Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Tetrahydroindolizinone NK₁ antagonists

Jianming Bao^{a,*}, Huagang Lu^a, Gregori J. Morriello^a, Emma J. Carlson^b, Alan Wheeldon^b, Gary G. Chicchi^d, Marc M. Kurtz^d, Kwei-Lan C. Tsao^d, Song Zheng^c, Xinchun Tong^c, Sander G. Mills^a, Robert J. DeVita^a

^a Department of Medicinal Chemistry, Merck Research Laboratories, Rahway, NJ 07065, USA

^b Department In Vivo Neuroscience, Merck Research Laboratories, Rahway, NJ 07065, USA

^c Department Drug Metabolism, Merck Research Laboratories, Rahway, NJ 07065, USA

^d Department Immunology and Rheumatology, Merck Research Laboratories, Rahway, NJ 07065, USA

ARTICLE INFO

Article history: Received 15 December 2009 Revised 20 January 2010 Accepted 21 January 2010 Available online 1 February 2010

Keywords: Tetrahydroindolizinone NK1 Antagonists Gerbil foot tapping IP1

ABSTRACT

A new class of potent NK₁ receptor antagonists with a tetrahydroindolizinone core has been identified. This series of compounds demonstrated improved functional activities as compared to previously identified 5,5-fused pyrrolidine lead structures. SAR at the 7-position of the tetrahydroindolizinone core is discussed in detail. A number of compounds displayed high NK₁ receptor occupancy at both 1 h and 24 h in a gerbil foot tapping model. Compound **40** has high NK₁ binding affinity, good selectivity for other NK receptors and promising in vivo properties. It also has clean P₄₅₀ inhibition and hPXR induction profiles.

© 2010 Elsevier Ltd. All rights reserved.

The neurokinin-1 receptor (NK_1) is present in high concentrations in central and peripheral nerve systems.¹ Through the studies of the physiological effect of the ligand substance P, the NK₁ receptor has been selected as a therapeutic target for treatment of chemotherapy-induced nausea and vomiting (CINV), post-operative nausea and vomiting (PONV),^{2,3} urinary incontinence⁴ and other disorders. Aprepitant (Emend^M)⁵ is currently the only NK₁ antagonist on market, and it is approved for the treatment of CINV and PONV. In our NK₁ antagonist backup program, we focused our efforts on the discovery of efficacious compounds that are orally bioavailable and brain-penetrating with minimum potential for drug–drug interactions.

Previously, we have disclosed a novel class of NK₁ antagonists based on the 5,5-fused pyrrolidine core (**1**) (Fig. 1).^{6,7a} These compounds displayed sub-nanomolar NK₁ affinity,⁸ moderate functional activity,⁹ and had good efficacy in the gerbil foot tapping model.¹⁰ We have designed and synthesized a new class of NK₁ antagonist with a 6,5-fused tetrahydroindolizinone core (**1a**) in order to expand the scope of this class of compounds, to improve functional activity and to minimize potential P₄₅₀ inhibition and hPXR induction issues. Herein, the initial SAR results at the 7-position of this fused system are presented.

The tetrahydroindolizinone derivatives^{7b} were synthesized as illustrated in Scheme 1. The intermediate 2^{7a} was oxidized to its

aldehyde, which was further oxidized to carboxylic acid **3** with Na-ClO₂. One carbon homologation of acid **3** with diazomethane and AgOBz provided ester **5**. Ester **5** was partially reduced to aldehyde **6** by DIBAL-H. Addition of the anion of *t*-BuOAc to aldehyde **6** afforded aldol product **7**, which upon deprotection by HCl and intramolecular EDC coupling provided hexahydroindolizinone **8** (Scheme 1). Oxidation of alcohol **8** to ketone **9** was achieved with PCC-alumina in 63% yield. The enolate of ketone **9** reacted with 2-[*N*,*N*bis(trifluoromethanesulfonyl)amino]-5-chloropyridine to provide vinyl triflate **10**. Compounds **11–29** and **37** were prepared from intermediate **10** by the Suzuki coupling reaction. Compounds **38** and **40** were prepared from triflate **10** by Stille coupling reactions. Compounds **39** and **41** were prepared from olefenic compounds **38** and **40**, respectively by selective hydrogenation (25 psi H₂, 10%

Figure 1. Structure of 5,5-fused pyrrolidine NK₁ antagonists **1** and proposed 6,5-fused tetrahydroindolizinone **1a**.

^{*} Corresponding author. Tel.: +1 732 594 6650; fax: +1 732 594 5350. *E-mail address:* bao_jianming@merck.com (J. Bao).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter © 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2010.01.120

Pd–C in MeOH). Alkene **33** was prepared from **8** through formation of its mesylate followed by elimination of MsOH under basic condition.

which reacts with amidoximes to afford **30–32** (Scheme 2).¹² Direct displacement of OTf of **10** with 4-OH piperidine provided **36**.

Lactone compounds **34** and **35** were prepared according to Scheme 2. Palladium catalyzed coupling reaction of **10** with diol **10a** provided lactol **10b**, which was oxidized with Ag₂CO₃ to afford lactones **34** and **35**.¹¹

Oxadiazoles **30–32** were prepared by palladium catalyzed reaction of **10** with CO to generate an acyl-palladium intermediate, Biological results for compounds with β -aromatic substituents are shown in Table 1. With a few exceptions (**12–14, 20, 27** and **32**), most of the analogs in Table 1 displayed potent sub-nanomolar NK₁ binding affinities. In presence of 50% human serum, their NK₁ binding activities varied widely. Polar compounds had smaller serum shifts (**16** vs **17, 20** vs **21** and **22** vs **23**). A significant improvement in IP-1 functional activity was observed for these 6,5-fused

Scheme 1. Synthesis of 11–29, 33, 37–38 and 40. Reagents and conditions: (a) (COCl)₂, DMSO, CH₂Cl₂, $-78 \degree$ C, 15 min, then Et₃N, $-78 \degree$ C 15 min; (b) NaClO₂, *t*-BuOH, rt, 16 h, 100%, two steps; (c) *i*-BuOCOCl, Et₃N, THF, 0 °C, 1 h; (d) CH₂N₂, THF, 0 °C to rt, 2 h, 68%, two steps; (e) AgOBz, Et₃N, MeOH, rt, 16 h, 77%; (f) DIBAL-H, CH₂Cl₂, $-78 \degree$ C, 1.5 h; (g) MeOH, $-78 \degree$ C to rt; (h) LHMDS/*t*-butyl acetate, THF, $-78 \degree$ to 30 °C, 3 h, 87%, two steps); (i) HCl, 1,4-dioxane, rt, 2 h; (j) EDC, DMAP, CH₂Cl₂, 75%, two steps; (k) PCC-alumina, CH₂Cl₂, rt, 18 h, 63%; (l) KHMDS, THF, $-78 \degree$ C, 0.5 h; (m) 2-[N,N-bis(trifluoromethanesulfonyl)amino]-5-chloropyridine, THF, $-78 \degree$ C, 15 h, 99%, two steps; (n) Suzuki coupling, Pd(PPh₃)₄, vinyl tin reagent, dioxane, 108 °C, 18 h; (p) MsCl, Et₃N, CH₂Cl₂, 0 °C to rt, 1 h, 100%; (d) piperidine, toluene, 64 °C, 18 h, 73%.

Scheme 2. Synthesis of 30–32 and 34–36. Reagents and conditions: (a) Pd(OAc)₂, *n*-Bu₄NCl, DMF, 70 °C, 3 h; (b) Ag₂CO₃-Celite, toluene, 80 °C, 24 h, 78%; (c) 4-hydroxypiperidine, THF, 80 °C, 1 h, 100%; (d) Pd(PPh₃)₄, CO, toluene, 95 °C, 16 h, 65–73%, two steps.

Table 1

Activities of compounds with β-aromatic substituents

Compd	R	NK1	+50 %HS	IP-1 ^b	Gerbil FT ^c	Compd	R	NK1	+50 %HS	IP-1	Gerbil FT
		IC ₅₀	₀ ^a (nM)	%SPRR	% Inhibition			IC	₅₀ (nM)	%SPRR	% Inhibition
33	Н	0.013	0.53	48		22	2 N	0.18	8.5	9	25
11	Ph	0.93	89.5	17	_	23	- <u></u> - - - - - - - - - - - - - - -	0.15	2.3	11	42
12	-\$- CN	1.8	53	3	-	24	-s -s N	0.16	4	84	98
13	-§- F	2	100	7	_	25	NH N N	0.15	7.7	55	82
14	-}-NHSO2Me	1.0	54	11	_	26	S N N	0.13	5.4	14	94
15	-§-	0.39	23	3	-	27	ξ N Ph N	1.9	66	3	-
16	-§-	0.14	8.1	4	100	28	₹ N	0.11	6.4	31	-
17	-}-∑N ⁺ O ⁻	0.10	2.1	11	100	29	S O - N	0.11	5.6	59	-
18	-ş-√N	0.11	11.7	7	96	30	N S O-N	0.15	5.1	35	-
19	-\$- N	0.51	34	12	85	31	₹	0.40	27	32	-
20	−ξ-√N	1.1	44	5	_	32	₹ O-N IPr	1.7	72	21	-
21	NH NH	0.27	3.9	17	0						

^a Displacement of [¹²⁵] labelled substance P from the cloned hNK₁ receptor expressed in CHO cells. Data are mean (n = 3).⁸

^b IP-1 assay: Measures the response of inositol phosphate generation to substance P (10 μM) and is reported as the percent of substance P response remaining (SPRR) at 100 nM NK₁ antagonist concentration.⁹

^c Inhibition of GR73632 induced foot tapping in gerbils@ 3 mg/kg iv at 24 h.¹⁰

compounds with β-substituents compared with unsubstituted compound **33**. In general, the IP-1 functional activity of these 6,5-fused compounds was also significantly better than that of the 5,5-fused pyrrolidine compounds previously disclosed (IP-1: 28–90%).^{7a} A majority of these compounds had IP-1 activities below 20% substance P response remaining (SPRR) at 100 nM antagonist concentration. Among compounds with a six-membered ring substituents at the 7-position, compared to compound **11**, a substituent at the 4-position of the phenyl group had a positive impact on the IP-1 activity (**11** vs **12–16**). Compounds with a pyridyl substituent also had improved IP-1 activities compared to compound **11**. Except compounds **26** and **27**, compounds with a five-membered ring substituent were less potent than compounds with a six-membered ring substituents in the IP-1 assay. The NK₁ binding affinity and the functional activity did not always directly correlate

(for example, compound **12** had weaker NK_1 binding activity and excellent IP-1 activity). There was also no correlation between the polarity of a compound and its IP-1 functional activity (**25** vs **26** and **27**).

Some of the compounds with potent NK₁ binding and functional activity were also tested in the gerbil foot tapping assay¹⁰, which measured how effective the compound blocked the NK₁ receptor at 24 h in the gerbil brain (Table 1). Data from this assay also provided an indication of the duration of parent or active metabolites, and an indication of brain penetration. Compounds **16** and **17** demonstrated complete inhibition of gerbil foot tapping at 24 h at an iv dose of 3 mg/kg.

The SAR learned from Table 1 was applied in the design of compounds with non-aromatic β substituents at the 7-position and data are presented in Table 2. These compounds all have a polar

Table 2

Activities of compounds with β non-aromatic substituents

Compd	R	NK1	+50 %HS	IP-1 ^b	Gerbil FT ^c
		IC ₅₀	o ^a (nM)	%	% Inhibition
34	-§-(o fast isomer	0.066	1.4	5	98 ^d
35	-§-	0.11	2.4	5	96 ^d
36	-§·N_OH	0.16	11	4	82
37	-§-Он	0.18	13	8	_
38	-}-	0.18	9.6	14	_
39	-}-	0.09	3.2	3	100 ^d
40	-§-	0.18	1.9	2	100
41	-§-{\N-{	0.041	0.21	4	91

^a Displacement of [125 I] labelled substance P from the cloned hNK₁ receptor expressed in CHO cells. Data are mean (n = 3).⁸

 b IP-1 assay⁹: Measure the response of inositol phosphate generation to substance P (10 μ M) and reported as the percent of substance P response remaining (SPRR) at 100 nM NK₁ antagonist concentration *x*.

 $^{\rm c}$ Inhibition of GR73632 induced foot tapping in gerbils@ 3 mg/kg iv at 24 h. $^{\rm 10}$ $^{\rm d}$ 1 h at 1 mg/kg.

group at the far side of the attachment to reduce serum shifts. All of them exhibited sub-nanomolar binding potency on the NK₁ receptor. They had lower shifts in affinity in the presence of human serum as compared to the compounds with β -aromatic substituents, probably due to higher polarity. Importantly, all of them had excellent functional activities. In the gerbil foot tapping assay, all tested compounds displayed potent efficacy at 1 h or 24 h. Compound **40** was prepared initially as an intermediate for compound **41**. The *t*-Bu group of compound **41** was used to block possible metabolism of the piperidine group. It was surprising to find that compound **40** is more potent than **41** in the gerbil foot tapping assay despite the fact that compound **41** is about fourfold (ninefold with human serum) more potent than compound **40** in the binding assay.

Given its single dose potency in the gerbil foot tapping assay, compound **40** was titrated to have an $ID_{50} = 0.05 \text{ mg/kg}$ at 1 h and an $ID_{50} = 0.49 \text{ mg/kg}$ at 24 h (Table 3). These data indicate that compound **40** was one of the most potent compounds in this assay.

Tab	ole	3			
-----	-----	---	--	--	--

In	vivo	activity	of	compound	40	in	Gerbil ^a
----	------	----------	----	----------	----	----	---------------------

Time (h)	ID ₅₀	ID ₅₀ (at 1	mpk, iv)
		Plasma	Brain
1	0.05	0.57	6.9
24	0.49	-	—

^a Plasma drug levels determined by LC-MS following protein precipitation.

Table 4

Pharmacokinetic profile of **40**

	$t_{1/2}(h)$	Vd (L/kg)	Clp (mL/mg/kg)	nAUC (po) (μ M h kg/mg)	F (%)
Rat	2.8	7.2	33	0.05	5.3
Dog	8.8	11	17	0.69	44

Table 5

P ₄₅₀	inhibition	and	hPXR	induction	data	for	compound	40	

	Cyp 2C9	Cyp 2D6	Cyp 3A4	PXR
IC ₅₀ (µM)	36.5	35.7	>50	>30

At 1 h, the IC_{50} values in plasma and brain are 0.57 and 6.9 nM, respectively indicating that low plasma and brain concentrations drive efficacy in gerbil and a high b/p ratio.

Compound **40** was evaluated for PK properties in rat and dog (Table 4). In rat, it showed high clearance (33 mL/min/kg), very low oral AUC (0.05), desirable plasma half-life (2.8 h) and poor oral bioavailability. However, in dog, the PK profile improved with moderate clearance (11 mL/min/kg), better oral AUC (0.69), good half-life, and improved oral bioavailability.

Compound **40** had a low affinity for cytochrome P_{450} enzymes and a reduced potential for induction as measured by a hPXR induction assay (Table 5), which indicated that compound **40** may have reduced liability for drug-drug interactions.

In summary, a new class of NK₁ receptor antagonists based on a tetrahydroindolizinone core with substitutions at the 7-position has been identified. These 6,5-fused pyrrolidine NK₁ antagonists generally had sub-nanomolar NK₁ binding affinities and excellent functional IP-1 activities. Many of these analogs have potent in vivo efficacy in the gerbil model at 24 h. Compound **40** had excellent efficacy in the gerbil foot tapping model at both 1 h and 24 h. It also had a clean profile in human P_{450} inhibition and PXR induction assays, thus reducing the potential for drug–drug interactions.

Acknowledgments

The authors wish to thank the Synthetic Services Group for scale-up of synthetic intermediate **2**.

References and notes

- 1. Duffy, R. A. Expert Opin. Emerg. Drugs 2004, 9, 9.
- 2. Tattersall, F. D.; Rycroft, W.; Cumberbatch, M. Neuropharmacology 2000, 39, 652.
- Rupniak, N. M.; Tattersall, F. D.; Williams, A. R.; Rycroft, W.; Carlson, E. J.; Cascieri, M. A.; Sadowski, S.; Ber, E.; Hale, J. J.; Mills, S. G.; MacCoss, M.; Seward, E.; Huscroft, I.; Owen, S.; Swain, C. J.; Hill, R. G.; Hargreaves, R. J. Eur. J. Pharmacol. Med. Chem. 1997, 326, 201.
- 4. Seto, S.; Tanioka, A.; Ikeda, M.; Izawa, S. Bioorg. Med. Chem. 2005, 13, 5717.
- Hale, J. J.; Mills, S. G.; MacCoss, M.; Finke, P. E.; Cascieri, M. A.; Sadowski, S.; Ber, E.; Chicchi, G. G.; Kurtz, M.; Metzger, J.; Eiermann, G.; Tsou, N. N.; Tattersall, F. D.; Rupniak, N.; Williams, A.; Rycroft, W.; Hargreaves, R. J.; MacIntyre, D. E. J. Med. Chem. **1998**, 41, 4607.
- Morriello, G. J.; Devita, R. J.; Mills, S. G.; Young, J. R.; Lin, P.; Doss, G.; Chicchi, G. G.; DeMartino, J.; Kurtz, M.; Tsao, K. C.; Carlson, E.; Townson, K.; Wheeldon, A.; Boyce, S.; Collinson, N.; Rupniak, N.; Moore, S. *Bioorg. Med. Chem.* 2008, *16*, 2156.
- (a) Morriello, G. J.; Mills, S. G.; Johnson, T.; Reibarkh, M.; Chicchi, G.; DeMartino, J.; Kurtz, M.; Davies, P.; Tsao, K. C.; Carlson, E.; Townson, K.; Tattersall, F. D.; Wheeldon, A.; Boyce, S.; Collinson, N.; Rupniak, N.; Moore, S.; Devita, R. J. *Bioorg. Med. Chem. Lett.* **2010**, *20*, 2007; (b) For detailed procedures for synthesis of the compounds in this Letter: Bao, J.; Devita, R. J.; Mills, S. G.; Morriello, G. J. WO 2007136570.
- NK₁ binding assay: Cascieri, M. A.; Ber, E.; Fong, T. M.; Sadowski, S.; Bansal, A.; Swain, C. J.; Seward, E. M.; Frances, B.; Burns, D.; Strader, C. D. *Mol. Pharmacol.* 1992, 42, 458.

- Young, J. R.; Eid, R.; Turner, C.; DeVita, R. J.; Kurtz, M. M.; Tsao, K. C.; Chicchi, G. G.; Wheeldon, A.; Carlson, E.; Mills, S. G. *Bioorg. Med. Chem. Lett.* 2007, *17*, 5310.
 Rupniak, N. M. J.; Tattersall, F. D.; Williams, A. R.; Rycroft, W.; Carlson, E.; Cascieri, M. A.; Sadowski, S.; Ber, E.; Hale, J. J.; Mills, S. G.; MacCoss, M.; Seward,

E.; Huscroft, I.; Owen, S.; Swain, C. J.; Hill, R. G.; Hargreaves, R. J. *Eur. J. Pharmacol.* **1997**, 326, 201.
11. Arcadi, A.; Bernocchi, E.; Cacchi, S.; Marinelli, F. *Tetrahedron* **1991**, 47, 1525.
12. Young, J.; Devita, R. *Tetrahedron Lett.* **1998**, 39, 3931.