Accepted Manuscript

Design, Synthesis, and in vitro hMAO-B Inhibitory Evaluation of Some 1-Methyl-3,5-diphenyl-4,5-dihydro-1*H*-pyrazoles

Rossella Fioravanti, Nicoletta Desideri, Mariangela Biava, Luca Proietti Monaco, Laura Grammatica, Matilde Yá ñez

PII:	S0960-894X(13)00880-9
DOI:	http://dx.doi.org/10.1016/j.bmcl.2013.07.035
Reference:	BMCL 20700
To appear in:	Bioorganic & Medicinal Chemistry Letters
Received Date:	14 June 2013
Revised Date:	12 July 2013
Accepted Date:	15 July 2013

Please cite this article as: Fioravanti, R., Desideri, N., Biava, M., Monaco, L.P., Grammatica, L., Yáñez, M., Design, Synthesis, and in vitro hMAO-B Inhibitory Evaluation of Some 1-Methyl-3,5-diphenyl-4,5-dihydro-1*H*-pyrazoles, *Bioorganic & Medicinal Chemistry Letters* (2013), doi: http://dx.doi.org/10.1016/j.bmcl.2013.07.035

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Graphical Abstract

Bioorganic & Medicinal Chemistry Letters journal homepage: www.elsevier.com

Design, Synthesis, and in vitro hMAO-B Inhibitory Evaluation of Some 1-Methyl-3,5-diphenyl-4,5-dihydro-1*H*-pyrazoles

Rossella Fioravanti^{a,*}, Nicoletta Desideri^a, Mariangela Biava^a, Luca Proietti Monaco^a, Laura Grammatica^a, Matilde Yáñez^b

^aDipartimento di Chimica e Tecnologie del Farmaco, Università "La Sapienza" P.le Aldo Moro, 5, 00185 Rome, Italy ^bDepartamento de Farmacología and Instituto de Farmacia Industrial, Facultad de Farmacia, Universidad de Santiago de Compostela, Campus Universitario Sur, E-15782 Santiago de Compostela, La Coruña, Spain

ARTICLE INFO

Article history: Received Revised Accepted Available online

Keywords: Pyrazole derivatives Monoamine oxidases hMAO inhibitors

ABSTRACT

A series of 1-methyl-3,5-diphenyl-4,5-dihydro-1*H*-pyrazoles (**3a-k** and **4a-u**) were designed, synthesized, and evaluated for their inhibitory efficacy towards the two hMAO isoforms. Most of the derivatives were found to be potent and selective hMAO-B inhibitors. In particular, derivative **3g** showed greater hMAO-B affinity than selective inhibitor selegiline coupled with high selectivity index (SI = 145). The most selective hMAO-B inhibitor was the 3-methyl analogue **3f** with an SI higher than 909.

2013 Elsevier Ltd. All rights reserved.

The monoamine oxidases (MAOs) are flavoenzymes located at the outer membrane of mitochondria in the human brain and peripheral tissues. MAOs appear as two isozymes, MAO-A and B, distinguished by substrate and inhibitor selectivities. MAOs catalyze the oxidative deamination of xenobiotic amines and neurotransmitters and play an important role in the central nervous system and peripheral organs. MAO-A metabolizes serotonin, epinephrine and norepinephrine and inhibitors of this isoform are used in the treatment of anxiety disorders and depressive illness.¹ MAO-B is considered to be a major dopamine metabolizing enzyme and its inhibitors reduce the catabolism of dopamine in the basal ganglia and are employed in the symptomatic therapy of Parkinson's disease.^{2,3} In Parkinson's disease, MAO-B inhibitors not only prolong the action of dopamine in the brain, but also enhance dopamine levels after treatment with levodopa, the metabolic precursor of dopamine.^{4,5} Furthermore, MAO-B inhibitors protect against the neurodegenerative processes associated with Parkinson's disease,⁶ decreasing the formation of dopanal and H₂O₂ that arise from the MAO-B catalyzed oxidation of dopamine.⁷⁻¹¹

Based on the therapeutic implications of MAO inhibitors, the search for novel and selective molecules continues to be an active area of research in medicinal chemistry. Several nitrogen containing heterocycles have been employed in the design of MAO inhibitors. In particular, pyrazole derivatives not only

*Corresponding author. Tel.: +39 06 49693259; fax: +39 06 49693259. E.mail address rossella.fioravanti@uniroma1.it possess biological activities such as antimicrobial,¹² analgesic,¹³ antiinflammatory¹⁴ and anticancer¹⁵ but also potent anti-MAO efficacy.¹⁶

In the context of our search aimed at identifying potent MAO inhibitors,¹⁷⁻¹⁹ we hereby report the synthesis and biological evaluation of some 1-methyl-3,5-diphenyl-4,5-dihydro-1*H*-pyrazoles (Figure 1).

R = H; OH; R¹ = H; OH; R² = H; 2-F; 3-F; 4-F; 2-CH₃; 3-CH₃; 4-CH₃; 2-Cl; 3-Cl; 4-Cl.

Figure 1. 1-Methyl-3,5-diphenyl-4,5-dihydro-1H-pyrazoles

Derivatives **3a-k** and **4a-u** were synthesized as reported in Scheme 1. The intermediate chalcones **1a-k** and **2a-u** were prepared by base-catalyzed condensation of substituted benzaldehydes with the appropriate acetophenone, eventually followed by acid deprotection of the *p*-hydroxyl group (**2a-u**). Further reaction of the chalcones **1a-k** and **2a-u** with methylhydrazine in refluxing ethyl alcohol afforded the

corresponding 4,5-dihydro-1*H*-pyrazoles **3a-k** and **4a-u** (see Supplementary material).

All synthesized pyrazolines were screened for their potential effects towards the two human MAO isoforms. (physicochemical data, and anti-MAO efficacies are reported in Table 1).

The inhibitory activities were investigated by measuring the effects of each derivative on the production of hydrogen peroxide (H₂O₂) from p-tyramine, using the Amplex® Red MAO assay kit (Molecular Probes, Inc., Eugene, Oregon, USA) and microsomal MAO isoforms prepared from insect cells (BTI-TN-5B1-4) infected with recombinant baculovirus containing cDNA inserts for human MAO-A or MAO-B (Sigma-Aldrich Química S.A., Alcobendas, Spain). The production of H₂O₂ catalysed by MAO detected isoforms can be using 10-acetyl-3,7dihydroxyphenoxazine (Amplex® Red reagent), a nonfluorescent and highly sensitive probe that reacts with H2O2 in the presence of horseradish peroxidase to produce a fluorescent product, resorufin. In this study, MAO inhibition was evaluated using the above mentioned method, following the general procedure previously described by us.²

Scheme 1. Reagents and conditions: (i) substituted benzaldehyde, EtOH, Ba(OH)₂ x 8H₂O, 30°C, 24h. (ii) 3,4-dihydro-2-*H*-pyran, CH₂Cl₂, 12h. (iii) methylhydrazine, KOH, EtOH, 80°C, 24h. (iv) 3N HCl , EtOH.

(Ja-K and 4a-	u) and	reference	minutions.					
Compd	R ¹	R ²	m.p. (°C)	Purification method	Yield%	hMAO-A (IC ₅₀) μM	hMAO-B (IC ₅₀) μM	SI ^c
3a	Н	Н	Oil	А	63	1.68 ± 0.03^{a}	0.12 ± 0.01	14
3b	Н	2F	164-166	В	28	$2.84\pm0.02^{\rm a}$	0.28 ± 0.03	10
3c	Н	3F	Oil	Α	41	$1.82\pm0.05^{\rm a}$	0.06 ± 0.01	30
3d	Н	4F	32-35	В	61	$3.00\pm0.06^{\text{a}}$	0.14 ± 0.01	21
3e	Н	2CH ₃	Oil	Α	46	3.26 ± 0.08^{a}	0.11 ± 0.01	30
3f	Н	3CH ₃	Oil	А	46	***	0.11 ± 0.01	> 909#
3g	Н	4CH ₃	30-33	В	42	$1.39\pm0.07^{\rm a}$	0.0096 ± 0.0003	145
3h	Н	2Cl	Oil	Α	83	**	3.65 ± 0.29	> 27#
3j	Н	3Cl	Oil	А	13	$50.99 \pm 1.33^{\text{a}}$	0.84 ± 0.06	61
3k	Н	4Cl	40-44	В	40	**	3.95 ± 0.15	> 25#
4a	Н	Н	195-198	С	37	***	26.80 ± 1.95	> 3.7#
4b	Н	2F	172-175	C	29	***	3.04 ± 0.17	> 33#
4c	Н	3F	115-118	D	33	***	3.17 ± 0.21	> 31#
4d	Н	4F	175-177	С	15	***	3.65 ± 0.16	> 27#
4e	Н	2CH ₃	105-107	С	29	21.87 ± 0.99	20.08 ± 1.01	1.1
4f	Н	3CH ₃	155-157	С	43	$16.33\pm0.83^{\text{b}}$	5.78 ± 0.27	2.8
4g	Н	4CH ₃	150-152	С	35	$9.13\pm0.52^{\rm a}$	1.91 ± 0.06	4.8
4h	Н	2C1	128-131	В	20	11.82 ± 0.97	10.44 ± 0.02	1.1
4j	Н	3Cl	130-133	С	40	$18.69\pm1.36^{\text{a}}$	2.07 ± 0.13	9
4k	Н	4Cl	184-185	С	37	$12.73\pm0.8^{\text{a}}$	2.64 ± 0.19	4.8
41	OH	Н	136-139	В	36	***	***	-
4m	OH	2F	78-80	В	36	***	3.87 ± 0.27	> 26 [#]
4n	OH	3F	123-126	В	20	**	**	-
40	OH	4F	72-75	D	31	0.81 ± 0.04^{b}	0.49 ± 0.03	1.6
4p	OH	2CH ₃	66-69	D	36	$3.98\pm0.12^{\text{b}}$	2.04 ± 0.15	1.9
4q	OH	3CH ₃	63-65	D	61	***	***	-
4r	OH	4CH ₃	145-148	D	12	***	***	-
4s	OH	2Cl	55-56	D	25	$1.10 \pm 0.12^{\;a}$	0.30 ± 0.02	3.7
4t	OH	3C1	60-62	D	19	$0.42\pm0.06^{\text{b}}$	0.18 ± 0.02	2.3
4u	OH	4Cl	65-67	D	33	$\overline{1.39\pm0.09^a}$	0.34 ± 0.03	4.1
Clorgyline						0.0045 ± 0.32 ^a	61.35 ± 1.13	0.000073
Selegiline						$67.25\pm1.02^{\text{a}}$	0.0196 ± 0.86	3362
Iproniazid						6.56± 0.76	7.54 ± 0.36	0.87
Moclobemide						361±19.37	*	< 0.36

Table 1. Chemical data, physical data, and biological activity of 1-methyl-3,5-diphenyl-4,5-dihydro-1*H*-pyrazoles (**3a-k** and **4a-u**) and reference inhibitors.

A= Chromatography on SiO₂/CHCl₃; B = crystallized from methanol; C = crystallized from acetonitrile; D = crystallized from n-hexane All IC₅₀ values shown in this table are the mean \pm S.E.M. from five experiments. Level of statistical significance: ^aP < 0.01 or ^bP < 0.05 versus the corresponding IC₅₀ values obtained against hMAO-B, as determined by ANOVA/Dunnett's. ** Inactive at 100 μ M (highest concentration tested). *** 100 μ M inhibits the corresponding MAO activity by approximately 40-50%. At higher concentration the

compounds precipitate. ^cSI: hMAO-B selectivity index = IC_{50} (hMAO-A)/ IC_{50} (hMAO-B). # Values obtained under the assumption that the corresponding IC_{50} against MAO-A is the highest concentration tested (100 μ M).

All the new synthesized compounds (**3a-k** and **4a-u**) and reference inhibitors were tested towards hMAO isoforms. Results reported in Table 1 show that most derivatives inhibited the hMAO-B isoform with IC_{50} values in the low micromolar or nanomolar range. Moreover, several compounds proved to be able to inhibit hMAO-A with lower affinity. Therefore, the new compounds are in general selective hMAO-B inhibitors.

All the compounds unsubstituted on the 3-phenyl ring (**3a-k**) were associated with potent and selective hMAO-B inihibitory activity. 1-Methyl-3-phenyl-5-(*p*-tolyl)-4,5-dihydro-1*H*-pyrazole **3g** was the most potent hMAO-B inhibitor identified in this study with an IC₅₀ of 9.6 nM coupled with high selectivity (SI = 145). In comparison with the reference inhibitors, **3g** was at least 2-fold more active. The displacement of the *para* methyl group to the *meta* position on the 5-phenyl ring resulted in compound **3f**, approximately 11-fold less potent as a hMAO-B inhibitor than the corresponding *para* methyl analogue **3g**. However, **3f** exhibited the highest hMAO-B selectivity due to its poor hMAO-A affinity up to the highest concentration tested (100 μ M).

Generally, the introduction of a hydroxyl group at the *para* position of the 3-phenyl ring (**4a-k**) led to a reduction of efficacy against both isoforms with respect to unsubstituted analogues **3a-k**. In fact, all the 3-(4-hydroxyphenyl)-1-methyl-5-phenyl-4,5-dihydro-1*H*-pyrazoles (**4a-k**) exhibited hMAO inhibition potency in the micromolar range. In this series of compounds, the presence of a fluorine substituent on the 3-phenyl ring led to selective hMAO-B inhibitors (**4b-d**), while the introduction of either a chlorine or a methyl group resulted in compounds **4e-k** endowed with low or modest hMAO-B selectivity.

Moreover, the introduction of a hydroxyl substituent at the *ortho* position of 3-phenyl ring, gave access to compounds **4l-u**, that showed different results. While compounds **4l, 4n, 4q** and **4r** are essentially inactive against both hMAO isoforms, **4o** and **4t** displayed potency in the submicromolar range against both hMAO-A and hMAO-B resulting in compounds endowed with poor selectivity. Moreover, the chloro-substituted derivatives **4s-u** exhibited enhanced inhibitory potency with respect to the corresponding 3-phenyl and 3-(4-hydroxyphenyl) analogues (**3h-k** and **4 h-k**, respectively).

By comparing the hMAO-B inhibitory activity of the new N1methyl derivatives (**3a-k** and **4a-u**) with that of recently reported N1-thiocarbamoyl analogues,^{16g,h} it is possible to point out that the introduction of a smaller group, such as the methyl one, led to compounds more active and selective towards hMAO-B isoform. Moreover, most of the previously studied 3,5-diphenyl-4,5-dihydro-1H-pyrazole derivatives substituted at N1 position of the pyrazoline ring with phenyl, acyl-, or thiocarbamoylgroups were evaluated using rat or bovine instead of human MAOs. Since species-dependent differences in substrate specificity and inhibitor selectivity have been reported,^{16a-c,e} no further comparison is possible.

We can conclude that in this series of inhibitors, an unsubstituted 3-phenyl ring seems to be an important chemical feature to obtain potent and selective hMAO-B inhibitors. Furthemore, the presence of the chlorine substituent at the 5phenyl ring, coupled with the presence of two hydroxyl groups at both the 2' and 4' positions of the 3-phenyl ring, enhances both hMAO-A and hMAO-B inhibition efficacies.

References and notes

- 1. Yamada, M.; Yasuhara, H.; Neurotoxicology 2004, 25, 215.
- 2. Riederer, P.; Youdim, M.B.H.; J. Neurochem. 1986, 46, 1359.
- 3. Fernandez, H.H.; Chen, J.J.; Pharmacotherapy 2007, 27, 174S.
- Finberg, J.P.; Wang, J.; Bankiewich, K.; Harvey-White, J.; Kopin, I.J.; Goldstein, D.S.; J. Neural Transm. Suppl. 1998, 52, 279.
- Di Monte, D.A.; DeLanney, L.E.; Irwin, I.; Royland, J.E.; Chan, P.; Jacowec, M.W.; Langston, J.W.; Brain Res. 1996, 738, 53.
- LeWitt, P.A.; Taylor, D.C.; Neurotherapeutics 2008, 5(2) 210.
 Gesi, M.; Santinami, A.; Ruffoli, R.; Conti, G.; Fornai, F.;
- Pharmacol. Toxicol. 2001,89, 217.Fornai, F.; Battaglia, G.; Gesi, M.; Giorgi, F.S.; Orzi, F.; Nicoletti,
- Fornai, F.; Battagna, G.; Gesi, M.; Gorgi, F.S.; Orzi, F.; Nicoletti, F.; Brain Res. 2000, 887, 110.
- 9. Marchitti, S.A.; Deitrich, R.A.; Vasiliou, V.; Pharmacol. Rev. 2007, 59, 125.
- 10. Halliwell, B.; J. Neurochem. 1992, 59, 1609.
- Lamensdorf, I.; Eisenhofer, G.; Harvey-White, J.; Nechustan, A.; Kirk, K.; Kopin, I.J.; Brain Res. 2000, 868, 191.
- 12. Isloor, A.M.; Kalluraya, B.; Shetty, P.; Eur. J. Med. Chem. 2009, 44 (9), 3784.
- Isloor, A.M.; Kalluraya, B.; Rao, M.; J. Saudi Chem. Soc. 2000, 4 (3), 265.
- Kalluraya, B.; Isloor, A.M.; Frank, P.V.; Jagadesha, R.L.; Shenoy, S.; Indian J. Heterocycl. Chem. 2001, 159.
- 15. Sunil, D.; Isloor, A.M.; Shetty, P.; Der Pharma Chemica 2009, 1 (2), 19.
- (a) Parmar, S.S.; Pandey, B.R.; Dwivedi, C.; Harbison, R.D.; J. 16. Pharm: Sci. 1974, 63, 1152; (b) Manna, F., Chimenti, F.; Bolasco, A.; Secci, D.; Bizzarri, B.; Befani, O., Turini, P.; Mondovì, B.; Alcaro, S.; Tafi, A.; Bioorg Med Chem Lett. 2002, 12, 3629; (c) Gökhan-Kelekçi, N.; Yabanoglu, S.; Küpeli, E.; Salgin, U.; Özgen, Ö.; Uçar, G.; Yesilada, E.; Kend, E.; Yesilada, A.; Bilgin, A. A. Bioorg. Med. Chem. 2007, 15, 5775; (d) Palaska, E.; Aytemir, M.; Uzbay, I. T.; Erol, D. Eur. J. Med. Chem. 2001, 36, 539; (e) Chimenti, F.; Fioravanti, R.; Bolasco, A.; Manna, F.; Chimenti, P.; Secci, D.; Rossi, F.; Turini, P.; Ortuso, F.; Alcaro, S.; Cardia, M. C. Eur. J. Med. Chem. 2008, 10, 2262; (f) Fioravanti, R.; Bolasco, A.; Manna, F.; Rossi, F.; Orallo, F.; Yáñez, M.; Vitali, A.; Ortuso, F.; Alcaro, S.; Bioorg Med Chem Lett. 2010, 20, 6479; (g) Chimenti, F.; Carradori, S.; Secci, D.; Bolasco, A.; Bizzarri, B.; Chimenti, P.; Granese, A.; Yáñez, M.; Orallo, F.; Eur. J. Med. Chem. 2010, 45, 800; (h) Şentürk, K.; Tan, O. U.; Çiftçi, S.Y.; , Uçar, G.; Palaska, E. Arch. Pharm. Chem. Life Sci. 2012, 345, 695.
- 17. Bolasco, A.; Carradori, S.; Fioravanti, R.; Expert Opinion on Therapeutic Patents 2010, 20 (7), 909.
- Desideri, N.; Bolasco, A.; Fioravanti, R.; Proietti Monaco, L.; Orallo, F.; Yáñez, M.; Ortuso, F.; Alcaro, S.; J. Med. Chem. 2011, 54 (7), 2155.
- Desideri, N.; Fioravanti, R.; Monaco Proietti, L.; Biava M.; Yáñez, M.; Ortuso, F.; Alcaro, S.; Eur. J. Med. Chem. 2013, 59, 91
- Yáñez, M.; Fraiz, N.; Cano, E.; Orallo, F.; Biochem. Biophys. Res. Commun. 2006, 344, 688.

Supplementary data

Supplementary data associated with this article can be found, in the online version,