usage because the interface 
of the tool with the environment cannot transmit moments 
in the appropriate directions. 

Use of CP to Modulate Pushing Force 

The inverted pendulum model standing on a fixed contact 
point cannot represent one important strategy for modulat- 
ing pushing force: that of moving the CP within the BOS. 
Because the contact of the foot with the ground is actually 
not a point but a finite surface, individuals have the ability 
to modify the CP location without any appreciable change 
in body configuration and CM location, as is illustrated in 
Figure 3. For instance, the body can tilt forward so that the 
CM is over the anterior portion of the BOS. If an individual 
locates the CP in that region, the pushing force may become 
negligible. If the CM is posterior to the CP, then pushing 
force can even become negative; that is, it becomes a 
pulling force. The range of pushing force variations that can 
be achieved with that strategy is directly related to the BOS 
size. One can significantly increase that range by choosing 
a feet-apart posture as opposed to a parallel-feet posture, as 
shown in Figure 1. 

How Is Pushing Force Actually Produced? 

As described in previous sections, there are at least five 
different strategies for producing a constant pushing force 
for a standing individual: (a) raising the center of mass 
along the body, (b) using a vertical hand force, (c) using a 
hand moment, (d) tilting the body as a whole, and (e) using 
CP motion over the BOS in a parallel-feet or feet-apart pos- 

/ \ 
Posterior limit of 
Base of Support (BOS) BOS 

Anterior limit of 

FIGURE 3. Practical range of body tilt angle configuration 
when moving the center of pressure (CP) location from the 
anterior limit of the base of support (BOS) to its posterior limit. 
CM = center of mass. 
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D. Rancourt & N. Hogan 

ture. A priori, it is not possible to determine which strategy 
is used under what conditions. Some of the strategies may 
be appropriate for producing small pushing forces or small 
magnitude changes for increased accuracy in force control. 
Some may not be possible because the contact environment 
cannot transmit the necessary forces or moments. The 
momentum strategy mentioned earlier may be appropriate 
when large forces are required over short periods of time 
(e.g., opening a door or hitting an object) but is inappropri- 
ate when producing steady forces, which are often neces- 
sary when operating hand power tools. There is therefore a 
need to determine the effectiveness of strategies for produc- 
ing constant forces. 

By using the following anthropometric values obtained 
from Kroemer et al. (1994, pp. 30 and 80) and Chaffin and 
Andersson ( 199 1, p. 80) for an average-size man-mass m = 
78 Kg, height L = 176 cm, shoulder height L1 = 0.818 x 176 
cm = 144 cm, center of mass height &M = 0.588 x 176 cm = 
104 cm, and body tilt angle 8 = 80"-we computed theoreti- 
cal estimates of the range of pushing force magnitudes that 
can be achieved by each strategy. Pushing force ranges for all 
five strategies are listed in Table 1. 

As mentioned earlier, one can change kM by raising 
either the free upper limb or the lower limb upward along 
the body (i.e., flexing the hip and the knee so that the leg is 
raised upward) or anteriorly. The latter type of movement is 
discussed later in this section. As a limit case, let us assume 

TABLE 1 
Theoretical Estimates of Pushing Force 

Maximurn Range for All Pushing Strategies 

Pushing strategy 
Maximum pushing 

range (N) 

For given body tilt angles (90" = upright) 

80" body tilt angle 
Hand moment (2 strategy) 7 
Raising lower limb (kM strategy) 6 
Vertical force (F, strategy) 19 

Hand moment (2 strategy) 7.4 
Raising lower limb (&M strategy) 
Vertical force (F, strategy) 37 

70" body tilt angle 

11 

Over practical values of body tilt angles 

Body tilt angle strategy 
CP motion strategy 

Parallel-feet postures 7 7 b  

Momentum strategy 1 , 1 0 0 e  

10 Nldeg 

Feet-apart posturec 65Sd 

Nore. Data estimated in the Table are for an average-sized man. 
The minimum body tilt angle is about 82'. bWing et al. (1997) 
actually found values on the order of 30 N. minimum body tilt 
angle is about 40'. dBecause of slipping, this value is much lower 
in practice. 'Data were obtained from Michaels et al., 1993. 

that one of the lower limbs is now concentrated at hip level. 
The new CM would become located at about &M = 110 cm, 
a variation of only 5.5% in the location of the CM. Based 
on Equation 2, the maximum percentage change in pushing 
force is therefore limited to 5.5%. When we used the 
anthropometric values denoted earlier, we found a maxi- 
mum absolute change of about 6 N in pushing force, (cf. 
Table 1). Larger changes are obtained for smaller body tilt 
angles: For a body tilt angle of 70", the variation in pushing 
force increases up to 11 N for the same lower limb config- 
uration change. 

If variations in pushing force are produced by a change in 
the vertical force Fy, the possible range of variation is about 
twice as much. Based on Equation 2, the pushing force is 
directly proportional to Fy by a factor of ctg0 = 0.18 for 8 = 
80". Assuming that an individual can produce a maximum 
Fy of about 107 N (Rohmert, 1966, cited in Chaffin & 
Andersson, 1991), one can therefore modulate pushing 
force by no more than 19 N with such a control strategy (cf. 
Table 1). For a body tilt angle of 70", the maximum varia- 
tion in pushing force increases up to 37 N. 

If variations in pushing force are produced by a change in 
hand moment z, the possible range of variation is much 
smaller. For 8 = 80°, and assuming that the maximum 
moment that a hand can produce perpendicular to the sagit- 
tal plane is on the order of 10 N-m, Equation 2 shows that 
one can achieve a maximum variation of only 7 N in the 
pushing force by using the hand moment strategy (cf. Table 
1). Even for a body tilt angle of 70', the force variation is 
limited to 7.4 N. 

More effective strategies for modulating pushing force 
can be chosen. For instance, if one chooses the body tilt 
angle strategy, the variation in pushing force for the anthro- 
pometric values indicated earlier is about 6Fpush = 10 N/deg. 
For a body tilt angle variation of 10" only, pushing force can 
be modulated by about 100 N (cf. Table 1). However, the 
maximum force produced with that strategy is limited by 
the individual's weight, the floor's friction characteristics, 
and the ability of the individual to maintain the body in ;L 

rigid stable configuration. 
Finally, one can also modulate pushing force by changing 

the CP location. In practice, that is equivalent to changing 
body tilt angle without an actual change in body configura- 
tion or in the CM. Let us assume first that the CM is restrict- 
ed to the BOS surface. For a parallel-feet posture, the BOS 
size is physically limited to a certain region of the foot 
length, that is, about 15 cm. Under such conditions, the 
minimum achievable body tilt angle is about 82"; in that 
position, the CM is over the most anterior portion of the 
BOS and the CP is at the most posterior portion of the BOS, 
as shown in Figure 3. Assuming that Equation 2 is valid in 
the present case, those values lead to a maximum variation 
in pushing force of 77 N (cf. Table l), the minimum being 
0 N when the CM is set over the CP location. If the CM 
exceeds the BOS, pushing force is then achieved in con- 
junction with the body tilt angle strategy. 
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Dynamics of Pushing 

One can achieve a larger BOS by moving one foot for- 
ward anterior to the CM and even anterior to the shoulder 
location. In that stance, which is called the feet-apart pos- 
ture, the BOS can be made as long as about 80 cm. When 
the CM is located at the posterior limit of the BOS, the body 
tilt angle is at a minimum around 40". On the basis of Equa- 
tion 2. therefore, we calculated the maximum range of 
pushing force as 655 N (cf. Table l ) ,  because the minimum 
is 0 N when the CM is set over the CP. In practice, the range 
is much lower because of the physical limitations caused by 
slipping on the floor or by limited upper limb force exertion 
capabilities. 

In summary, two different strategies seem to be the most 
effective for producing large variations in pushing force: the 
body tilt angle strategy and the CP motion strategy in which 
a feet-apart posture is used. Although by using the parallel- 
feet posture, one can achieve significant force variations, 
the maximum force that can be produced in that posture is 
on the order of 77 N, based on anthropometric values for an 
average-size man. That amount of force may not always be 
sufficient in certain interactive tasks. For instance, hand 
power 1001 usage may often require larger pushing forces 
(over I(K) N), which one can produce only by using one of 
the two most effective strategies or by using the CP motion 
with a parallel-feet posture in conjunction with a vertical 
force whenever the environment or the upper limb can resist 
such a torce. 

From a static analysis viewpoint, the body tilt angle and 
the CP motion strategies have a similar capacity for pro- 
ducing pushing forces. However, a dynamic analysis of 
pushing reveals a striking difference between the two push- 
ing Strategies. To describe that phenomenon, we developed 
a dynamic model of a standing subject performing a push- 
ing task, 

Dynamic Model of the Pushing Force Task 

Our aim in presenting the dynamic model is to describe 
how a pushing force varies with time when an individual is 
asked to change the force magnitude by using either the 
body till angle strategy with a parallel-feet posture or a CP 
motion btrategy. We developed a dynamic model for each 
pushing case. We show herein that each strategy exhibits 
differenl force transient dynamics when the pushing force is 
modified. 

Dynamics of the Body Tilt Angle Strategy 

In this analysis, we assumed that the individual pushes on 
a fixed handle, with feet together as shown in Figure 1 
(right), producing a pushing force Fo caused by the action 
of gravity. For clarity, we also assumed that both T and Fy 
remain negligible during the task and that kM remains 
practically constant. In the following analysis, the contact 
surface is modeled as a simple contact point; that is, the CP 
is constrained to a given location of the foot surface. That 
constraint is, of course, not exactly realistic, because an 
individuul can modify the CP anywhere on the foot surface 

while pushing. That particular case is analyzed in the fol- 
lowing section. If the individual is asked to decrease or 
increase pushing force magnitude, he or she is left with one 
solution, that is, to increase or decrease body tilt angle by 
extending or retracting the upper limb. One can analyze the 
overall effect of changing body tilt angle on the dynamic 
response of the pushing force by modeling the body as a 
slender rigid bar of length L with its center of mass located 
at kM (cf. Figure 4). To decrease the horizontal pushing 
force from an initial value Fo, to a final value F, one must 
increase the body tilt angle from an initial value Oo, to a final 
value 8. Transiently, that change requires the body to be 
accelerated toward the upright position. That acceleration, 
in turn, requires a transient increase in horizontal pushing 
force to a value greater than Fo, before its subsequent 
decrease to F. A similar initial reversing behavior also 
occurs when the horizontal pushing force must be 
increased. 

The details of the force transient depend in part on the 
mechanical impedance of the upper limb. To represent that 
phenomenon, we modeled the upper limb as a linear spring 
of stiffness K,. This model is extremely simplified because 
the upper limb mechanical impedance exhibits considerably 
more complex dynamics that are also highly nonlinear. It is 
adequate for our present purpose, however. To include dis- 
sipation in our model, we assumed a damper of constant b 
at the ankle joint. Although experimental values of ankle 
joint damping properties are reportedly about 1 N-m-shad 
(cf. Kearney & Hunter, 1982), one needs a damping value 
as high as 200 N-m-shad to ensure rapid convergence of the 
pushing force. That finding suggests that other joints and 
muscles that connect the hand to the foot also contribute to 
damping during pushing. If damping from those joints had 
been modeled, in particular those from the upper limb, the 
ankle damping properties required for convergence would 
have been much lower. 

In our model, it is assumed that pushing force is a conse- 
quence of the nonzero mechanical impedance of the upper 
limb. That approach is consistent with (but does not depend 
on) the equilibrium-point hypothesis investigated by previ- 
ous workers (Bizzi et al., 1982; Bizzi, Hogan, Mussa-Ival- 
di, & Giszter, 1992; Feldman, 1966; Hogan, 1985; Mussa- 
Ivaldi, Hogan, & Bizzi, 1985; Shadmehr, Mussa-Ivaldi, & 
Bizzi, 1993). Different explanations of the neuromuscular 
origin of this physical behavior have been suggested. In any 
case, however, because the limb has a demonstrably nonze- 
ro mechanical stiffness, there is a point in space where the 
limb will be in equilibrium. That point is often called the 
limb equilibrium point (Bizzi et al., 1992; Dolan, 1991; 
Mussa-Ivaldi et al., 1985; Shadmehr et al., 1993). Because 
sustained external forces can bring the limb to equilibrium 
at positions other than its equilibrium point, the original 
equilibrium point is better termed a virtual position, that is, 
a position toward which the hand wants to move. In that 
context, hand interacting force F and hand position are 
related by a static relationship in the form of 
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hand virtual 
/position 

FIGURE 4. Dynamic model of an individual pushing with a 
body tilt angle strategy with a point-contact condition at the 
feet. See “Theoretical Analysis” for definitions. 

F = F(x1,  ml) ,  (3) 

where xl is the current position of the hand in three-dimen- 
sional space and xvl is its current “virtual position,” that is, 
a point in space where the limb would not produce any 
force (cf. Figure 4). As a first approximation, one can lin- 
earize that relationship, which then takes the form 

By changing the hand virtual position xvl, an individual can 
modulate the interacting force while keeping x l  constant. 
Hence, when xvl = xl, no interacting force occurs. Accord- 
ing to the model, to generate a pushing force, the pusher must 
keep xvl greater than xl, and, because both values are mea- 
sured from the shoulder (cf. Figure 4), one solution is to 
move the virtual position “inside” the wall. The farther the 
virtual position is moved inside the wall, the larger the inter- 
acting force produced. On the basis of this model, one there- 
fore controls pushing force with the hand virtual position. 

Using this model of force production by the upper limb, 
we can find the dynamic response of pushing force follow- 
ing a change in virtual position location by formulating a 
dynamic equation for an individual whose body rotates 
about the ankle. Assuming for convenience and without loss 
of generality that the CM is at the midpoint of the body 
(LvM = U2), one finds 

( 5 )  
L 
2 

J 6 =  F,L, sin0-mg-cos0-b0, 

where J is the inertia of the body about the ankle and F, is 
the interacting force at the hand given by Equation 4. Ini- 
tially, the individual is at equilibrium. Under that condition, 

Clearly, an individual can modify or control pushing 
force magnitude by changing input variable xvl. Given that 

xl  = D - L1 cos 0, (7) 

Equation 5 ,  along with Equation 4, becomes 

L 
2 

J 6  = Kl(xvl- xl)& sin0 - mg-cos0 - be 

= G(xvl,0,0). (8) 

Because Equation 8 is nonlinear, one can linearize Equation 
8 to better explain the dynamic behavior of the system by 
using common analysis tools of linear system theory . Sim- 
ilarly, Equation 6 can also be linearized so that it provides a 
transfer function relating small variations 6xvl of xvl and 
small variations 6F of the pushing force. The detailed devel- 
opment of the linearization procedures used to obtain the 
transfer function are included in the Appendix, and the 
result is as follows: 

2 sin 0 

2 sin 0, 

2 Js2 + bs - K , C  cos 0, - 

Js2 + bs + K I C  sin2 0, - 

Because one of the coefficients in the numerator is always 
negative, for practical body configurations, the transfer func- 
tion will contain at least one positive real root, that is, one 
nonminimum-phase zero. Nonminimum-phase systems are 
well known in the control theory (cf., Ogata, 1997, p. 486) 
because they tend to slow down the dynamic response of a 
system, to cause a reversing behavior at the onset of the 
response, and they may cause feedback controller instability. 

To illustrate how that zero affects an individual’s ability 
to control pushing force, we considered a small change in 
the virtual position of the hand. To avoid unrealistically 
rapid transients, we assumed that the virtual position fol- 
lows a cubic profile lasting 0.5 s (cf. Figure 5 ,  top). Simu- 
lations using parameter values that approximate an average- 
size man are shown in Figure 5 ,  middle. The pushing force 
dynamic response exhibits a second-order system behavior, 
as is expected from the transfer function. At the onset of the 
change in the hand virtual position, however, the pushing 
force initially increases above its initial value; but it then 
decreases and quickly converges toward the desired value. 
In practice, that means that when an individual is asked to 
decrease pushing force, he or she must first increase the 
force to make the body rotate backward, thereby reducing 
the action of gravity; similarly, if the pushing force must be 
increased, he or she must first reduce it to allow the body to 
tilt forward, thereby increasing the action of gravity. The 
existence of such initial reversing behavior is characteristic 
of linear control systems with nonminimum-phase zeroes in 
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120’ I 

0 1 2 3 4 
Time (sec) 

t FOOT VIRTUAL 

1200 - 
1 2 3 4 

Time (sec) 
FIGURE 5. Top. Variation in hand or foot virtual position 
versus time. The top line represents the hand virtual position 
trajectory profile, whereas the bottom line represents the pro- 
file for the foot virtual position trajectory. Middle. Variations 
in pushing force for variations in hand virtual position when a 
body l i l t  angle pushing strategy is used. Bottom. Variations in 
pushing force for variations in foot virtual position when a 
center of pressure (CP) motion pushing strategy is used. These 
linear simulations were based on the following parameter val- 
ues, which are those of an average-size man: upper limb stiff- 
ness, 1,000 Nlm; lower limb stiffness, 19,000 N/m; initial 
body tilt angle, 75”. We assumed a damper constant b = 200 
N-m-shad at the ankle. Other parameter values were kM = 
106 tin. L = 176 cm, Li = 144 cm, rn = 78 kg. See “Theoreti- 
cal Analysis” for definitions. 

the transfer function. Although the system stabilizes to the 
desired value, the initial reversing behavior may lead to an 
undesirable response in the pushing force dynamics. One 
can modulate the zero location at will by changing either 
GI, G2, or G3 only, because J ,  the moment of inertia of the 
individual’s body about the ankle, cannot be significantly 
modified. GI, G2, and G3 can be easily related to the partic- 
ular physical parameters of the task. The three functions are 
all determined by body pose and the upper limb impedance 
selected by the individual to perform the task. 

In many situations, that reversing behavior is undesirable. 
For example, if the task is to drill a through hole, the push- 
ing force should be decreased rapidly as the drill penetrates 
the work piece. If the pushing force is exerted as described 
previously, however, any attempt to reduce the force will 
initially increase it, and that increase may cause excessive 
penetration of the drill bit. A similar problem may arise in a 
task as simple as pushing a cart. An abrupt decrease in the 
cart’s rolling resistance (e.g., moving from a carpeted sur- 
face to a polished surface) requires a corresponding 
decrease of pushing force if the cart is not to be accelerated 
excessively. If the pushing force is exerted as described pre- 
viously, however, the attempt to decrease the pushing force 
will initially increase it, exacerbating the problem of 
unwanted cart acceleration. 

Dynamics of the CP Motion Strategy 
As discussed previously, in many hand tool applications, 

an initial transient opposite to the direction of intended 
change may be undesirable. One can avoid that reversing 
behavior by using the CP motion strategy, with a feet-apart 
posture if large forces are required, that is, over 100 N. By 
moving the CP over the BOS to control pushing force, one 
can eliminate the nonminimum-phase zero and, conse- 
quently, the reversing behavior. The main difference 
between a parallel-feet and a feet-apart posture while using 
the CP motion strategy is in the range of achievable push- 
ing forces at which the reversing behavior can be avoided. 
Referring to Table 1, a parallel-feet posture is limited to 
pushing forces in the range of 77 N. Forces over 100 N must 
therefore be achieved in conjunction with other strategies, 
and in particular the body tilt angle strategy, which is intrin- 
sically a contact point BOS that leads to the reversing 
behavior. 

To illustrate how the reversing behavior can be avoided, 
we chose a feet-apart posture for the dynamic model by 
including the lower limb in the dynamic model, as illustrat- 
ed in Figure 6. This model is more complete because it 
includes the dynamics of the lower limb in the analysis. In 
this model, the individual performs the same pushing task 
by moving one lower limb forward, as shown in Figure 1 ,  
left. As a result, the details of the transient also depend on 
the mechanical impedance of the lower limb, which may be 
modeled as a linear spring of rigidity K2, with a virtual posi- 
tion xv2 that can be controlled by the individual. On the 
basis of lower limb stiffness values measured by Greene 
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n 
/ 

foot virtual 
position 

hand virtual 
position 

FIGURE 6. Dynamic model of an individual pushing with a 
feet-apart posture. See “Theoretical Analysis” for definitions. 

and McMahon (1979), we chose a stiffness of 19,000 N/m 
for the rigidity of the spring model. Although the exact 
value of lower limb stiffness changes the details of the force 
transient, it does not influence the nonreversing behavior. 
Therefore, any particular value that maintains a stable body 
configuration is acceptable to illustrate the phenomenon. 

According to this model, by changing or controlling the 
location of the lower limb virtual position, the individual 
may change the interacting force between the front foot and 
the floor and, consequently, may modulate the pushing force 
produced at the hand. Meanwhile, the hand virtual position 
may change or remain constant. Such a technique is com- 
monly described as transferring a certain amount of the indi- 
vidual’s weight to the front foot or moving the CP forward. 

When one modifies pushing force by using input xv2 
instead of input xvl, the reversing behavior observed in the 
previous model can be avoided: The initial transient of push- 
ing force is in the direction of intended change. To illustrate 
the issue, we developed the following dynamic model of an 
individual rotating about the CP of the rear foot: 

(10) 
L 
2 

J O  = F,L, sine + F2r - m g - ~ ~ s e  - be, 

where 

dsine, (11) r, L2 r = -dsinQ = 
X? 44’ + d 2  - 2 d 4  cose 

and F, and F2 are, respectively, the interacting forces at the 
hand and the front foot, with 

F, = Kl(xv1 - ~ l ) ,  
F? = K ~ ( x v ~  - ~ 2 ) .  

The pushing force exerted on the wall is still as given by 
Equation 4. Given that the individual is at equilibrium, 

Equation 6 is also valid. For convenience, we assumed that 
the front foot is initially unloaded; that is, 

(13) F& = K2(xv2 ,  - x2 , )  = 0. 

That equation results in a maximum pushing force magni- 
tude for given foot locations. Using Equations 7, 1 1, and 12, 
Equation 10 becomes 

~ i i  = K,(XVI - XI )L ,  sine 
&d sin 8 

dh2 + d2  - 2 d b  cose 
+ K ~ ( x v ~  - ~ 2 )  

L 
2 

-mg - cos e - be 

= Q(xvl,xv2,8,i)). 

On the basis of Equation 14, one can establish a transfer 
function between small variations 6xvl of xvl ,6xv2 of xv2, 
and corresponding variations 6F of the pushing force. The 
detailed development of the linearization procedures used 
to obtain the transfer function are included in the Appendix, 
and the result is as follows: 

a Fpush = a Fx 

Js2 + bs - Q3 - K1 L: 
= ” [  Js2 +bs-Q3 

where 

mgL Q3 = - K I C  sin2 8, +- 
2 sin 8, 

(16) 

1 

k2 + d 2  - 2dL, cose, 

3 ’  

+ K2 k d  cos 8, 

- K 2 b d  sin2 8, 

( k2 + d 2  - 2dL, case,)? 

One can show that the numerator of the first transfer func- 
tion may still have a negative coefficient for practical ranges 
of body configurations, whereas the second transfer func- 
tion is always positive and has no zero. In Equation 15, one 
can see an important difference in the variation of pushing 
force resulting from changes in the virtual position of the 
hand as compared with foot position changes: The transfer 
function for the foot virtual position does not contain any 
nonminimum-phase zero. Assuming that the foot virtual 
position changes follow a cubic profile illustrated in Figure 
5 ,  top-similar to the hand virtual position profile, except 
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Dynamics of Pushing 

with a different magnitude-and using the same set of para- 
meter4 chosen in the previous simulation, we illustrate the 
resulting dynamic response in Figure 5, bottom. As men- 
tioned earlier, there is indeed no reversing behavior this 
time. In addition, the time period required to first reach the 
steady-state value of pushing force is about 0.2 s faster with 
this scrategy than when pushing force is controlled directly 
by the hand. It also takes about 1 s less to reach a steady- 
state value. The exact value of those time delays clearly 
changes with different mechanical parameters of the limbs, 
but thc delays would still remain. One needs a different 
magni rude in the cubic profile used for the foot virtual posi- 
tion to obtain the same steady-state value of pushing force 
as in  the hand force control simulation. 

Discussion 

Static Model of the Pushing Force Task 
Models more sophisticated than those presented in this 

article are available for studying pushing (e.g., Andres & 
Chaffin, I99 1 ; Kerk, Chaffin, Page, & Hughes, 1994). More 
complete models may produce more accurate results, but 
they nray also make it more difficult to appreciate the basic 
physical phenomena involved in the pushing task. For 
instancc using a simple model of pushing, one can easily 
estimate how different strategies influence the achievable 
range of pushing force magnitudes. Although the estimates 
in the present study were for an average-size man, the con- 
clusions from the analysis would be similar for different 
individuals’ sizes. The different pushing strategies reported 
in this article are also applicable to the pulling case. 

Apa,rt from the momentum strategy, a total of five basic 
strategies were identified in this article: (a) raising the cen- 
ter of mass along the body, (b) using vertical hand force, (c) 
using hand moment, (d) tilting the body as a whole, and (e) 
using CP motion over the BOS in a parallel-feet or feet-apart 
posturc. To our knowledge, investigators have provided very 
little experimental data in the literature to validate the push- 
ing force range for the first three strategies. Despite numer- 
ous approximations made in the modeling process, the 
ranges listed in Table 1 are representative. The first three 
strategies may be advantageous when an individual accu- 
rately controls pushing forces, because the ranges of the 
forces are limited. The strategies are not adequate, however, 
when the individual has to generate pushing forces greater 
than SO N, for example. For instance, Kroemer et al. (1994, 
p. 52 I 1 reported acceptable pushing forces on the order of 
200 N und more for a man exerting sustained forces. In addi- 
tion, contact environments cannot always resist vertical 
forces or moments from the hand in certain directions. 

Thus. there remain two pushing strategies for producing 
larger pushing forces: tilting the body or changing the CP 
location. The body tilt angle strategy has no theoretical 
maximum pushing force limit. In practice, however, the 
limit is related either to the maximum shear force that the 
floor cdin transmit or to the ability of the individual to main- 

tain the body in a rigid configuration. Data reported in 
Chaffin and Andersson (1 99 1, p. 320) indicated that actual 
pushing force limits are in the range of 360 N. Changing the 
CP location may be more advantageous at the end; simply 
by changing the CP location relative to the CM, an individ- 
ual can produce pushing as well as pulling forces for the 
same body configuration. That strategy also avoids the 
occurrence of the reversing behavior. When very large tran- 
sient forces are necessary, an individual can make use of the 
momentum strategy investigated by previous workers (e.g., 
Michaels, Lee, & Pai, 1993), who have reported pushing 
force values as high as 1,100 N. However, that strategy is 
effective only for producing brief forces with no sustained 
or steady-state values. 

The Importance of Limb Mechanical Impedance 
in Force-Production Tasks 

In the models considered in this article to account for the 
dynamics of force production, it is recognized that, unlike 
the “perfect” (zero output impedance) torque or force 
sources, or both, typically assumed in robotics, real muscles 
have nonzero output impedance. To account for the nonze- 
ro neuromuscular output impedance, we used a model that 
is consistent with (but does not depend on) the equilibrium- 
point hypothesis. According to the model, one can modify 
force magnitude by simply changing the location of the 
limb virtual position. Although this approach may be unfa- 
miliar, it provides a very simple way of modeling the salient 
features of the human body in the pushing force task. On 
the basis of this approach, we have clearly shown in the 
dynamic analysis that the force dynamic response is highly 
dependent on limb impedance as well as on body pose. To 
our knowledge, the importance of limb impedance has not 
previously been considered. Note that if one uses perfect 
(zero output impedance) torque or force sources, or both, to 
generate the forces required for static equilibrium, the pose 
would be unstable. An analysis of the poles of the transfer 
function given in Equation 15 indicated that one must main- 
tain upper limb stiffness, for instance, on the order of 800 
N/m to prevent unstable poles. That value is in the range of 
upper limb stiffness levels previously measured (Dolan, 
1991; Mussa-Ivaldi et al., 1985; Shadmehret al., 1993; Won 
& Hogan, 1995), which suggests that humans could take 
advantage of the nonzero neuromuscular output impedance 
to exert pushing forces. 

Effect of Foot Placement 
By comparing the dynamics of pushing force between 

the body tilt and the CP motion strategies, we were able to 
reveal a profound effect of foot placement; a feet-apart pos- 
ture, in contrast to a parallel-feet posture, enables an indi- 
vidual to properly control pushing force over a larger range 
of forces when using a CP motion strategy. In fact, if data 
from Wing et al. (1997) are representative, a parallel-feet 
posture would not produce more than 30 N of pushing 
force, assuming that a body tilt angle strategy was not used 
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D. Rancourt & N. Hogan * 

during testing. Therefore, if larger pushing forces are 
required, a body tilt angle strategy may be required and a 
reversing behavior may be observed when changing push- 
ing force. Experimental studies should be undertaken so 
that investigators can better identify the physical limit of the 
parallel-feet posture in the pushing force task. The data 
obtained by Wing et al. (1997) may have been limited by 
the strength of the fingers in establishing sufficient friction 
to sustain larger pushing forces. 

The fundamental difference between the body tilt and CP 
motion strategies is whether the individual is standing on a 
finite BOS area or on a single contact point. With a contact- 
point situation, changes in force must be preceded by initial 
changes in the opposite direction; that is, to decrease force, 
one must first increase it. When the BOS has a finite size, 
the individual can move the CP on the ground, thereby 
modulating pushing force magnitude without the occur- 
rence of a reversing behavior. Obviously, a feet-apart pos- 
ture allows for a larger BOS size and therefore a larger 
range of pushing forces without the occurrence of a revers- 
ing behavior. 

A last advantage of using the CP motion strategy over 
the body tilt angle strategy is that it can produce negative 
pushing forces, that is, pulling forces, without any change 
in body configuration. Hand moment or force exertion 
strategies can also produce pulling forces, although to a 
much lesser extent. 

Conclusions 
We have developed a simple static model of the human 

body in a pushing task that describes various strategies that 
may be used to modulate steady pushing force magnitude. 
Five different techniques were identified, and theoretical 
estimates of how much pushing force each strategy can 
produce were computed. Although tilting the body forward 
or backward is an effective way to modulate pushing force 
magnitude, other strategies may allow more accurate con- 
trol of small force magnitude variations. A dynamic model 
of the pushing task showed the significant influence of 
body pose and limb stiffness on the ability of an individual 
to dynamically control pushing force. We showed that 
keeping the feet together in the body tilting technique may 
induce undesirable dynamic reversals of pushing force 
when pushing force magnitude must be changed. By 
assuming a feet-apart posture, one can avoid the problem, 
because the center of pressure can be moved over a larger 
base of support. In other words, the best way to control the 
force at the hand may be by using the foot. Further experi- 
mental and theoretical investigations must be undertaken 
so that a better understanding of the effect of all biome- 
chanical parameters in the performance of the pushing 
force task can be obtained. However, the data required to 
understand this apparently simple task are surprisingly 
complex. At a minimum, the actions of the trunk and lower 
limb must be considered as well as the actions of the arm 
and hand. 
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with 

= K,L, cose, xvl, - K,L,DcoseO 

+K,L,'(l- 2 sin2 0,) + mg -sin 8, L 
2 

mgL 
2 sin 8, 

= - K , c  sin2 8, + - , (A.5) 

assuming equilibrium at initial conditions, and 

One can easily show that at the operating point 0, 

G(xvlO,Oo,&) = 0. ('4.7) 

Hence, (A.3) reduces to 
Jp = GlGxvl + G$ + G& 

Equation A.8 is linear, and one can easily solve it by using Laplace 
transformations with all null initial conditions. Equation A.8 
becomes 

APPENDIX 

Linearbation of the Body Tilt Angle Model 
The dynamic equation of the body in rotation about the ankle is 

JG = K , ( X V I   XI)^ sine 

- m g - c o s e - b e  

= K , L ,  sinexvl - K,L, sine xl 

- mg-cose-be 

= K,L,  sinexvl - K,L,Dsin€l 

i K,h2 cosesin8 

L 
2 

L 
2 

Similarly, linearization of pushing force magnitude, given by 
Equation 4, leads to 

= ~ G x v l +  -6x1 6 F X  
6 xvl 6 X I  

(A.lO) 

For small deviations, 

6x1 = -p, 4 
sin 8, (A. 1 1) 

and the variation in pushing force magnitude caused by variations 
in the hand virtual position can be expressed as 

Lineiwizing about the operating point (xvlo,eo,i)o) and substitut- 
ing for (4 by using small deviations about the operating point, 

e = o,, + p 
e = p  

J S ~  - G ~ s - G ~  - G ,  - 
= K,[ si'eo ]inl. (A.12) 

Js2 - G3s - G2 
.. . e = p. 

Equation A. I becomes 

(A.13) Js2 + b s - G ,  - K 
Js2 + bs - G2 Fpush = Kl 

(A.3) Expanding by using Equations A.4, AS, and A.6, the transfer 
function becomes 
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Js2 + bs - KIG cos2 8, - - 
2 sin 8 

Js2 + bs + K,G sin2 0, - - 
2 sin 8, 

+ KlL,2(1-2sin2 0,)- K2L,dcos8, 

+ mg- sin 8, 
2 

6xvl. (A.14) L ! = G2 

@push = K, 

1 

L,' + d2 - 2dL, case, 
+ K ~ L , ~ C O S ~ ,  Linearization of the CP Motion Model 

The dynamic equation of the body in rotation about the ankle is 

~6 = K ~ ( X V I  -  XI)^ sine 
K2(xv2 - x2)4ds in8  

Jh2 + d 2  -2dkcosO 
+ 

- K2L,dsin2 €Io 
3 '  

(b2 + d2 - 2dL, cos8,); 

L 
2 

- mg - cos 8 - be (A.20) 

= KIL, sin8 xvl 
K 2 k d  sine(xv2) 

Jk2 + d2 - 2 d 4  cos0 
- KlL,xlsin8- K2kdsinO 

+ 

L 
2 

K24dsine(xv2) 

Jk2 + d2 - 2 d 4  c o d  

- rng -case - be 

= KI Ll sin O(xv1) 

+ 

- K ,  L, Dsin €I + K1h2 cos 0 sin 8 

- K 2 4 d  sin 8 - mg-cos 0 - be 
L 
2 (A.15) 

= Q(xvl,xv2,0,0). 

One can easily show that at the operating point 0, 

Q(ml0, X V ~ O , ~ O , ~ O )  = 0. tA.21) 

Hence, Equation A.16 reduces to 

Jp = G16NI + Q26N2 + Q$ + G&. (A.22) 

Equation A.22 is linear, and one can easily solve it by using 
Laplace transformations with all null initial conditions. Equation 
A.22 then becomes 

(A.23) + Q2 axv2(S). 
Js2 - G3s - Q3 

Linearizing again about the operating point (xvlo,xv20,80,0~) and 
using the angle substitution given by Equation A.2, Equation A. 15 
becomes 

Linearization of pushing force magnitude is given by Equation 
A.lO, and assuming Equation A.l l ,  the variation in pushing force 
magnitude caused by variations in both virtual positions can be 
expressed as 

Js2 + bs - Q3 - K,L: aml 1 = "[ Js2 + bs - Q3 (A.16) 

-K,- r, Q2 am2. 
sin 8, Js2 + bs - Q3 

(A.24) 

with 

Q 1 -  -- a Q I  = K,L,sine, = G , .  
axvl 

(A.17) which becomes the following after expansion of Q2: 

= Kl[Js2+bs-Q3-K 
Js2 + bs - Q3 (A.18) 

( Kz&d sin €Io 

(A.25) 
= K,L, coseo (xvl, - D) 
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