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Enantioselective Alkylation of 2,2-Dimethyl-1,3-dioxan-5-one Using the SAMP-/RAMP-

Hydrazone Method

Dieter Enders,* Bernhard Bockstiegel

Institut fiir Organische Chemie, Rheinisch-Westfdlische Technische Hochschule. Professor-Pirlet-Stralie 1, D-5100 Aachen, Federal Republic

of Germany

The lithiated SAMP-hydrazone (S)-3 [(S)-1-(2,2-dimethyl-1,3-dioxan-
S-ylideneamino)-2-methoxymethylpyrrolidine] is used as a chiral 1,3-
dihydroxyacetone-enolate equivalent C in overall enantioselective «-
alkylations leading to 4-alkyl-2,2-dimethyl-1,3-dioxan-5-ones (S)-5a—-i
in good overall chemical yields and of high enantiomeric purity (ee = 88
- Z93%.

Dihydroxyacetonephosphate A (DHAP) is used in nature to
build 2-ketoses by way of enzyme catalyzed aldol reactions.
Several groups have reported the syntheses of natural and
unnatural carbohydrates and analogues from reactions of A
with various aldehydes using aldolases as catalyst.! " '° Direct
reactions of 1,3-dihydroxyacetone and aldehydes lead to mix-
tures of ketoses and aldoses.!' So far, only a few examples,
under stoichiometric organic reaction conditions, have been
reported that resemble the dihydroxyacetone-d*-synthon C,
namely enamine acylations'? and metal enolate aldol reac-
tions.'* !5 Therefore, suitable dihydroxyacetone-enolate
equivalents are desirable.

We now report a new type of chiral DHAP-enolate equivalent B
using our SAMP-/RAMP-hydrazone methodology!®!” and its
application in an efficient 3-step process resulting in overall
enantioselective a-alkylations.
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As is illustrated in the scheme, 2,2-dimethyl-1,3-dioxan-35-one
(1)'®7 2% is transformed to the corresponding SAMP-hydrazone
($)-3 by reaction with (S)-1-amino-2-methoxymethyl-

pyrrolidine [(S)-2; SAMP].?"-2* The chiral hydrazone is ob--

tained as a pale yellow oil and can be stored for several months at
-~ 25°C under argon. Optimum metalation of hydrazone (S)-3
is accomplished by addition of ferz-butyllithium to a tetrahydro-
furan solution of (5)-3 at — 78°C. Alkylation of the metalated
hydrazone by addition of a slight excess of alkyl halide at
—100°C produces the hydrazones (S,S)-4 with high asym-
metric inductions (de = 88 = 95 %) (Table 1). Careful work-up
at room temperature leads to hydrazones 4 of mainly Z-
configuration. However, determination of the diastereomeric
excess using '*C-NMR spectroscopy requires the £ isomer
(Table 2). The isomerization can be accomplished by short
heating to about 50 °C (TLC control). Chromatographic purific-
ation gives (E,S,5)-4 as colorless or pale yellow oils, or as a
colorless solid in the case of (E.S,S)-4d.

The alkylated ketones (S)-5 arc obtained from (S5,5)-4 following
ozomnolysis in CH,Cl, at — 78°C and chromatographic purifi-
cation (Table 3). The oxidative cleavage of the C=N double
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bond with ozone is mild, fast, and non-destructive towards the
ketal functionality. It also permits the recycling of the chiral
auxiliary by reduction of the nitrosamine (S)-6 with lithium
aluminum hydride.'®'7%3 Only in the presence of additional
double bonds larger amounts of by-products such as ozonides
are produced [(5)-5e, R = CH,CH :=CH,, overall yield 23%,].

In the case of (S5)-5a (R = CH,), the enantiomeric excess could
be determined by '"H-NMR lanthanide-ind uced-shift (LIS) ex-
periments, which showed that the ozonolysis is free of racemi-
zation. In all other cases the ee values of the ketones ($)-5 given
in Table 3 are based on the corresponding de values of (S, 5)-4.
All enantiomers, diastereoisomers, and racemates required for
the aforementioned correlation are uccessible by changing the
chiral auxiliary (RAMP instead of SAMP) or by racemization of
§ with basic alumina and regeneration of resulting 1: 1 mixture
of epimeric hydrazones.

The absolute configurations shown in the scheme and listed in
the Tables are in accordance with the postulated mechanism for
SAMP/RAMP alkylations.?* Supportive evidence is provided in
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Table 1. Hydrazones 4 Prepared by Diastercoselective a-Alkylation of (5)-3

Product? Yield® [«]?? de* Molecular IR (NaCl) 'H-NMR (CDCl,/TMS)® MS
(%) (neat) (%) Formula? v(em ™) é, J(Hz) miz (%)
(S.5)}-4a 81 1387 295 CLH,N,0,  1470,1385,  1.33(d, 3H, J=6.5, CH,); 1.40, 1.42 (25, 256 (M*,10);
(256.3) 1240, 1180,  6H, 2CH,); 1.57-2.08 (m, 4H, 26NCH,); 98 (97);
1130, 1080, 2.42 (m, 111, NCHH); 3.35 (s, 3H, OCH;); 70 (100)
860 2.99-3.52 (m, 4H, OCH,, NCH, NCHH);

4.15(dd, 1H, J =15.5, 2.0, CNCHH); 4.47
(qd, 1H, J = 6.5, 2.0, CNCH): 4.49 (d, 1H,
J =155, CNCHH)

(RR)4a" 82 ~ 1517 =295
(8.5)-4b 91 +160° 295 C4H,6N, 04 1460, 1380, 097 (t, 3H, /=7, CHy); 1.39 (s, 6H, 270
(270.4) 1225, 1170,  2CH,);1.50-2.08 (m, 611, 28NCH,, CH,);  (M*,04);
1120, 1075,  2.40 {m, 1H, NCHH); 3.34 (s. 3H, OCH;); 98 (100);
875 2.98-3.47 (m, 4H, OCH,, NCH, NCHH); 70 (90)
4.12 (dd, 1H, J =15.5, 2.0, CNCHH); 4.25
(m, 1H, CNCH); 4.50 (d, 1H, J =155,
CNCHH)
(S.5)-4e 59 +109° 295 C,sHyN,0,  1460,1380, 088 (1, 3H, J=7, CHy); 139 (s, 6H, 326 (M™,5);
(326.5) 1230, 1130,  2CH,); 1.23-205 (m, 14H, S5CH,, 98 (100);
1105, 1065 2BNCH,); 2.39 (m, 1H, NCHH); 3.33 (s, 70 (90)
3H, OCH,); 2.98-3.45 (m, 4H, OCH,,
NCH, NCHH); 4.12 (dd, 1H. J = 15.5, 2.0,
CNCHH); 4.32 (m, 1H, CNCH). 4.51 (d,
1H, J =15.5, CNCHH)
(S,5)-4d 75 £127°F 295 CHaeN,0,  1470,1390, 091, 1.00 (2d, 6H, J = 6.8, 2CH,); 1.37, 284 (M*,9);
(284.4) 1230, 1140, 138 (2s, 6H, 2CH;); 1.58-2.08 (m, 4H, 98 (100):
1115, 1065,  2BNCH,); 2.22 (sept d. 1H, J = 6.8, 3.8, 70 (86)
1030 CH); 2.41 (m, 1H, NCHH); 3.35 (s, 3H,
OCH,); 2.98-3.45 (m, 4H, OCH,, NCH,
NCHH); 4.06 (dd, 1H, J=153, 1.8,
CNCHH); 417 (dd, 1H, /=38, 138
CNCH); 4.55 (d, 1H, 15.3, CNCHH)
(S,5)-de 91 + 945 295 C,HyuN,0, 1645, 1460, 140 (s, 6H, 2CH,); 1.58-2.05 (m, 4H, 282(M*.2);
(282.4) 1380, 1220,  2BNCH,); 2.30 (m, 1 H, CHH,y)); 2.40 (m, 98 (90);
1120, 1070 1H, NCHH); 2.68 (m, {H, CHH,;,,): 3.33 70 (100)
(s, 3H, OCH,); 2.98-3.45 (m, 4H, OCH,,
NCH, NCHH); 4.12 (dd, 1H, J = 15.8, 2.0,
CNCHH); 4.40 (m, 1H, CNCH); 4.44 (d,
1H, J=158, CNCHH); 504 (m, 1H
CHHolef); 5.12 (I\‘l, 1H CHHulcf)
(5.9)-4f 60 - 144° 295 CyoH3NL 0,4 1500, 1455, 1.24, 1.36 (25, 6H., 2CH,); 1.56-2.08 (m, 332 (M*,3);
(332.4) 1380, 1230, 4H, 28NCH,); 2.37 (m, 1H, NCHH); 3.34 133 (100);
1110, 1070 (s, 3H, OCHj); 2.74-3.49 (m, 6H, OCH,, 98 (46);
NCH, NCHH, CHHPh, CHHPh); 411 70 (46)
(dd, 1H, J = 15.5, 1.9, CNCHH); 4.48 (d,
1H, J=15.5, CNCHH); 4.59 (m, 1H,
CNCH); 7.13-7.32 (m, SH,.om)
(S.R)-4g 68 + 787 =95 CaoH3oN,0; 1460, 1380, 142 (s, 6H. 2CH,); 1.50-2.03 (m, 4H, 362 (M",7);
(362.5) 1230, 1110 2BNCH,); 2.38 (m, 1H, NCHH); 3.32 (s, 183 (98);
(br) 3H, OCH,); 2.98-345 (m, 4H, OCH,, 98 (62);
NCH, NCHH); 3.60-4.80 (m, 7H, CNCH, 91 (100);
CNCHH, CNCHH, OCH,, OCH,Ph). 70 (95)
7.20-7.35 (m, 5H,0m)
(S,8)-4h 86 + 657 88 C,1H3,N,O, 1460, 1380, 137 (s, 6H, 2CH;); 1.55-2.07 (m, 5H, 376 (M".4);
(376.5) 1230, 1120 2BNCH,0CH,CHH); 2.30-2.73 (m, 2H, 98 (98);
(br) NCHH, OCH,CHH); 3.33 (s, 3H, OCH,); 91 (78);
2.60-3.70 (m, 6H. OCH,NCH, NCHH, 70 (100)
OCH,CH,); 3.90-4.75 (m, SH. CNCH,
CNCHH, CNCHH, OCH,Ph); 7.25-7.35
(m’ SHamnl)
(S,S)-4i 62 + 85° 89 C,sH,6N,05 1745, 1445, 138, 1.43 (2s. 6H, 2CH,); 1.58-2.05 (m, 314 (M*.,9);
(314.4) 1385. 1230,  4H, 2BNCH,); 2.43 (m, TH, NCHH); 2.50 269 (100);
1175, 1120, (dd, 1H. J =16.5, 8.5, COCHH): 2.97 (dd, 98 (79):
1075 1H, J =16.5, 40, COCHH); 333 (5. 3H, 70 (99)

OCHS,); 3.02-3.45 (m, 4H, OCH,, NCH,
NCHH); 3.69 (s, 3H, CO,CH;); 4.18 (dd,
1H, J = 16.0, 2.0, CNCHH); 4.46 (d, 1H,
J = 16.0, CNCHH); 4.86 (m, 1H, CNCH)

s Absolute configuration of major isomer. ¢ Data of the major isomer with E configuration at the C=N double
b Yield of isolated product 4 based on 3. bond are given.

¢ Determined by **C-NMR spectroscopy, see Table 2. f The RAMP-hydrazone (R)-3 was methylated.

4 Satisfactory microanalyses obtained: C +:0.36, H £0.30, N & 0.38. ¢ Obtained at 45°C.
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form of the hydroxymethylated 2,2-dimethyl-1,3-dioxan-5-one  Table 2. '*C-NMR Data (CDClyTMS) of Product Hydrazones 4 Used
derivative, which is obtained by hydrogenolysis of (S)-5g and for Caleulution of de-Values

also via aldol reaction of (S)-3 with paraformaldehyde and N

subsequent ozonolysis. Both reactions lead to the same configur-
ation at the new stercogenic center. In such aldol reactions the

4 st 3 ;
(E.S.S)-4 (E,S.R)-4 (E.S,8)-4 (E.S.R)-4

absolute configuration has been proven in the case of several free 55.34 54.72 59.65 5043
ketoses by comparison of rotation values or '>C-NMR p 55.58 54.75 59.79 50.40
studies.”® The enantiomeric products (R)-5 are available by ¢ 55.56 ;i;i fg:g "3-51:
51 as chiral auxili able d 5570 60. .56
using RAMP as chiral auxiliary (see Table 1,3). . e s <083 4015
f 55.69 54.97 59.88 60.53
g 5578 ¢ 59.75 :
Yoe /Y ock h 5536 54.72 59.84 .54
Ny R i 5540 54.72 59.16 59.12
b W Ho Rk N N e e e e e e e+ e -
¢ - C2p7 o
g E ?g r * See formulas (£,5.5)-4 and (E.S,R)-4.
7 Z:J b Absolute configuration at the new stereogenic center reversed due to
O CHy HiC™ CH, priority rules.
(£,5,50-4 (ES,RI-4 ¢ Not detectable.

Table 3. Highly cnantiomerically enriched 4-alkyl-2,2-dimethyl-1,3-dioxan-5-ones ($)-5 Prepured

Product Yield® [«]3 ee® Molecular IR (NaCl) 'H-NMR (CDCl,/TMS) MS
(%) (neat) (%) Formula® viem™ '} o, J(Hz) miz (%)
(S)-5a 56 (41) —292° 93 C,H,,0,4 1750, 1380, 1.32 (d, 3H, J=6.0, CHy); 142, 144 (25, 6H, 144 (M ', %),
(144.2) 1230, 1170, 2CH3): 3.98(d, 1H,J = 17, COCHH): 4.32(d, 1H,J 72 (61);
1110 =17. COCHH): 4.38 (g, 1H. J = 6.6, COCH) 43 (100)
(R)-5a° 66 (49) +295° 93 C,H,,0,
(144.2)
(S)-5b 70 (58) -274" =95 CgH,,04 1750, 1380, 0.95(t, 3H,J = 7.5, CH,); 1.42 (s, 6H, 2CH,); 1.30- 158 (M ¥, 4);
(158.2) 1225, 1080, 2.05 (m, 2H, CH,); 3.92 (d, 1H, J =17, COCHH); 72 (100);
1010 4.12 (m. 1H, COCH); 4.24 (d, 1H, J = 17. COCHH) 43 (78)
(5)-5¢ 81 (43) ~196°  >95 Cy3H,,0; 1755, 1380, 0.88 (1, 3H, J = 6. CHy); 1.42 (s, 6H, 2CH,); 1.10- 214
(214.3) 1230, 1105 1.90 (m, 10H, 5CH,); 3.93 (d, 1H, J =17, COCHH); (M*. 0.6);
4.20 (m, 1H, COCH); 4.28 (d, 1H, J =17, COCHH) 72 (100);
43 (57)
(5)-5d 80 (54) —242"  >95 CoH {04 1750, 1385, 0.90, 1.02 (2d, 6H, J = 6.6. 2CHy); 1.42 (5, 6H. 172 (M*,3);
(172.2) 1230, 1095, 2CHy4): 223 (m, 1H, CH): 3.90 (d, 1H, J=17. 72 (100);
1080, 1035 COCHH); 4.04 (m, 1H, COCH); 420 (dd. 1H, J 43 (55)
=17, 1.5, COCIHH)
(S5)-5e 27¢(22) ~241° =95 Coll,,0, 1750, 1380, 144, 1.46 (2s, 6H, 2CH,); 2.33 (m, 1H, CHH,,,,); 170 (M *.5);
(170.2) 1230, 1110 2.64 (m, 1H, CHH,,,); 4.00 (d, 1H, J=17, 72 (100);
COCHH); 4.26 ((dd, 1H, J =17, 1.5, COCHH); 4.30 43 (73)
(m, 1H, COCH); 5.09 (m., 1H, CHH,¢); 5.15 (m,
UH, CHH,,,;); 5.84 (m, 1H, CH,,,;)
(5)-5f 66 (36) —-228 =95 Ci3H,60;5 1750, 1385, 1.30, 1.38 (25, 6H, 2CH,); 2.75 (dd, tH, J =15, 9, 220 (M *.5)
(220.3) 1230, 1180, CHH); 3.23(dd, 1H, J = 15,3, CHH); 3.93 (d, 1H,J 92 (59);
1110 =17, COCHH); 4.25 (dd, 1 H,J = 17. 1.5, COCHH); 91 (57):
443 (m, 1H, COCH)): 7.24 (s, 5H,,,) 72 (100)
(S)-5¢ 66 (40) - 92 295 CiHO, 1750, 1380, 1.50 ¢s. 6H, 2CH;): 3.72 (dd, tH, J =115, 6, 230
(250.3) 1230, 1110 CHHOBn); 3.90 (dd, 1H, J =11.5, 3, CHHOBn); (M. 0.03);
(br), 740 395(d, 1H, J =17, COCHH); 431 (dd, 1H, J =17, 91 (100);
1.5, COCHH); 4.46 (m, 1H, COCH); 4.60 (s, 2H, 72 (23)
OCH,Ph); 7.32 (s, SH,,,.)
(S)-5h 68 (53) —148° 88 CysH,0,0, 1750, 1380, 1.43 (s, 6 H,2CH;); 1.83 (m, 1H, CHH); 2.22(m. 1 H, 264 (M*,2):
(264.3) 1230, 1120 CHH): 3.61 (dd, 2H, /= 6.6, 6.0, OCH,); 3.92 ¢d, 107 (80);
IH, J =17, COCHH); 4.25 (dd. 1H, J =17, 1.5, 91 (100);
COCHH): 441 (m, 1H, COCH); 5.0 (s, 2H, 72 (83)
OCH,Ph); 7.33 (s, SH,,,n)
(5)-5i 73 (41 —202° 89 CoH 404 1750, 1740, 146, 1.53 (25, 6H, 2CH,): 2.63 (dd, 1H, J=17.4, 202
(202.2) 1380, 1220, 8.4, CHH); 2.95 (dd, 1H. J - 17.4, 4.5, CHH); 3.75 (M*.,0.2);

1170, 1110 (s, 3H, OCH,); 4.05 (d, 1H, J =17, COCHH); 440 72 (92);
(dd, 1H, J =17, 1.5, COCHH); 4.75 (m, 1 H, COCH) 43 (100)

* Yield of isolated ketones 5 based on 4, overall yield of the sequence  © Satisfactory microanalyses obtained: C 4-0.18, H +0.25.
1 -5 i_n parenthesis. ) 4 RAMP was used as chiral auxiliary.

" Determined by 'H-NMR LIS technique and/or based on the de © As by-product, 56% of the corresponding ozonide was isolated.
values of the corresponding precursors 4, see Table 1.
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In conclusion, the lithiated SAMP-/RAMP-hydrazones of 2,2-
dimethyl-1,3-dioxan-5-one constitute versatile chiral DHAP-
enolate equivalents, which are now being investigated in de de
novo sugar syntheses using aldol reactions.**

The optical rotation values were measured at 23°C using a Perkin-
Elmer P 241 polarimeter. Microanalyses were obtained using a Heraeus
CHN-O-Rapid. IR spectra were recorded on a Beckmann Acculab 4
spectrophotometer. "H-NMR spectra were obtained using a Varian
VXR 300 or a Varian EM 390 spectrometer, '>C-NMR using a Varian
VXR 300 spectrometer. M:S spectra were recorded on a Varian MAT
212 spectrometer. The ozonolyses were carried out with a Fischer-
Ozongenerator 502.

($)-(+)-1-(2,2-Dimethyl-1,3-dioxan-5-ylideneamino)-2-methoxymethyl-
pyrrolidine [(8)-3]:

In a flask equipped with & Dean-Stark trap (for azeotropic removal of
water) and a reflux condenser, 2,2-dimethyl-1.3-dioxan-5-one (1; 8.45 g,
65 mmol) and ($)-1-aminc-2-methoxymethylpyrrolidine (SAMP) [(S)-
2: 8.46 g, 65mmol] in benzene (80 mL) arc refluxed for 20h. After
cooling, Et,0 (200 mL) is added, and the mixture is washed with water
(2 x 10 mL); the organic layer is dried {(MgSO,) and evaporated. The
crude hydrazone is purified by distillation under reduced pressure to
give (S)-3 as a pale yellow oil; yield: 14.2 g (90%); bp 82-88°C/0.05
Torr; [ald? + 2307 (neat).

Cy,H,oN,0, cale. C5948 H9.15 N 11.56

(242.3) found 5947 9.36 11.34

IR (film): v = 1460, 1450, 1380, 1370, 1340, 1220, 1155-1040 (br),
835cm™ .

TH-NMR (CDCl,/TMS): ¢ = 1.38, 1.42 (25, 6 H, 2CHy); 1.55-2.15
(complex, 4 H, 2 NCH,); 1.53 (m, 1 H, NCHH); 3.35 (s, 3H, OCH,;);
2.90-3.50 (complex, 4 H, NCHH, NCH, OCH,); 4.20-4.68 (complex,
4H, 2CNCH,).

MS (70 eV): mjz (o) = 242 (M, 1.5); 139 (43); 98 (60): 70 (100); 43
(30).

The enantiomeric hydrazcne (R)-3 is prepared by reaction of 1 (5.2 g,
40 mmol) and RAMP (R)-2 (5.2 g, 40 mmol) in benzene (70 mL) in the
same way; yield: 7.9 g (82%); bp 74--81°C/0.05 Torr; [«]® = — 225°
(neat).

Metalation and Alkylation; General Procedure:

In a dried, argon-filled round-bottomed flask fitted with a septum cap, a
solution of 3 (1 equiv; 5-20 mmol) in anhydrous THF (4 mL/mmol)
is cooled to - 78°C. teri-Butyllithium (1.1 equiv, 1.7 M solution in
n-hexane) is added dropwise, and the mixture is stirred for 2 h at — 78 C.
The solution of metalated hydrazone is cooled to — 100°C, alkyl halide
(1.2 equiv, neat or as a solution in anhydrous THF) is added drop-
wise. and the mixture is stirred for 1h at —100°C and then warmed
slowly to room temperature (about 15 h). Finally, Et,0 (30 mL/mmol)
is added and the mixture is washed with pH7-buffer (3 mL/mmol)
and brine (2x 3 mL/mmol), dried (MgSQ,) and evaporated under
reduced pressure. The crude product 4 is heated to 50°C for a short
time if necessary {about 15 min for isomerization from 7 to E isomer;
TLC-control) and purified by column chromatography (silica gel,
Et,Ofpentane, 1:1-2:5; R, E>R, Z) to give a colorless or pale
yellow oil [in the case of (£,5.5)-4d: colorless solid; mp = 40°C] (see
Tables 1 and 2).

Ozonolysis of Hydrazone 4 to 4-Alkyl-2,2-dimethyl-1,3-dioxan-5-ones 5;
seneral Procedure:

A solution of crude or purified hydrazone 4 (1 equiv; 5-10 mmol) in
CH,CI, (3050 mL) is cooled to -~ 78°C under a dry atmosphere (Ar)

SYNTHESIS

and ozone (2 equiv, 100 sec/mmol, 55L/h O,) is introduced. The
mixture is allowed to warm up to room temperature while dry argon is
bubbled through; the solvent is evaporated under reduced pressure, and
the crude product § is purified hy column chromatography (silica gel,
Et,0O/pentane, 1:2-1:4) to give & colorless liquid (see Table 3).
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