
374 Letters in Organic Chemistry, 2011, 8, 374-379  

 

 1570-1786/11 $58.00+.00 © 2011 Bentham Science Publishers Ltd. 

Efficient Syntheses of New Chromone- and Chromanequinoline Hybrids 

and their Aza-analogs  

Abelmalek Bouraiou
a
, Fabienne Berrée

b
, Sofiane Bouacida

c
, Bertrand Carboni

b
,  

Abdelmadjid Debache
a
, Thierry Roynel

d
 and Ali Belfaitah*

,a 

a
Laboratoire des Produits Naturels d’Origine Végétale et de Synthèse Organique. Faculté des Sciences Exactes, 

Campus de Chaabat Ersas, Université Mentouri-Constantine, 25000, Algeria 

b 
Sciences Chimiques de Rennes, UMR 6226 CNRS-Université de Rennes 1, Campus de Beaulieu, 35042 Rennes 

CEDEX, France 

c
Unité de Recherche de Chimie de l’Environnement et Moléculaire Structurale, CHEMS, Université Mentouri-

Constantine 25000, Algeria 

d
Centre de Difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Universite´ de Rennes I,  

Campus de Beaulieu, 35042 Rennes CEDEX, France 

Received August 30, 2010: Revised March 29, 2011: Accepted April 13, 2011 

Abstract: Some novel chromone- and chromanequinoline hybrids and their aza-analogs were synthesized from 2-chloro-

3-quinolinecarboxaldehydes as starting materials. The cyclization of 2-hydroxychalcones in the presence of AcONa 

yielded chroman-4-ones, while, in the typical AFO conditions, the 2-corresponding quinolyl-3-hydroxyflavonols were 

obtained. These approaches were extended to 2-aminochalcones, which delivered the 3-hydroxy-2,3-dihydroquinolin-

4(1H)-one via an epoxy-ketone and 2-quinolyl-2,3-dihydroquinoline-4(1H)-one under microwave irradiation in the 

presence of silica gel impregnated with indium (III) chloride. 

Keywords: Quinoline, chalcones, flavonoid, quinolinone, bis-heterocycles. 

Flavonoids are naturally occurring polyphenol 

derivatives present in substantial amounts in plants, fruits 

and vegetables [1]. Since food products derived from plants 

are an integral part of the human diet, the potential 

bioactivity of these compounds has been largely investigated 

ever since their discovery. Flavonoids exert various effects 

on health that explains the considerable interest aroused by 

this family. Numerous studies have shown their capacity to 

absorb oxygen radicals, their antioxidant potential and 

radical-scavenging properties [2]. Other benefits have since 

been described: anti-viral, anti-allergic, anti-platelet, anti-  
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inflammatory, anti-tumor activities [3]. Flavonoids have 

been classified into several subgroups, such as flavonols and 

flavanones (Fig. 1). 

From a chemical point of view, 2,3-dihydro-2-aryl-

4(1H)-quinolinones can be considered as aza-analogs of 

flavanones (X=NH instead of X=O, Fig. 1). They are known 

for the wide-range of their biological activity, as anticancer 

and immunosuppressive agents [4]. They also serve as 

valuable precursors for the synthesis of other medicinally 

important compounds [5]. To improve the pharmacological 

profile of these important families of bioactive molecules, a 

number of investigations have been carried out which 

involved the replacement of the 2-aryl substituent by various 

heterocycles [6]. The introduction of quinoline nucleus has 

already been used successfully in a number of 

pharmacomodulations [7]. In relation to these endeavours, 
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Fig. (1). Some subgroups of the flavonoid family. 
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Ibrahim et al. have recently published the synthesis of a 2-

(3-quinolinyl)-substituted chromone [8]. Analogously, 

Chang et al. have reported the synthesis and evaluation of 

antitubulin activity of a 2-(quinolin-3-yl)quinolin-4(1H)-one 

[9].  

Following our previous works related to the use of 

substituted 2-chloro-3-formylquinolines 1 as precursors of 

different quinoline-containing heterocycles, [10] we wish to 

report herein our preliminary results concerning the 

synthesis of chromone- and chromanequinoline hybrids and 

their aza-analogs (Scheme 1). 

We first chose 2-methoxy-3-formylquinolines 2 as 

starting material. They were easily prepared in good yields 

from the corresponding 2-chloro-3-formylquinolines 1 in 

refluxing methanol in the presence of sodium methoxide (2.0 

equiv) [11]. Their conversion to the corresponding 2-

hydroxychalcones 3 proceeded cleanly in 73–90% yields by 

treatment with 2-hydroxyacetophenone in the presence of 

Ba(OH)2/MeOH. The flavanones 4a-e were synthesized on 

treatment with AcONa in refluxing ethanol via 

intramolecular attack of the phenoxide moiety at the -

position of the , -unsaturated ketone [12], while 5a-e were 

obtained albeit in lower yields, when subjected to the typical 

Algar-Flynn-Oymanda (AFO) conditions, [13]
 

aqueous 

hydrogen peroxide in the presence of sodium hydroxide 

(Scheme 2, Table 1) [14].
 
Both 

1
H and 

13
C NMR spectra are 

in full agreement with those reported in the literature for 

similar structures [15]. 
 

In contrast, if the base-catalyzed condensation of 2-

hydroxy-4,6-dimethoxyacetophenone effectively yielded the 

desired chalcone 6, the major product detected after 

treatment with H2O2/NaOH was a benzofuran-3(2H)-one 7 

(aurone). The structure of 7 was established by detailed 

examination of 
1
H and 

13
C spectra

 
which showed 

characteristic signals at 7.28 ppm assigned to the vinylic 

proton and at 104.0 ppm for the corresponding carbon [16-

17].
 
In agreement with the literature, this result suggests that 

the cyclization occurred at the -position of an epoxide 

intermediate due to the presence of a substituent at the 
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Scheme 1. Synthesis of chromone- and chromanequinoline hybrids and analogues. 

N Cl

CHO

 ii

3 (73-90%)

N OMe

O

1     Y=Cl

OH

N OMe

O

O

HO

N OMe

O

O

iii

iv

4 (48-67%)

5 (30-61%)

3

R2

R1
R1

R2

R1

R2

R1

R2

2     Y=OMe

i

 

Scheme 2. Reagents and conditions: (i) MeONa (2.0 eq.), MeOH, reflux. (ii) 2-hydroxyacetophenone, Ba(OH)2, MeOH, 40°C, 24h. (iii) 

AcONa, EtOH, reflux, 48h. (iv) H2O2, NaOH, MeOH-THF, rt, 24h. 
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6’position to yield exclusively the Z-geometrical isomer 

(Scheme 3) [17-18]. 

Another aim of this study was to expand this work to 

some aza-analogs of flavanones. First, 2-aminoacetophenone 

was condensed with 2-chloro-3-formylquinolines 1a-d to 

deliver the 2-aminochalcones 8a-d in 70-87% yields 

according to the procedure described by Schlenoff and co-

workers [19].
 
Oxidation with hydrogen peroxide performed 

Table 1. Synthesis of Substituted Flavanones (4) and Flavonols (5) from 2-hydroxychalcones (3) 

 

Entry R
1
 R

2
 Yield 3 (%) Yield 4 (%)

a
 Yield 5 (%)

a
 

a H H 90 50 49 

b H OMe 73 56 45 

c OMe H 76 67 61 

d -O-(CH2)-O- 74 51 30 

e H Cl 86 48 50 

a
Yield of isolated product after purification by column chromatography. 
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Scheme 3. Reagents and conditions: (i) 2b, Ba(OH)2, MeOH, 40°C, 24h, 80%. (ii) H2O2, NaOH, MeOH-THF, rt, 24h, 36%. 
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Scheme 4. Reagents and conditions: (i) 2-aminoacetophenone, NaOH, EtOH, r.t., 24h. (ii) H2O2, NaOH, MeOH, THF, rt, 24h. (iii) H2O, 

MeOH, reflux, 24h. (iv) InCl3, silica gel, μw, 5 min.  
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in the presence of sodium hydroxide afforded epoxides 9a-d 

(Scheme 4, Table 2).
  

The structure of compound 9a-d has been established by 

spectroscopic methods. In the epoxy ring, the quinoline 

group at C-2 and the aroyl group at C-3 adopt a 2,3-trans 

arrangement. Suitable crystal of 9b compound was obtained 

by recrystallization and X-ray crystallographic analysis 

confirmed the structural assignment (Fig. 2). 

 

 

 

 

 

 

 

 

Fig. (2). ORTEP plot of the X-ray crystal structure of 9b [20]. 

Upon heating in refluxing methanol/water, intramole-

cular cyclization occurred at the -position of epoxides to 

give the corresponding 3-hydroxy-2,3-dihydroquinolin-

4(1H)-ones 10a-d [21]. The relative position of the hydroxyl 

and quinoline unit on the new heterocyclic ring could not be 

determined efficiently by NMR spectroscopy (J H2-H3 = 12.5-

12.8 Hz). However, an X-ray structure determination of 

quinolone 10b (Fig. 3) revealed a trans-configuration which 

showed that the new ring was formed with inversion of 

configuration at C-2 [22]. X-ray crystallography of 10b 

showed an asymmetric unit which contains only one 

stereoisomer and the analysis of the unit cell demonstrate 

that the second stereoisomer is generated via a symmetry 

element. The two stereoisomers have for each one, the 

absolute stereochemistry 2S, 3S and 2R, 3R of the new 

stereocenters created in the cyclization reactions.  

Finally, we turned our attention to the synthesis of the 

2,3-dihydroquinolin-4(1H)-ones. Most of the reported 

procedures dealing with the synthesis of such compounds 

involved the use of corrosive reagents, such as 

orthophosphoric acid, acetic acid or strong alkalis [23]. The 

high efficiency of InCl3 as catalyst in the synthesis of the 

2,3-dihydroquinolin-4(1H)-ones [24] and the ease of product 

isolation prompted us to investigate its use in the synthesis of 

11. The reaction of the 2-aminochalcones 8a-d with InCl3 in 

CH3CN was firstly examined. The corresponding 2,3-

dihydroquinolin-4(1H)-ones 11c-d were indeed obtained, but 

in relatively low yields (40-43%). 

 

 

 

 

 

 

 

 

 

 

Fig. (3). ORTEP plot of the X-ray crystal structure of 10b [20]. 

Recent studies on the Lewis acid catalyzed reactions with 

indium halides revealed that InCl3 adsorbed on silica gel has 

often better catalytic properties than InCl3 in solution [24]. In 

this context, a mixture of 2-aminochalcones 8a-d and silica 

gel impregnated with indium (III) chloride (20 mol%) was 

irradiated in domestic microwave oven at 360 W for 5 

minutes. Under these conditions, 11a-d was successfully 

synthesized in good yields (58-71%) (Scheme 4, Table 2) 

[25].  

Single crystal of compound 11b was obtained and X-ray 

crystallographic analysis confirmed the structural assign-

ments (Fig. 4). The unit cell contains two independent 

molecules and the analysis demonstrates that the two 

stereoisomers have for each one, the absolute stereo-

chemistry (2R) and (2S). 

Table 2. Synthesis of Substituted 3-hydroxy-2,3-dihydroquinolin-4(1H)-ones (10) and 2,3-dihydroquinolin-4(1H)-ones (11) from 

2-aminochalcones (3) 

 

Entry R
1
 R

2
 R

3
 Yield 8 (%) Yield 9 (%) Yield 10 (%)

a
 Yield 11 (%)

a
 

a H H H 80 81 56 58 

b H H Me 70 70 49 71 

c Me H H 74 77 51 69 

d Me Me H 87 89 53 63 

a
Yield of isolated product after purification by column chromatography. 

 

 

 

 

 

 

 

 

 

Fig. (4). ORTEP plot of the X-ray crystal structure of 11b [20]. 
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In conclusion, as demonstrated herein, the approaches 

developed in this work allow an easy and efficient access to 

structural analogs of flavonols and flavanones combining 

these important substructures with quinolyl moieties. Further 

biological evaluation of these compounds is currently 

underway and will be reported in due course. 
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