

pubs.acs.org/OrgLett

Selective Synthesis of Phenanthrenes and Dihydrophenanthrenes via Gold-Catalyzed Cycloisomerization of Biphenyl Embedded Trienynes

Ana Milián, Patricia García-García,* Adrián Pérez-Redondo, Roberto Sanz, Juan J. Vaquero, and Manuel A. Fernández-Rodríguez*

Phenanthrenes and their dihydro derivatives have attracted considerable attention due to their widespread occurrence in natural products and pharmaceuticals with biological activities, which have led to their application in the treatment of microbial or viral infections, allergies, cancer, and malaria.¹ Moreover, phenanthrenes, which are small polycyclic aromatic hydrocarbons (PAHs),² also exhibit outstanding electrochemical and photophysical properties with wide-ranging applications in organic optical and electronic materials.³ As a consequence, intensive efforts to construct phenanthrene skeletons with different substitution patterns have been made. The methods described include oxidative alkene-arene or arene-arene couplings in vinyl biaryls and stilbenes;⁴ intramolecular McMurry coupling of suitable 2,2'-disubstituted biaryls or related carbonyl or olefin metathesis and carbene dimerizations;⁵ aryne annulations;⁶ metal- or visible-lightinduced intermolecular cyclizations of ortho-functionalized biaryl derivatives with acetylenes;⁷ metal-catalyzed sequential Csp²-Csp² bond-forming reactions;⁸ and electrophilic cycloisomerizations of o-alkynylbiaryls.9 However, these methods require harsh reaction conditions, densely functionalized starting materials, and multistep routes and/or display limited substrate scope and tolerance to functionalities. In addition, procedures to access nonsymmetric and/or selectively substituted phenanthrenes are scarce. As such, the development of efficient methodologies to synthesize phenanthrenes, or their derivatives, with selective substitution is highly desirable.

In these regard, metal-catalyzed 6-endo carbocyclizations of biaryls bearing an internal alkyne, which is a general and straightforward route to furnish the phenanthrene core, regioselectively afford phenanthrenes substituted at the carbon next to the arene that acts as a nucleophile (Ar_1) in the catalytic process (Scheme 1a).⁹ Herein, we describe that, in the presence of cationic gold(I) catalysts,¹⁰ related o'-alkenyl-o-alkynylbiaryls, a particular type of 1,7-enynes,¹¹ selectively react to produce phenanthrenes substituted at the carbon bonded to the

Letter

a) Cycloisomerization of o-alkynylbiaryls

Received: September 14, 2020

arene (Ar_2) originally linked to the triple bond (Scheme 1b). Thus, the catalytic method developed provides a complementary synthetic strategy to the most common one depicted in Scheme 1a that differs in the substitution pattern at the internal cycle of the phenanthrene skeleton constructed. Moreover, upon careful selection of the appropriate reaction conditions, mainly the solvent, unsymmetrically (9,10)-disubstitued dihydrophenanthrenes can also be prepared from the same starting 1,3,5-trien-7-ynes (Scheme 1b).

Based on our experience in the electrophilic cycloisomerization of *o*-alkynylstyrenes,¹² we selected 2-(2-methylprop-1-en-1-yl)-2'-(phenylethynyl)-1,1'-biphenyl (**1a**) as the model for assessing the reactivity in the presence of gold catalysts. This substrate possesses two nucleophilic entities—an arene and the olefin—in suitable locations to react with the alkyne that would render different cycloadducts. However, we envisioned that the high substitution of the alkene would facilitate its selective 6-*exo* nucleophilic addition to the metal-activated acetylene, thus furnishing the desired phenanthrene skeleton. At the outset, several gold-derived complexes as catalysts, and different solvents, were studied, and the most significant results are summarized in Table 1.

Table 1. Optimization of Reaction Conditions^a

^{*a*}Reactions conducted using 0.05 mmol of **1a** in 1 mL of solvent at 25 °C for 2 h. ^{*b*}Conversion estimated by ¹H NMR spectroscopy (300 Hz); isolated yield in parentheses for an experiment conducted with 0.2 mmol of **1a**. < 5% of **3a** was detected. ^{*c*}Significant amounts of **3a** and other unidentified products were observed. ^{*d*}Conducted for 72 h. ^{*e*}Ar = 2,4-(*t*Bu)₂C₆H₃. ^{*f*}Conducted with 1.0 mol% of catalyst. ^{*g*}Same isolated yield was obtained in an experiment conducted with 1.0 mmol of **1a**.

The reaction of 1a in the presence of 5 mol% PPh₃AuNTf₂ as catalyst in dichloromethane at room temperature selectively afforded the 9-substituted phenanthrene 2a in less than 2 h (entry 1). Remarkably, the competitive pathway resulting from addition of the arene to the alkyne, which would produce the corresponding regioisomeric phenanthrene, described in Scheme 1a, was not detected. Encouraged by this initial result, the influence of the solvent on the cycloisomerization of 1a was explored. Thus, the reaction conducted in toluene also gave 2a as the major product, albeit with lower conversion and selectivity (entry 2). From that crude mixture, the formation of a disubstituted 9,10-dihydrophenanthrene 3a was determined. Interestingly, a complete switch in the regioselectivity

occurred when THF was employed as solvent and the reaction was conducted for an extended reaction time (72 h). Thus, under these conditions, dihydrophenanthrene **3a** could be selectively obtained in good yield (entry 3). Analogous experiments in THF varying the gold catalyst gave varying mixtures of **2a**, **3a**, and other unidentified products, whereas no evolution was observed in other solvents such as acetonitrile or DMF.¹³

The minimal influence of the nature of the cationic gold(I)complex was determined from the outcome of the reactions conducted in DCM. Thus, phenanthrene 2a was obtained exclusively from model substrate 1a in quantitative yields with most of the catalysts tested, including less active gold(III) salts such as AuCl₃ (entries 4-9). Of these gold complexes, JohnPhosAu(MeCN)SbF₆ exhibited a slightly improved selectivity and no traces of the regioisomeric cycloadduct 3a could be detected. Moreover, different temperatures or concentrations resulted in a higher percentage of byproducts, whereas a limited screening with silver salts showed no beneficial effect or improvement in this process.¹³ Finally, lowering the catalyst loading to 1 mol% or scaling the reaction to 1 mmol had no impact on either the yield or the reaction time (entry 10). In summary, an appropriate choice of catalyst and solvent allows the selective formation of phenanthrene 2a (entry 10) and dihydrophenanthrene 3a (entry 3).

With these results in hand, and based on previous studies in the cycloisomerization of 1,n-enynes, 10,11c,12,14 we propose the following mechanism that accounts for the formation of both phenanthrene derivatives **2a** and **3a** (Scheme 2).

Scheme 2. Proposed Mechanism

The reaction is initiated upon activation of the acetylene of the starting enyne **1a** upon coordination to the gold complex, followed by an intramolecular 6-*exo-dig* nucleophilic addition of the alkene moiety to give cationic intermediate **I**. This intermediate can be described as the resonance hybrid of two structures, namely the cyclopropylgold(I) carbene **Ia** and the gold-stabilized homoallylic carbocation intermediate **Ib**, which delocalizes the positive charge over the molecule. Cyclopropyl ring expansion of **Ia** then furnishes the (η^2 -cyclobutene)gold(I) complex **II**,¹⁵ which, after ring opening of the cyclobutene and subsequent demetalation, would lead to phenanthrene **2a** and release the gold catalyst for a new cycle (path a). An alternative pathway (a') involving the direct transformation of intermediate I into the final phenanthrene, thus avoiding the formation of cyclobutene species II, can also be envisioned.¹⁶ Both proposed pathways (a/a') are consistent with the well-documented gold-catalyzed, single-cleavage type rearrangements of 1,*n*-enynes, which formally imply 1,3-migration of the external carbon of the olefin to the acetylene terminal position of the trienyne 1a.^{11c,14} On the other hand, intermediate I could also undergo a proton elimination, thus giving rise to a vinylgold species III (path b).¹² This pathway is preferred if THF is used as solvent, probably due to the stabilization of the elimination event leading to 9,10-dihydrophenathrenes. Subsequent protodemetalation would lead to dihydrophenathrene **3a** and regenerate the catalyst.

Having established biphenyl embedded trienyne 1a as a suitable precursor for the intended selective synthesis of phenanthrene 2a, we explored the scope of this catalytic transformation by varying the substitution at the main points of diversity of the molecule (Scheme 3).

As shown, the process developed is tolerant to the presence of a broad range of substituents at the alkyne terminus of the polyunsaturated substrate 1, including aromatic (irrespective of their electronic nature) (1a-c), heteroaromatic (1e), alkenyl

^{*}Isolated yields from reactions performed using 0.4 mmol of 1. ^aConducted in the presence of PTSA (1 equiv) for 24 h. ^bSame dr of the starting material, with the exception of **2n** (**1n** dr > 10:1).

(1g), and alkyl groups (1h). However, complex mixtures were observed with 1d bearing an o-tolyl substituent, and no evolution was detected with trienyne 1j, which contain a bulkier TIPS group, or quinoline-derived enyne 1f, under the optimized reaction conditions or even after heating at reflux in DCE for 24 h. The outcome for the latter starting material can be rationalized in terms of consumption of the gold catalyst by the nitrogenated heterocycle, thus preventing it from participating in the catalytic cycle. The addition of 1 equiv of PTSA to the reaction media avoided this catalytic inhibition but also triggered the formation of 9,10-disubstituted phenanthrene iso-3f instead of the expected 3f. Interestingly, reaction of ethynyl-substituted biphenyl 1k occurred to give nearly equimolecular mixtures of the corresponding phenanthrene 2k and dibenzocycloheptatriene 4k as a result of a formal 7-endo cyclization (Scheme 4). After some experimentation, phenan-

^aIsolated yield of reaction performed using 0.4 mmol of 1k.

threne 2k could be obtained exclusively in excellent yield using AuCl₃ as catalyst, whereas no improvement in the selectivity for 4k could be achieved.¹³ Reaction of substrate 1i, which bears a trimethylsilyl group, gave a mixture of the same compounds 2k and 4k in a similar ratio, thus indicating that desilylation took place prior to the cycloisomerization event.

Next, trienynes 1 with different substitution patterns and electronic properties at the olefin, as well as at the biphenyl core, were evaluated. Thus, we found that reactions of substrates 11–m, alkyl or aryl monosubstituted at the β carbon of the styrene moiety, selectively produce the corresponding phenanthrenes 21-m in good to excellent yields with no 7-endo adducts being detected, even with terminal trienyne 1n. Moreover, phenanthrenes 2p-s, which bear electron-donating or -withdrawing substituents at any of the external arenes of the tricyclic skeleton, also proved to be accessible in high yields using the developed methodology starting from appropriately substituted conjugated enynes 1p-s. No competitive addition of the arene that would give phenanthrenes with different substitution patterns (see Scheme 1a), or dihydrophenanthrene 3 formation, was observed for any of the substrates tested, with the sole exception of substrate 1f (see above). Furthermore, the structural assignment for phenanthrenes 2, initially determined on the basis of NMR studies, was confirmed by single-crystal Xray diffraction analysis of 2a and 2b (Scheme 3).

We also analyzed the applicability of this catalytic procedure for the construction of unsymmetrically 9,10-disubstituted phenanthrenes, which are not easily accessible using other methods. To this end, less reactive α -disubstituted- β , β unsubstituted styrene substrate 1t was synthesized and submitted to the optimized reaction conditions to afford cyclobutene compound 5t after 24 h (Scheme 5).¹⁷ This tetracyclic compound 5t, the structure of which was confirmed

Scheme 5. Cycloisomerization of α -Disubstituted- $\beta_{,\beta}$ unsubstituted Styrene Substrate 1t

by single-crystal X-ray diffraction analysis, could be transformed into the corresponding desired phenanthrene **2t** simply by heating at 90 °C. Moreover, **2t** could be directly obtained from **1t** by performing the catalytic reaction under the heating conditions. These experiments both expand the scope of the developed methodology to the preparation of unsymmetrically 9,10-disubstituted phenanthrenes and support the participation of cyclobutene species **II** in the catalytic cycle (see Scheme 2).

Finally, using the optimized conditions for the preparation of **3a**, a family of 9,10-dihydrophenanthrenes **3** that proved the scope and usefulness of this catalytic procedure was synthesized (Scheme 6). Thus, reactions of selected substrates with different substitution at both the alkyne terminus and the biphenyl moiety occurred to form the anticipated disubstituted tricyclic compounds **3**. The yield and selectivity were, in general, very high when using the optimized conditions or heating at 50 °C for some examples. Only enynes **1b**,*e*, which

^{*}Isolated yields of reactions performed using 0.4 mmol of 1. ^{*a*}A mixture with **2b**,**e** was obtained. ^{*b*}Conducted at 50 °C.

possess an electron-rich (hetero)arene at the acetylene, led to moderate yields and mixtures with their phenanthrene isomers 2. Moreover, in this case, substrate 1d, which bears an *o*-tolyl group, efficiently evolved to the corresponding dihydrophenan-threne 3d in good yield. Additionally, the structure of 3q was confirmed by single-crystal X-ray diffraction analysis (Scheme 6).

In conclusion, we have developed an efficient and solventcontrolled gold-catalyzed synthesis of phenanthrenes and dihydrophenanthrenes from easily available biphenyl embedded trienynes 1. These processes occur with good to excellent yields, broad scope, and complete selectivity. Consequently, the phenanthrene synthesis described here is complementary to the well-developed strategy that produces regioisomeric phenanthrenes resulting from the competitive nucleophilic addition of biphenyl to the activated alkyne. Further studies on the reactivity of biphenyl embedded trienynes that provide straightforward access to other relevant policyclic scaffolds via new and selective reaction pathways are currently underway in our laboratories and will be reported in due course.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.orglett.0c03067.

Experimental details, NMR spectra for all new compounds and X-ray crystallographic data for 2a,b, 3q, and St (PDF)

Accession Codes

CCDC 2011662–2011665 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

Patricia García-García – Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrées M. del Río" (IQAR), Universidad de Alcalá (IRYCIS), 28805 Alcalá de Henares, Madrid, Spain; orcid.org/0000-0003-3671-5828; Email: patricia.garciagarci@uah.es

Manuel A. Fernández-Rodríguez – Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá (IRYCIS), 28805 Alcalá de Henares, Madrid, Spain; orcid.org/0000-0002-0120-5599; Email: mangel.fernandezr@uah.es

Authors

- Ana Milián Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá (IRYCIS), 28805 Alcalá de Henares, Madrid, Spain
- Adrián Pérez-Redondo Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá (IRYCIS), 28805 Alcalá de Henares, Madrid, Spain

- Roberto Sanz Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain; © orcid.org/0000-0003-2830-0892
- Juan J. Vaquero Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Universidad de Alcalá (IRYCIS), 28805 Alcalá de Henares, Madrid, Spain; ⁽⁶⁾ orcid.org/0000-0002-3820-9673

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.orglett.0c03067

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the Ministerio de Economía y Competitividad (MINECO), AEI and FEDER (projects CTQ2017-85263-R and CTQ2016-75023-C2-1-P), Instituto de Salud Carlos III (FEDER funds, ISCIII RETIC REDINREN RD16/ 0009/0015), Junta de Castilla y León and FEDER (BU291P18), and University of Alcalá (projects CCGP2017-EXP/016 and CCG2018/EXP-008 and predoctoral contract for A.M.) for financial support.

REFERENCES

(1) (a) Han, J.; Xian, Z.; Zhang, Y.; Liu, J.; Liang, A. Systematic overview of aristolochic acids: nephrotoxicity, carcinogenicity, and underlying mechanisms. Front. Pharmacol. 2019, 10, 648-665. (b) Li, X.; Qiao, Y.; Wang, X.; Ma, R.; Li, T.; Zhang, Y.; Borris, R. P. Dihydrophenanthrenes from Juncus ef fusus as inhibitors of OAT1 and OAT3. J. Nat. Prod. 2019, 82, 832-839. (c) Jing, Y.; Zhang, Y.-F.; Shang, M.-Y.; Yu, J.; Tang, J.-W.; Liu, G.-X.; Li, Y.-L.; Li, X.-M.; Wang, X.; Cai, S.-Q. Phenanthrene derivatives from roots and rhizomes of Asarum heterotropoidesvar. mandshuricum. Fitoterapia 2017, 117, 101-108. (d) Kanekar, Y.; Basha, K.; Duche, S.; Gupte, R.; Kapat, A. Regioselective synthesis of phenanthrenes and evaluation of their antioxidant based anti-inflammatory potential. Eur. J. Med. Chem. 2013, 67, 454-463. (e) Ikeda, T.; Yaegashi, T.; Matsuzaki, T.; Hashimoto, S.; Sawada, S. Asymmetric synthesis of phenanthroindolizidine alkaloids with hydroxyl group at the C14 position and evaluation of their antitumor activities. Bioorg. Med. Chem. Lett. 2011, 21, 342-345. (f) Yang, X.; Shi, Q.; Bastow, K. F.; Lee, K.-H. Antitumor agents 274. A new synthetic strategy for E-ring SAR study of antofine and cryptopleurine analogues. Org. Lett. 2010, 12, 1416-1419. (g) Wang, X.-Y.; Ke, C.-Q.; Tang, C.-P.; Yuan, D.; Ye, Y. 9,10-Dihydrophenanthrenes and phenanthrenes from Juncus setchuensis. J. Nat. Prod. 2009, 72, 1209-1212. (h) Bouchaud, O.; Imbert, P.; Touze, J. E.; Dodoo, A. N.; Danis, M.; Legros, F. Fatal cardiotoxicity related to halofantrine: a review based on a worldwide safety data base. Malar. J. 2009, 8, 289-297. (i) Lin, J.-C.; Yang, S.-C.; Hong, T.-M.; Yu, S.-L.; Shi, Q.; Wei, L.; Chen, H.-Y.; Yang, P.-C.; Lee, K.-H. Phenanthrenebased Tylophorine-1 (PBT-1) inhibits lung cancer cell growth through the Akt and NF-KB pathways. J. Med. Chem. 2009, 52, 1903-1911. (j) Kovács, A.; Vasas, A.; Hohmann, J. Natural phenanthrenes and their biological activity. Phytochemistry 2008, 69, 1084-1110.

(2) (a) Segawa, Y.; Ito, H.; Itami, K. Structurally uniform and atomically precise carbon nanostructures. *Nat. Rev. Mater.* 2016, 1, 15002. (b) Narita, A.; Wang, X.-Y.; Feng, X.; Müllen, K. New advances in nanographene chemistry. *Chem. Soc. Rev.* 2015, 44, 6616–6643. (c) Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting π-conjugated systems in field-effect transistors: A material odyssey of organic electronics. *Chem. Rev.* 2012, 112, 2208–2267.

(3) (a) Li, M.; An, C.; Marszalek, T.; Guo, X.; Long, Y.-Z.; Yin, H.; Gu, C.; Baumgarten, M.; Pisula, W.; Müllen, K. Phenanthrene condensed thiadiazoloquinoxaline donor–acceptor polymer for photo-transistor applications. *Chem. Mater.* **2015**, *27*, 2218–2223. (b) Wang,

S.; Yan, X.; Cheng, Z.; Zhang, H.; Liu, Y.; Wang, Y. Highly efficient near-infrared delayed fluorescence organic light emitting diodes using a phenanthrene-based charge-transfer compound. *Angew. Chem., Int. Ed.* **2015**, *54*, 13068–13072. (c) He, Z.; Xu, X.; Zheng, X.; Ming, T.; Miao, Q. Conjugated macrocycles of phenanthrene: a new segment of [6,6]-carbon nanotube and solution-processed organic semiconductors. *Chem. Sci.* **2013**, *4*, 4525–4531.

(4) (a) Zhao, Z.; Britt, L. H.; Murphy, G. K. Oxidative, Iodoarenecatalyzed intramolecular alkene arylation for the synthesis of polycyclic aromatic hydrocarbons. *Chem. - Eur. J.* **2018**, *24*, 17002–17005. (b) Niphakis, M. J.; Georg, G. I. Synthesis of Tylocrebrine and related phenanthroindolizidines by VOF₃-mediated oxidative aryl-alkene coupling. *Org. Lett.* **2011**, *13*, 196–199. (c) Wang, K.; Lü, M.; Yu, A.; Zhu, X.; Wang, Q. Iron(III) chloride catalyzed oxidative coupling of aromatic nuclei. *J. Org. Chem.* **2009**, *74*, 935–938. (d) Almeida, J. F.; Castedo, L.; Fernández, D.; Neo, A. G.; Romero, V.; Tojo, G. Baseinduced photocyclization of 1,2-diaryl-1-tosylethenes. A mechanistically novel approach to phenanthrenes and phenanthrenoids. *Org. Lett.* **2003**, *5*, 4939–4941.

(5) (a) McAtee, C. C.; Riehl, P. S.; Schindler, C. S. Polycyclic aromatic hydrocarbons via iron(III)-catalyzed carbonyl-olefin metathesis. J. Am. Chem. Soc. 2017, 139, 2960–2963. (b) Xia, Y.; Liu, Z.; Xiao, Q.; Qu, P.; Ge, R.; Zhang, Y.; Wang, J. Rhodium(II)-catalyzed cyclization of bis(N-tosylhydrazone)s: an efficient approach towards polycyclic aromatic compounds. Angew. Chem., Int. Ed. 2012, 51, 5714–5717. (c) Katz, T. J.; Sivavec, T. M. Metal-catalyzed rearrangement of alkene-alkynes and the stereochemistry of metal-lacyclobutene ring opening. J. Am. Chem. Soc. 1985, 107, 737–738. (d) McMurry, J. E. Carbonyl-coupling reactions using low-valent titanium. Chem. Rev. 1989, 89, 1513–1524.

(6) (a) Liu, Z.; Larock, R. C. Palladium-catalyzed, sequential, threecomponent cross-coupling of aryl halides, alkynes, and arynes. *Angew. Chem., Int. Ed.* **2007**, *46*, 2535–2538. (b) Peña, D.; Pérez, D.; Guitián, E.; Castedo, L. Palladium-catalyzed cocyclization of arynes with alkynes: selective synthesis of phenanthrenes and naphthalenes. *J. Am. Chem. Soc.* **1999**, *121*, 5827–5828.

(7) (a) Yan, J.; Yoshikai, N. Phenanthrene synthesis via chromiumcatalyzed annulation of 2-biaryl Grignard reagents and alkynes. *Org. Lett.* 2017, *19*, 6630–6633. (b) Xiao, T.; Dong, X.; Tang, Y.; Zhou, L. Phenanthrene synthesis by Eosin Y-catalyzed, visible light-induced [4 + 2] benzannulation of biaryldiazonium salts with alkynes. *Adv. Synth. Catal.* 2012, *354*, 3195–3199. (c) Matsumoto, A.; Ilies, L.; Nakamura, E. Phenanthrene synthesis by iron-catalyzed [4 + 2] benzannulation. between alkyne and biaryl or 2-alkenylphenyl Grignard reagent. *J. Am. Chem. Soc.* 2011, *133*, 6557–6559. (d) Wang, C.; Rakshit, S.; Glorius, F. Palladium-catalyzed intermolecular decarboxylative coupling of 2phenylbenzoic acids with alkynes via C-H and C-C bond activation. *J. Am. Chem. Soc.* 2010, *132*, 14006–14008. (e) Shi, Z.; Ding, S.; Cui, Y.; Jiao, N. A palladium-catalyzed oxidative cycloaromatization of biaryls with alkynes using molecular oxygen as the oxidant. *Angew. Chem., Int. Ed.* 2009, *48*, 7895–7898.

(8) (a) Zhao, Q.; Fu, W. C.; Kwong, F. Y. Palladium-catalyzed regioselective aromatic extension of internal alkynes through a norbornene-controlled reaction sequence. Angew. Chem., Int. Ed. 2018, 57, 3381-3385. (b) Fu, W. C.; Wang, Z.; Chan, W. T. K.; Lin, Z.; Kwong, F. Y. Regioselective synthesis of polycyclic and heptagonembedded aromatic compounds through a versatile π -extension of aryl halides. Angew. Chem., Int. Ed. 2017, 56, 7166-7170. (c) Iwasaki, M.; Araki, Y.; Nishihara, Y. Phenanthrene synthesis by palladium-catalyzed benzannulation with o-bromobenzyl alcohols through multiple carboncarbon bond formations. J. Org. Chem. 2017, 82, 6242-6258. (d) Ozaki, K.; Murai, K.; Matsuoka, W.; Kawasumi, K.; Ito, H.; Itami, K. One-step annulative π -extension of alkynes with dibenzosiloles or dibenzogermoles by palladium/o-chloranil catalysis. Angew. Chem., Int. Ed. 2017, 56, 1361-1364. (e) Shoji, Y.; Tanaka, N.; Muranaka, S.; Shigeno, N.; Sugiyama, H.; Takenouchi, K.; Hajjaj, F.; Fukushima, T. Boron-mediated sequential alkyne insertion and C-C coupling reactions affording extended π -conjugated molecules. Nat. Commun. 2016, 7, 12704-12710. (f) Shimizu, M.; Nagao, I.;

Tomioka, Y.; Hiyama, T. Palladium-catalyzed annulation of vicbis(pinacolatoboryl)alkenes and phenanthrenes with 2,2'-dibromobiaryls: facile synthesis of functionalized phenanthrenes and dibenzo-[*g*,*p*]chrysenes. *Angew. Chem., Int. Ed.* **2008**, *47*, 8096–8099.

(9) For selected recent references, see: (a) Hartung, T.; Machleid, R.; Simon, M.; Golz, C.; Alcarazo, M. Enantioselective synthesis of 1,12disubstituted [4]helicenes. Angew. Chem., Int. Ed. 2020, 59, 5660-5664. (b) Nicholls, L. D. M.; Marx, M.; Hartung, T.; González-Fernández, E.; Golz, C.; Alcarazo, M. TADDOL-derived cationic phosphonites: toward an effective enantioselective synthesis of [6]helicenes via Au-catalyzed alkyne hydroarylation. ACS Catal. 2018, 8, 6079-6085. (c) Zeng, Z.; Jin, H.; Sekine, K.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Gold-catalyed regiospecific C-H annulation of o-ethynylbiaryls with anthranils: π -extension by ringexpansion en route to N-doped PAHs. Angew. Chem., Int. Ed. 2018, 57, 6935-6939. (d) Saunthwal, R. K.; Danodia, A. K.; Saini, K. M.; Verma, A. K. Ag(I)-catalyzed cycloisomerization reactions: synthesis of substituted phenanthrenes and naphthothiophenes. Org. Biomol. Chem. 2017, 15, 6934-6942. (e) González-Fernández, E.; Nicholls, L. D. M.; Schaaf, L. D.; Farès, C.; Lehmann, C. W.; Alcarazo, M. Enantioselective synthesis of [6]carbohelicenes. J. Am. Chem. Soc. 2017, 139, 1428-1431. (f) Jin, R.; Chen, Y.; Liu, W.; Xu, D.; Li, Y.; Ding, A.; Guo, H. Merging photoredox catalysis with Lewis acid catalysis: activation of carbon-carbon triple bonds. Chem. Commun. 2016, 52, 9909-9912. (g) Aguilar, E.; Sanz, R.; Fernández-Rodríguez, M. A.; García-García, P. 1,3-Dien-5-ynes: versatile building blocks for the synthesis of carbo- and heterocycles. Chem. Rev. 2016, 116, 8256-8311. See also references cited therein. For seminal work by Fürstner's group, see: (h) Mamane, V.; Hannen, P.; Fürstner, A. Synthesis of phenanthrenes and polycyclic heteroarenes by transitionmetal catalyzed cycloisomerization reactions. Chem. - Eur. J. 2004, 10, 4556-4575. (i) Fürstner, A.; Mamane, V. Concise total synthesis of the Aporphine Alkaloid 7,7'-bisdehydro-O-methylisopiline by an InCl₃ mediated cycloisomerization reaction. Chem. Commun. 2003, 2112-2113. (j) Fürstner, A.; Mamane, V. Flexible synthesis of phenanthrenes by a PtCl₂-catalyzed cycloisomerization reaction. J. Org. Chem. 2002, 67, 6264-6267.

(10) (a) Echavarren, A. M.; Muratore, M. N.; López-Carrillo, V.; Escribano-Cuesta, A.; Huguet, A.; Obradors, C. Gold-catalyzed cyclizations of alkynes with alkenes and arenes. *Org. React.* **2017**, *92*, 1–288. (b) Dorel, R.; Echavarren, A. M. Gold(I)-catalyzed activation of alkynes for the construction of molecular complexity. *Chem. Rev.* **2015**, *115*, 9028–9072. (c) Obradors, C.; Echavarren, A. M. Goldcatalyzed rearrangements and beyond. *Acc. Chem. Res.* **2014**, *47*, 902– 912. (d) Jiménez-Núñez, E.; Echavarren, A. M. Gold-catalyzed cycloisomerizations of enynes: a mechanistic perspective. *Chem. Rev.* **2008**, *108*, 3326–3350. (e) Michelet, V.; Toullec, P. Y.; Genet, J. P. Cycloisomerization of 1,*n*-enynes: challenging metal-catalyzed rearrangements and mechanistic insights. *Angew. Chem., Int. Ed.* **2008**, *47*, 4268–4315.

(11) For selected references on cycloisomerization of 1,7-enynes see: (a) Dorel, R.; McGonigal, P. R.; Echavarren, A. M. Hydroacenes made easy by gold(I) catalysis. *Angew. Chem., Int. Ed.* **2016**, *55*, 11120– 11123. (b) Meiß, R.; Kumar, K.; Waldmann, H. Divergent gold(I)catalyzed skeletal rearrangements of 1,7-enynes. *Chem. - Eur. J.* **2015**, *21*, 13526–13530. (c) Cabello, N.; Rodríguez, C.; Echavarren, A. M. Gold-catalyzed cyclizations of 1,7-enynes. *Synlett* **2007**, *2007*, 1753– 1758.

(12) (a) Virumbrales, C.; Solas, M.; Suárez-Pantiga, S.; Fernández-Rodríguez, M. A.; Marín-Luna, M.; Silva López, C.; Sanz, R. Gold(I)catalyzed nucleophilic cyclization of *p*-monosubstituted *o*-(alkynyl)styrenes: a combined experimental and computational study. Org. Biomol. Chem. **2019**, *17*, 9924–9932. (b) Virumbrales, C.; Suárez-Pantiga, S.; Solas, M.; Fernández-Rodríguez, M. A.; Sanz, R. Gold(I)catalyzed diastereoselective synthesis of 1- α -oxybenzyl-1H-indenes. Org. Biomol. Chem. **2018**, *16*, 2623–2628. (c) García-García, P.; Sanjuán, A. M.; Rashid, M. A.; Martínez-Cuezva, A.; Fernández-Rodríguez, M. A.; Rodríguez, F.; Sanz, R. Synthesis of functionalized 1H-indenes and benzofulvenes through iodocyclization of *o*-(alkynyl)- styrenes. J. Org. Chem. 2017, 82, 1155-1165. (d) Sanjuán, A. M.; Virumbrales, C.; García-García, P.; Fernández-Rodríguez, M. A.; Sanz, R. Formal [4 + 1] cycloadditions of $\beta_{\beta}\beta_{\beta}$ -diaryl-substituted ortho-(alkynyl)styrenes through gold(I)-catalyzed cycloisomerization reactions. Org. Lett. 2016, 18, 1072-1075. (e) Sanjuán, A. M.; Rashid, M. A.; García-García, P.; Martínez-Cuezva, A.; Fernández-Rodríguez, M. A.; Rodríguez, F.; Sanz, R. Gold(I)-catalyzed cycloisomerizations and alkoxycyclizations of ortho-(alkynyl)styrenes. Chem. - Eur. J. 2015, 21, 3042-3052. (f) García-García, P.; Rashid, M. A.; Sanjuán, A. M.; Fernández- Rodríguez, M. A.; Sanz, R. Straightforward synthesis of dihydrobenzo[a]fluorenes through Au(I)-catalyzed formal [3 + 3]cycloadditions. Org. Lett. 2012, 14, 4778-4781. (g) Sanz, R.; Martínez, A.; García-García, P.; Fernández-Rodríguez, M. A.; Rashid, M. A.; Rodríguez, F. Halocyclization of o-(alkynyl)styrenes. Synthesis of 3-halo-1H-indenes. Chem. Commun. 2010, 46, 7427-7429. (h) Martínez, A.; García-García, P.; Fernández-Rodríguez, M. A.; Rodríguez, F.; Sanz, R. Gold(I)-catalyzed enantioselective synthesis of functionalized indenes. Angew. Chem., Int. Ed. 2010, 49, 4633-4637. (13) See the Supporting Information for further details.

(14) (a) García-Morales, C.; Echavarren, A. M. From straightforward gold(I)-catalyzed enyne cyclizations to more demanding intermolecular reactions of alkynes with alkenes. Synlett 2018, 29, 2225-2237. (b) Dorel, R.; Echavarren, A. M. Gold-catalyzed reactions via cyclopropyl gold carbene-like intermediates. J. Org. Chem. 2015, 80, 7321-7332. (c) Obradors, C.; Echavarren, A. M. Intriguing mechanistic labyrinths in gold(I) catalysis. Chem. Commun. 2014, 50, 16-28. (d) Escribano-Cuesta, A.; Pérez-Galán, P.; Herrero-Gómez, E.; Sekine, M.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. The role of cyclobutenes in gold(I)-catalysed skeletal rearrangement of 1,6-enynes. Org. Biomol. Chem. 2012, 10, 6105-6111. (e) Hashmi, A. S. K. Homogeneous gold catalysis beyond assumptions and proposalscharacterized intermediates. Angew. Chem., Int. Ed. 2010, 49, 5232-5241. (f) Nieto-Oberhuber, C.; López, S.; Muñoz, M. P.; Cárdenas, D. J.; Buñuel, E.; Nevado, C.; Echavarren, A. M. Divergent mechanism for the skeletal rearrangement and [2 + 2] cycloaddition of enynes catalyzed by gold. Angew. Chem., Int. Ed. 2005, 44, 6146-6148.

(15) Direct formation of cyclobutenyl intermediates II from goldactivated substrates 1 cannot be discounted; see: Brooner, R. E. M.; Brown, T. J.; Widenhoefer, R. A. Direct observation of a cationic gold(I)-bicyclo[3.2.0]hept-1(7)-ene complex generated in the cycloisomerization of a 7-phenyl-1,6-enyne. *Angew. Chem., Int. Ed.* **2013**, *52*, 6259-6261.

(16) The formation of single-cleavage adducts from 1,6-enynes generally proceeds via direct cyclopropyl ring opening (a'-like pathway, see refs 10 and 14) due to the low stability of strained bicyclo[3.2.0]hept-5-enes that should be formed in the stepwise mechanism analogous to path a. However, for 1,7-enynes, the higher stability of the corresponding bicyclo[4.2.0]oct-6-ene intermediates allowed the reaction to proceed via either of these pathways (ref 14d). (17) For selected references on metal-catalyzed cyclobutene formation from enynes, see: (a) Obradors, C.; Leboeuf, D.; Aydin, J.; Echavarren, A. M. Gold(I)-catalyzed macrocyclization of 1,nenynes. Org. Lett. 2013, 15, 1576-1579. (b) Odabachian, Y.; Gagosz, F. Cyclobutenes as isolable intermediates in the gold(I)-catalysed cycloisomerisation of 1,8-enynes. Adv. Synth. Catal. 2009, 351, 379-386. (c) Fürstner, A.; Schlecker, A.; Lehmann, C. W. Facile formation of iodocyclobutenes by a ruthenium-catalyzed enynecycloisomerization. Chem. Commun. 2007, 4277-4279. (d) Fürstner, A.; Davies, P. W.; Gress, T. Cyclobutenes by platinum-catalyzed cycloisomerization reactions of enynes. J. Am. Chem. Soc. 2005, 127, 8244-8245. See also ref 14d.f.