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Abstract: The inthomycins are a family of structurally and
biologically rich natural products isolated from Streptomy-
ces species. Herein the implementation of a modular syn-
thetic route is reported that has enabled the enantioselec-
tive synthesis of all three inthomycins. Key steps include
Suzuki and Sonogashira cross-couplings and an enantiose-
lective Kiyooka aldol reaction.

The inthomycins A–C (1–3, Figure 1), also known as the
phthoxazolins, are a family of oxazole triene natural products
isolated from Streptomyces culture that display both interesting
structures and a wide range of biological activities. The isola-
tion of inthomycin A was first reported by Ōmura in 1990[1]

who subsequently reported the isolation of inthomycins B and
C in 1995.[2] Between these dates, Zeek had reported the reiso-
lation of inthomycin A and the first isolation of inthomycins B
and C.[3] Inthomycin A was discovered in a screen for inhibitors
of cellulose biosynthesis, however, not only does inthomycin A
inhibit cellulose biosynthesis,[1, 4] but it also shows both herbici-
dal,[4, 5] and antifungal[4] activity, and both inthomycin A[6] and
inthomycin B[6b] inhibit prostate cancer cell growth. Very re-
cently the cytotoxicity of inthomycin C against a range of
human cancer cell lines has been investigated but the natural

product showed little biological activity. However, a close ana-
logue (23) was found to have proteasome inhibition activity.[7]

Apart from their biological significance, the structures of the
inthomycins are particularly striking in that they contain a
methylene interrupted oxazolyl-triene moiety including a tri-
substituted alkene and a chiral allylic b-hydroxy carbonyl
moiety. Moreover, the full structural motif of the inthomycins is
found within a number of more complex natural products in-
cluding the oxazolomycins, 16-methyloxazolomycin, curromyci-
n A and B, and KSM 2690.

Given their wide ranging biological activities and interesting
structures, the inthomycins have attracted considerable atten-
tion from the synthetic community, although their deceptively
simple structures belie the challenge associated with their syn-
thesis. To date, synthetic effort has primarily focused on intho-
mycin C with only one report on the enantioselective synthesis
of inthomycin A and only two on the enantioselective synthe-
sis of inthomycin B. The first synthesis of inthomycin A (1) in
racemic form was disclosed by Whiting in 1999[8] with the only
enantioselective synthesis of 1 being reported by Hatakeyama
in 2012[9] who disclosed the enantioselective synthesis of in-
thomycins B 2 and C 3 in the same publication. In 2006 Taylor
reported the first enantioselective synthesis of inthomycin B[10]

2 followed by a report of the enantioselective synthesis of in-
thomycin C 3 and of racemic inthomycin A 1 in 2008.[11] In
2010, Ryu reported an enantioselective synthesis of inthomy-
cin C 3[12] which was followed by Hale’s reports on the enantio-
selective synthesis of 3.[13] Very recently the Donohoe group
published an enantioselective synthesis of inthomycin C 3.[7] All
of the syntheses of the inthomycins bar one,[7] feature a Stille
cross-coupling as a key step with the inherent problems asso-
ciated with the toxicity and disposal of stoichiometric organo-
tin waste. Herein we report short (9/10 steps, longest linear se-
quence), tin-free syntheses of all three inthomycins using
Suzuki or Sonogashira couplings as key steps and a Kiyooka
aldol to set the necessary asymmetry.

We envisaged that inthomycins A–C (1–3), could all be pre-
pared through cross-coupling of the (E)- or (Z)-alkenyl iodides
5 with the (E,E)- or (E,Z)-dienylboronic esters 4 (Figure 2). The
dienylboronic esters 4 were to be prepared by syn or anti hy-
droboration of the enyne oxazole 6 with the enyne oxazole 6
being prepared from alkylation of oxazole 8 with an electro-
phile derived from commercially available (E)-pent-2-en-4-yn-1-
ol (7). The iodides 5 were to be prepared using an enantiose-
lective Kiyooka aldol reaction[14] between the silylketene acetal
9 and the known (E)- or (Z)-iodoaldehydes 10, which can
be readily prepared from propargyl alcohol 11. This modular
route allowed the ready synthesis of all three inthomycins A–C
1–3.

Figure 1. Inthomycin natural products.
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Our synthesis commenced with the preparation of the
enyne oxazole 6 (Scheme 1). Commercially available (E)-pent-2-
en-4-yn-1-ol 7[15] was readily converted into the known bro-
mide 12[16] in two simple steps. After careful optimization we
found that lithiation of the known silyl-protected oxazole 13[17]

with n-butyllithium followed by addition to CuCN·LiCl and ad-
dition of the bromide 12 gave the desired coupled product 14
in 81 % yield.[18]

The next stage in the synthesis involved the seemingly
simple selective silyl group removal from 14 which proved un-
expectedly challenging. Commonly used basic conditions for
trimethylsilyl group deprotection failed to give the desired
product with allene formation being the major reaction path-
way.[19] The use of silver(I) salts to promote acetylene deprotec-
tion resulted in the formation of mixtures of starting material

14, the desired product 6, and fully desilylated material. Ulti-
mately, we found that modifying Basak’s procedure[20] by using
sodium sulfide in a mixture of THF and water, gave the desired
mono-desilylated product 6 without allene formation although
the reaction did not reach completion; the product 6 could be
obtained in 85 % yield after one recycle. Zirconium catalyzed
hydroboration of the terminal acetylene in 6 gave the desired
(E,E)-dienylboronic ester 15 in good yield and with complete
stereocontrol.[21]

The necessary Suzuki coupling partners for the dienylboronic
ester 15 were prepared from the known (Z)- and (E)-iodoal-
kenes (Z)-16 and (E)-16 (Scheme 2). Thus, propargyl alcohol 11

was readily converted into the (Z)- and (E)-alkenyl iodides (Z)-
16[8, 22] and (E)-16[23] using Negishi’s protocols. The (Z)- and (E)-
alkenyl iodides (Z)-16 and (E)-16 were individually oxidized
with manganese dioxide to the corresponding aldehydes 10
and subjected to the enantioselective Mukaiyama aldol reac-
tion developed by Kiyooka[14] using the ketene acetal 9 in the
presence of l-N-tosylvaline (18).[24] This gave the corresponding
aldols (Z)-5 (68 % yield, 94.5:5.5 er) and (E)-5 (61 % yield,
94.5:5.5 er) which were converted into the corresponding silyl
ethers (Z)-17 and (E)-17 under standard conditions.

Having established reliable routes to both the dienylboronic
ester 15 and the two alkenyl iodides (Z)-17 and (E)-17, we next
addressed the key Suzuki coupling reaction (Scheme 3).[25]

After extensive experimentation we found that the use of pal-
ladium(II) acetate and triphenylphosphine in the presence of
1 m aqueous sodium bicarbonate allowed the union of the di-
enylboronic ester 15 with the (Z)-alkenyl iodide (Z)-17 to pro-
ceed with complete stereochemical fidelity to give the corre-
sponding coupled product 19 in 64 % yield. Double deprotec-
tion of the triene 19 with HF in acetonitrile[9] gave the alcohol
20 which was converted into inthomycin B 2 via aminolysis of
the corresponding pentaflurorophenyl ester 21. Our synthetic
inthomycin B 2 had spectroscopic properties in accord with
that of both natural and synthetic inthomycin B 2.

For the synthesis of inthomycin C 3, the Suzuki coupling be-
tween the (Z,Z)-dienyl boronate 15 and the (E)-alkenyl iodide

Figure 2. Retrosynthesis of the inthomycins 1.

Scheme 1. Synthesis of dienylboronic ester 15. a) nBuLi, Me3SiCl, THF, �78 8C
then 2 m HCl, 0 8C to RT, 62 %; b) PPh3, N-bromosuccinimide, CH2Cl2, �30 8C,
81 %; c) nBuLi, iPr3SiOTf, THF, �78 8C to RT, 82 %; d) 13, nBuLi, CuCN·2LiCl,
THF, �78 8C then add 12, 81 %; e) Na2S, THF:H2O (1:1), 0 8C to RT, 85 %, after
one recycle. ; f) pinacol borane, (C5H5)2ZrHCl, Et3N, 60 8C, 84 %. RT = room
temperature, Tf = SO2CF3, THF = tetrahydrofuran.

Scheme 2. Synthesis of the alkenyl iodides (Z)- and (E)-17. a) MeMgBr, CuII,
THF, �10 8C then I2, �10 to �5 8C, 66 %; b) MnO2, CH2Cl2; c) BH3·THF, 18, 9,
CH2Cl2, �78 8C then HCl, (Z)-5, 68 % (2 steps), 89 % ee, (E)-5, 61 % (2 steps),
89 % ee ; d) Et3SiCl, imidazole, CH2Cl2, 0 8C to RT, (Z)-17 93 %, (E)-17 91 %;
e) Me3Al, (C5H5)2ZrCl2, CH2Cl2, 0 8C to RT then I2, �78 8 to RT, 61 %.
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(E)-17 required further optimization. Ultimately, we found that
the concentration of aqueous base proved crucial with the use
of 0.25 m sodium bicarbonate giving the coupled product 22
in 65 % yield. In a similar manner to the synthesis of inthomy-
cin B 2, inthomycin C 3 was prepared from the triene 22 by
the same reaction sequence. Our synthetic inthomycin C 3 had
spectroscopic properties in accord with that of both natural
and synthetic inthomycin C 3.

Having successfully synthesized inthomycins B 2 and C 3 we
turned our attention to inthomycin A 1 (Scheme 4). We had
originally aimed to prepare inthomycin A 1 by the same strat-
egy namely Suzuki cross-coupling of a (Z,E)-dienylboronic acid
(Z,E)-15, however, rhodium(I) catalyzed anti-selective hydrobo-
ration[26] of the enyne 6 gave the corresponding (Z,E)-dienyl-
boronic ester (Z,E)-15 in low yields (<40 %) under a number of
conditions. We therefore altered our synthetic strategy and in-
vestigated a Sonogashira/semi-hydrogenation sequence. Pleas-
ingly, the Sonogashira reaction of the alkenyl iodide (Z)-17
with the enyne 6 proceeded smoothly under standard condi-
tions to give the coupled product 25 in 62 % yield. The next
challenge was the semi-hydrogenation of the alkyne to give
the (Z,Z,E)-triene required for completion of the synthesis of in-
thomycin A. Semi-hydrogenation of 25 under a variety of con-
ditions [Pd, CaCO3, quinoline; Pd, CaCO3 ; Pd, BaSO4 ; nickel
boride; Zn (Cu/Ag)] gave mixtures of the desired product, over
reduced products and starting material and we were unable to
isolate the desired triene in synthetically useful yields. We

therefore investigated the semi-hydrogenation of the
alcohol 26 formed by double deprotection of 25.
Pleasingly the use of Zn(Cu/Ag) couple in methanol
at above room temperature gave the desired (Z,Z,E)-
triene 27 in 80 % yield.[27] As before, the methyl ester
27 was readily transformed into the corresponding
amide target inthomycin A 1 via the pentafluoro-
phenyl ester 28. Careful analysis of the 1H and
13C NMR spectra of 1 indicated that it was contami-
nated with a small amount (<10 %) of inthomycin B
2 which appears to arise during conversion of the
ester 27 into inthomycin A 1.

All of our synthesized inthomycins had spectro-
scopic properties in accord with the natural and pre-
viously synthesized compounds. Importantly, the ab-
solute configuration of inthomycin C 1 has been the
subject of much confusion and debate in the litera-
ture. However, recently these ambiguities have been
laid to rest by Hale and Hatakeyama[13b] with the ab-
solute configuration of inthomycin C 1 being firmly
established as (R) confirming the original assignment
by Henkel and Zeek.[3] We had assigned the absolute
configuration of the alkenyl iodides (Z)-5 and (E)-5 as
(S) using Kakisawa’s extension of Mosher’s method[28]

which translates into the absolute configuration of all
of the inthomycins being (R), and our optical rotation
for 3 was in agreement with the recently remeasured
values.[13b]

In summary, we have developed efficient modular enantiose-
lective total syntheses of all three inthomycins, which proceeds
in only 9/10 steps from commercially available materials. The
key steps include Suzuki and Sonogashira cross-couplings, and
an enantioselective Kiyooka aldol reaction. Our modular route
has allowed the efficient syntheses of these biologically active

Scheme 3. Synthesis of inthomycins B and C. a) (Z)-17 or (E)-17, Pd(OAc)2, PPh3, Na2CO3,
THF, H2O, 19 64 %, 22 65 %; b) HF·pyridine, CH3CN, 0 8C to RT, 20 80 %, 23 97 %; c) LiOH,
H2O, THF, MeOH, 0 8C to RT; d) C6H5OH, EDCI·HCl, DMAP, CH2Cl2, 21 80 % (2 steps), 24
87 % (2 steps) ; e) NH4OH, THF, 0 8C to RT, 2 95 %, 3 94 %. EDCI = 1-ethyl-3-(3-dimethylami-
nopropyl)carbodiimide).

Scheme 4. Synthesis of inthomycin A. a) (Z)-17, Pd(PPh3)4, CuII, Et3N, 62 %;
b) HF·pyridine, CH3CN, 0 8C to RT, 91 %; c) Zn-Cu-Ag couple, MeOH, 35 8C,
80 %; d) LiOH, H2O, THF, MeOH, 0 8C to RT; e) C6H5OH, EDCI·HCl, DMAP,
CH2Cl2, 78 % (2 steps) ; f) NH4OH, THF, 0 8C to RT, 89 %.
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natural products and we will use this synthetic sequence in
our assault on the synthesis of the oxazolomycins.###
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