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ABSTRACT: The Pd-catalyzed asymmetric intramolecular dearomatization of pyrroles via the Heck reaction in the presence of
commercially available Pd(OAc)2 and the Feringa ligand is described. Diverse pyrroline derivatives were obtained in excellent
yields (up to 99%) with high enantioselectivity (up to 96% ee). The reaction features a wide substrate scope, relatively mild
conditions, and useful transformations of the products.

Catalytic asymmetric dearomatization (CADA) reactions
offer an efficient strategy for the functionalization of

aromatic compounds and have witnessed rapid development
recently.1 The Pd-catalyzed Heck reaction2 is one of the
methods that can be employed for the dearomatization of
arenes. In this regard, several elegant dearomative Heck
reactions of indoles have been documented recently.3,4 In
2012, Yao, Wu, and their co-workers reported a dearomatiza-
tion process of indoles via a Pd-catalyzed Heck reaction to
construct fused indolines (Scheme 1a).4a In 2015, Jia and co-
workers accomplished the first enantioselective arylative
dearomatization of indoles via a Pd-catalyzed reductive Heck
reaction in the presence of sodium formate (Scheme 1b).3a

Recently, the Zhou group reported an elegant Ni-catalyzed
asymmetric reductive Heck reaction of indoles using water as a
proton source (Scheme 1c).3d Notably, Kitamura, Fukuyama,
and their co-workers documented an enantioselective total
synthesis of (+)-hinckdentine A in which a Pd-catalyzed
asymmetric dearomative Heck reaction was used as a key
step.3b However, despite these pioneering studies, all of these
dearomative Heck reactions are limited to indoles. On the
other hand, pyrrolidines and pyrrolines serve as vital structural
cores of numerous natural products and pharmaceuticals.5 We
envisioned that asymmetric dearomatization of pyrrole
derivatives would provide an efficient and straightforward
approach to diverse, highly functionalized pyrrolidines and
pyrrolines.6,7 It is particularly worth noting that in 2006, the
Knochel group reported a Pd-catalyzed C−H functionalization
of pyrroles, and the authors later found that a dearomatization
process occurred when N-acyl-2,5-dimethylpyrrole derivatives
were utilized.8 Inspired by this work, we recently realized a Pd-
catalyzed asymmetric intramolecular dearomative Heck re-

action of pyrroles employing chiral phosphine ligands. Herein
we report the results of this study.9

Initially, we began our investigation by choosing N-(2-
bromobenzoyl)-2,5-dimethylpyrrole (1aa) as a model substrate
(Table 1). With Pd(OAc)2 (5 mol %) as the palladium
precursor and Cs2CO3 (1.2 equiv) as the base, the effects of
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Scheme 1. Pd-Catalyzed Dearomative Heck Reactions of
Indole and Pyrrole Derivatives
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different ligands were first examined in toluene at 80 °C. The
utilization of either diastereoisomer of the Feringa ligand (L1
or L2) led to the desired product 2aa in quantitative yield but
with opposite absolute configurations, and L2 gave better
enantiocontrol (87% ee) (entries 1 and 2). When (R)-MAP
(L3) was utilized, 2aa could be obtained in 96% yield, albeit in
nearly racemic form (entry 3). Notably, the reactions with (S)-
Segphos (L4), (S)-PHOX (L5), and (R)-Xyl-SDP(O) (L6) as
ligands provided 2aa in low yields with poor enantioselectivity,
while the substrates could be recovered with good mass
balance (entries 4−6). Subsequently, various bases were tested
with L2 as the ligand (entries 7−10). It was found that the
reaction using K2CO3 gave results similar to those with
Cs2CO3, whereas a relatively lower yield was obtained with
K3PO4. It is worth noting that the desired reaction was
completely shut down when tBuOK was used. No better results
in terms of enantioselectivity were obtained by using different
solvents such as dioxane, tBuOH, and o-xylene (entries 11−

14). When the L2/Pd(OAc)2 ratio was lowered to 1:1, the
NMR yield of 2aa decreased to 31% (entry 15). It seemed that
excess ligand was necessary because of oxidation of the ligand.
Fortunately, the enantioselectivity improved slightly without a
reduction in the efficiency when a lower catalyst loading (2.5
mol %) was employed (entry 16). Lowering the temperature to
70 °C afforded 2aa in 99% yield with 89% ee. However, a
further decrease in the loading of Pd(OAc)2 to 1 mol %
resulted in a significant decrease in the yield of 2aa (46%) even
with an extended reaction time (entry 18). Consequently, the
optimized conditions were as follows: Pd(OAc)2 (2.5 mol %),
(S,S,Ra)-Feringa ligand (7.5 mol %), and Cs2CO3 (1.2 equiv)
in toluene at 70 °C (entry 17).
With the optimized conditions in hand, we then studied the

substrate scope of the reaction (Scheme 2). First, comparable

results (99% yield, 91% ee) were obtained using the
corresponding iodide substrate. After that, a series of pyrrole
substrates possessing electronically and sterically diverse o-
bromobenzoyl groups were tested. Substrates decorated with a
methyl group at each position on the benzoyl group were
converted to their desired products with good results (91−97%
yield, 81−91% ee) (2ab−ae). Sterically hindered substrate 1ab
was found to be tolerated well in this reaction (2ab, 97% yield,
84% ee). Dearomatized product 2ae was obtained in 91% yield
with 81% ee by improving the catalyst loading. Substrates with
one or two electron-donating groups furnished the products in
excellent yields and enantioselectivity (2af, 89% yield, 84% ee;
2ag, 96% yield, 82% ee). A chloro substituent was also

Table 1. Optimization of the Reaction Conditionsa

yields (%)b

entry ligand base solvent
t

(h) 2aa 1aa
ee

(%)d

1 L1 Cs2CO3 toluene 2 quant trace −76
2 L2 Cs2CO3 toluene 1 quant trace 87
3 L3 Cs2CO3 toluene 4 96 trace −1
4 L4 Cs2CO3 toluene 8 5 95 −15
5 L5 Cs2CO3 toluene 8 14 85 −4
6 L6 Cs2CO3 toluene 8 31 67 1
7 L2 K3PO4 toluene 1 88 7 89
8 L2 tBuOK toluene 1 trace 7 −
9 L2 K2CO3 toluene 1 quant trace 85
10 L2 DIPEA toluene 1 72 31 80
11 L2 Cs2CO3 DCE 1 quant trace 61
12 L2 Cs2CO3 dioxane 1 quant trace 85
13 L2 Cs2CO3

tBuOH 1 96 trace 83

14 L2 Cs2CO3 o-xylene 1 quant trace 86
15e L2 Cs2CO3 toluene 1 31 70 83
16f L2 Cs2CO3 toluene 1 quant trace 88
17f,g L2 Cs2CO3 toluene 1 99c trace 89
18g,h L2 Cs2CO3 toluene 4 46c N.D.i 86

aReaction conditions: 1aa (0.2 mmol), Pd(OAc)2 (0.01 mmol),
ligand (0.024 mmol), and base (0.24 mmol) in toluene (1.0 mL) at
80 °C. bDetermined by 1H NMR analysis using CH2Br2 (0.2 mmol)
as an internal standard. cIsolated yield. dDetermined by HPLC. eL2
(0.01 mmol). fPd(OAc)2 (0.005 mmol), L2 (0.015 mmol). gAt 70
°C. hPd(OAc)2 (0.002 mmol), L2 (0.005 mmol). iN.D. = not
detected.

Scheme 2. Substrate Scope: Variation on the Aryl and
Alkenyl Bromidesa

aReaction conditions: 1 (0.2 mmol), Pd(OAc)2 (0.005 mmol), L2
(0.015 mmol), and Cs2CO3 (0.24 mmol) in toluene (1.0 mL) at 70
°C. bPd(OAc)2 (0.01 mmol), L2 (0.03 mmol).
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compatible with this reaction (2ah, 71% yield, 87% ee), and
the Cl in the product would offer a handle for subsequent
cross-coupling reactions. Aryl bromides bearing an electron-
withdrawing substituent (CF3, F, NO2) at the para position led
to decreased yields (2ai−ak) but comparable enantioselectivity
(85−89% ee). Notably, the naphthyl group was also
compatible, and the desired product 2al was obtained in
89% yield with 79% ee. It is worth noting that cycloalkenyl N-
acylpyrroles with different-sized rings also afforded the desired
products in excellent yields and enantioselectivity (90−99%
yield, 84−96% ee) (2am−ao). The absolute configuration of
2ac was determined as R by X-ray crystallographic analysis of
an enantiopure sample. The absolute configurations of other
products were assigned by analogy.
Next, the effects of various substituents on the pyrrole ring

were also investigated (Scheme 3). When the two methyl

groups on the pyrrole ring were changed to ethyl or isopropyl
groups, the desired products were obtained in reasonable
yields with excellent enantioselectivity (2ba, 88% yield, 85%
ee; 2ca, 59% yield, 88% ee). When the dibenzyl-substituted
substrate was used, the corresponding product was obtained in
good yield but with low enantioselectivity (2da, 87% yield,
29% ee). When a trisubstituted pyrrole substrate was tested,
the dearomatized product 2ea was obtained in 40% yield with
45% ee.
For substrates bearing multiple reaction sites, there will be

regioselectivity issues. For substrate 1fa, the reaction favored
the formation of the product with an exocyclic enamine moiety
(2fa, 1:10). For substrate 1ga, the reaction preferred to occur
at the less sterically hindered site (2ga, 1:4) (Scheme 4).
To demonstrate the practicality of this reaction further, a

gram-scale reaction was carried out (Scheme 5). The
intramolecular dearomatization of 1ac (3.5 mmol) proceeded
to afford 2ac in 97% yield with 87% ee.
To test the utility of this method, transformations of the

products were performed (Scheme 6). Product 2ac underwent
a hydroboration−oxidation reaction to afford 3ac in 65% yield.
Dearomatized product 2af was transformed to 4af by the
Sonogashira reaction with ethynyltriisopropylsilane. It is worth
noting that no erosion of enantiomeric purity was detected in
either case.
In summary, we have developed the first Pd-catalyzed

asymmetric intramolecular dearomatization of pyrroles via a

Heck reaction. The reaction in general proceeded smoothly
with excellent yields and enantioselectivity. A series of
enantiomerically enriched pyrrolines bearing a quaternary
stereogenic center were obtained efficiently and underwent
useful transformations. Further studies on the application of
this method in organic synthesis are currently underway in our
laboratory.
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Deffieux, D. Oxidative Dearomatization of Phenols: Why, How and
What For? Synlett 2008, 2008, 467−495. (c) Pouyseǵu, L.; Deffieux,
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