Accepted Manuscript

Overcoming doxorubicin-resistance in the NCI/ADR-RES model cancer cell line bynovel anthracene-9,10-dione derivatives

Supranee Sangthong, Helen Ha, Thapong Teerawattananon, Nattaya Ngamrojanavanich, Nouri Neamati, Nongnuj Muangsin

S0960-894X(13)01067-6
http://dx.doi.org/10.1016/j.bmcl.2013.09.004
BMCL 20856
Bioorganic & Medicinal Chemistry Letters
4 June 2013
10 August 2013
3 September 2013

Please cite this article as: Sangthong, S., Ha, H., Teerawattananon, T., Ngamrojanavanich, N., Neamati, N., Muangsin, N., Overcoming doxorubicin-resistance in the NCI/ADR-RES model cancer cell line bynovel anthracene-9,10-dione derivatives, *Bioorganic & Medicinal Chemistry Letters* (2013), doi: http://dx.doi.org/10.1016/j.bmcl.2013.09.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 Title:

- 2 Overcoming doxorubicin-resistance in the NCI/ADR-RES model cancer cell line by novel anthracene-9,10-dione derivatives
- 3 Authors:
- 4 Supranee Sangthong^{*a*}, Helen Ha^{*b*}, Thapong Teerawattananon^{*c*}, Nattaya Ngamrojanavanich^{*c*}, Nouri Neamati^{*b*,*}, Nongnuj Muangsin^{*c*,*}
- 5
- 6 ^aProgram of Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- 7 ^bDepartment of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Southern California, Los Angeles,

NS

D

- 8 California 90033, USA.
- 9 ^cDepartment of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- 10
- 11 Corresponding author
- 12 *Nongnuj Muangsin, PhD
- 13 Department of Chemistry, Faculty of Science, Chulalongkorn University,
- 14 254 Phayathai Rd., Phatumwan Bangkok, 10330, Thailand
- **15** Tel: +662 218 7635
- 16 Email: <u>Nongnuj.j@chula.ac.th</u>
- 17
- 18 ** Nouri Neamati, PhD
- 19 Department of Pharmacology and Pharmaceutical Science, School of Pharmacy, University of Southern California
- 20 1985 Zonal Avenue, Los Angeles, California 90033, USA
- **21** Tel: +1 323 442 2341
- Email: <u>neamati@usc.edu</u>
- 23
- 24
- 25 ABSTRACT
- 26 Overcoming drug resistance with remarkable cytotoxic activity by anthracene-9,10-dione derivatives would offer a potential
- 27 therapeutic strategy. In this study, we report the synthesis and the cytotoxicity of a novel set of anthraquninones. (4-(4-
- 28 Aminobenzylamino)-9,10-dioxo-9,10-dihydroanthracen-1-yl-4-methylbenzenesulfonate) (3) has excellent in vitro cytotoxicity
- against doxorubicin-resistant cancer cell line ($IC_{50} = 0.8 \mu M$), 20-fold higher than doxorubicin. The cytotoxic effect via G2/M arrest
- does not appear to be ROS.
- 31
- 32 Keywords: doxorubicin-resistance, cytotoxic mechanism, anthraquinone derivatives

Doxorubicin, or hydroxyl daunorubicin (Fig. 1a) is a broad-spectrum chemotherapeutic agent that has been widely used in the clinics for various cancers.¹ As with many other anthraquinone derivatives, doxorubicin inhibits DNA synthesis by intercalating DNA, inducing p53 and oxidative stress.²⁻⁴ Unfortunately, many cancer cell types that have high expression of drug efflux transporters, such as P-glycoprotein are resistant to doxorubicin and many of its analogues.⁵ Although increasing the drug dosage is an effective strategy to overcome drug resistance, it typically leads to increased side effects including hypotension and cardiac arrhythmia.⁶

39 Since the development of drug resistance is a major impediment towards the successful treatment of various cancers, it 40 has encouraged the development of novel chemotherapeutics that can overcome chemoresistance to drugs such as doxorubicin. 41 Anthraquinones (Fig. 1b) have been commonly used as a pharmacophore for the treatment of various diseases including cancer. The anthraquinone derivative, emodin (Fig. 1c), has been reported to suppress the proliferation of various cancer cells.⁷⁻⁹ Co-42 43 treatment of emodin with a number of anticancer drugs was shown to be effective against a multidrug resistance cell line, working as a reactive oxygen species (ROS) generator.¹⁰⁻¹³ In addition to ROS generation, emodin targets a number of cancer pathways and 44 45 molecular targets such as tyrosine kinases, phosphoinositol 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), and NF-46 kappaB.⁷ Moreover, novel anthraquinone platinum derivatives have shown improved in vitro cytotoxic activity in tumor cell lines 47 representative of human breast (A2780 and A2780cisR) and breast cancers (T47D).¹⁴

48 Considering the antitumor effects of anthraquinones and drug resistance of cancer cells to anthraquinone-based 49 chemotherapies such as doxorubicin, we sought to design and discover new anthraquinone derivatives that show anti-proliferative 50 properties in chemo-resistant cancer cells. In our study, we present a novel series of anthraquinones that can overcome drug 51 resistance. of derivatives, 4-(4-aminobenzylamino)-9,10-dioxo-9,10-dihydroanthracen-1-yl One these new 4-52 methylbenzenesulfonate (compound 3) inhibits cell proliferation by arresting G2/M cell cycle in doxorubicin-resistant cell 53 (NCI/ADR-RES).

- 54
- 55

56

Figure 1

To investigate the effects of both asymmetric and symmetric substituents at the 1- and/or 4-position on cytotoxicity and anticancer properties, 1,4-dihydroxy anthraquinone was modified according to the procedures shown in Scheme 1. Two hydroxyl groups of 1,4-dihydroxy anthraquinone were substituted with tosyl chloride (TsCl) to obtain compound **1** as an intermediate.²¹ The 4-position of compound **1** was substituted with either a series of benzylamine or glycols. The modifications were made based on the aromatic/aliphatic substituent groups (i) a group of aromatic ring including benzylamines, bearing -Cl, -NH₂ and -OMe at 4position of the bezylamine ring to provide **2-4** and (ii) a group of aliphatic chain of di, tri, tetra-ethylene glycol subsituents to provide **5-7**, respectively. Finally, the 1-position of compound **5** & **6** was attached with di-ethylene (**8**) and tri-ethylene glycol (**9**),

	ACCEPTED MANUSCRIPT
64	respectively in dry acetonitrile followed by treatment of K ₂ CO ₃ . The purity and structural assignments of synthesized compounds
65	were determined by ¹ H-NMR, ¹³ C-NMR, and MS spectral analysis (shown in the Supplementary data A).
66	
67	Scheme 1
68	
69	To assess the anti-proliferative properties of our newly synthesized compounds, a panel of human cancer cell lines derived
70	from different tumor origins was treated with 20 µM of compounds 2-9 and doxorubicin as a reference. Cell proliferation was
71	measured using MTT as reported. ²² The panel of cancer cell lines include pancreatic (BxPC3, MiaPaCa-2), prostate (DU145, PC-3,
72	LNCaP), ovarian (CAOV3, OVCAR-8), breast (NCI/ADR-RES), osteosarcoma (U2OS), and colorectal (HCT116) cancer cell lines.
73	
74	Table 1
75	

76 Doxorubicin at 20 µM showed excellent cell proliferation inhibition in all cell lines except in NCI/ADR-RES (41% 77 inhibition). NCI/ADR-RES is a resistant breast cancer cell that over-express multidrug resistance transporter, MDR1, conferring resistance to various chemotherapies including doxorubicin.¹⁵ Among the eight new anthraquinone derivatives, only three 78 79 asymmetric subsituents bearing the substituted benzylamine (2 (-Cl), 3 (-NH₂), and 4 (-OCH₃)) at 1-position of anthraquinone 80 inhibited cell proliferation more than 50% at 20 µM in all cancer cell lines tested except PC-3 for 4. Especially, in the NCI/ADR-81 RES cell line was inhibited nearly 80% (Table 1). However, another asymmetric or symmetric subsituents (5-9) that were 82 substituted with long glycol chains at the only 1-position or both 1,4-positions were not as active as the benzylamine containing 83 compounds, inhibiting less than 50% cell proliferation in most cell lines tested. These data demonstrates that the benzylamine 84 substituents at the 4-position of the quinone core is important for activity, while compounds 5-9 with flexible long glycol chain 85 were inactive perhaps due to steric effect.

In comparison, asymmetric anthraquinones (2-4) with different substituent groups on the 4-position of benzylamine, namely Cl, NH₂, and OCH₃ showed similar activity; compound **3** inhibited cell proliferations with IC₅₀ values within 0.4-6.5 μ M and compounds **2** and **4** also inhibited cell proliferation with IC₅₀ values within 0.6-8.0 μ M against almost all cell lines except PC-3 for compound **2** and H1299 for compound **4** (Table 2, Figure 2B). This data suggests that not only the benzylamine at 4-position of anthraquinone play an important role in cytotoxic activity, but the substituent groups (-Cl, -NH₂, -OCH₃) at 4-position of the bezylamine does not seem to affect the compounds' activity.

92

We also investigated the level of colony formation which was proportional to assess the effects of cytotoxic agents on the
NCI/ADR-RES cancer cell growth *in vitro* as descripted.^{20,23} The colony numbers were suppressed after treatment of compounds 2 4 at 24 h as dose dependence (Figure 2A). Surprisingly, compound 3 at concentration of 1µM significantly inhibited the colony-

96	forming abilities (Figure 2C) with IC ₅₀ ranging from 0.5-1 μ M compared to its level of inhibition of untreated control culture. The
97	colony forming result was correlated with MTT (IC ₅₀ = 0.8 μ M). Our result indicates that compound 3 affects the cell's
98	reproduction ability to form progenies in NCI/ADR-RES cell leading cell death. The advancements of inhibiting colony formation
99	assay has been made for benefit for cancer therapy in recent years with combination of previous individual modalities such as
100	radiation and chemotherapy. ²⁸ Thus compound 3 as the most active compound was chosen for the future experiment.

- 101
- 102

Figure 2 and Table 2

103

104 To test the hypothesis that compound 3-induced inhibition of colony formation is mediated by modulation of the expression of cell cycle. Flow cytometry was used to examine the effects of compound 3 on cell cycle progression in NCI/ADR-105 106 RES cell. The analysis of DNA profiles is classified into three phases based on linear fluorescence intensity after staining with 107 propidium iodide; the large initial peak (left) represent cell in G0/G1, the intervening area represent cells in S phase and the final 108 tail/small peak (right) represent cell in G2/M. The percentage of cells in G0/G1 phase decreased from 51% to 30%, while in G2/M 109 increased from 35% to 55% in NCI/ADR-RES after treatment of compound 3 at 10 µM as shown in Figure 3A. In our observation 110 Compound 3 inhibited cell proliferation by arresting G2/M phase. This data is consistent with previously reported anthraquinone derivatives such as an emodin that also arrest cancer cells in the G2/M phase.¹⁶⁻¹⁷ 111

112

Glutatione is an important pathway by which the dominant pro-oxidant molecule such as hydrogen peroxide, detoxified. 113 114 Some transporters for substrate transport including multidrug resistant proteins (MRPs)³⁰ involved with the biotransformation and detoxification of cells develop resistance to chemotherapeutic drugs.³¹ Reduced glutathione becomes the most abundant 115 116 intracellular thiol which acts as a major antioxidant by protecting the cells against the damaging effects of free radicals and reactive 117 oxygen species (ROS).³² Anthraquinone, including emodin and doxorubicin, has been reported to induce ROS-mediated 118 apoptosis.¹¹⁻¹³ Therefore; we sought to determine the role of ROS on our compounds' activity. NCI/ADR-RES cells were 119 pretreated with antioxidants, N-acetylcysteine (NAC) or glutathione (GSH) at 5 mM for 2 hours, prior to the addition of compounds 120 2-4 at 20 µM based on %inhibition of DOX as positive control. Pretreatment with NAC or GSH decreased the effectiveness of 121 doxorubicin (from 32% to 13% and 21%, respectively, Figure 4) while compounds 2-4 still showed cytotoxicity more than 122 60% ihibition. Similar results also observed in OVACAR-8 as the DOX-sensitive cells after treatment with compounds 2-4, while 123 DOX's activity was higher than un-pretreatment with antioxidants (Supplementary data B). Our observation is that pretreatment 124 with antioxidants did not decrease the activity of compounds 2-4. This result indicates that the anthraquinones's mechanism may 125 interfere with glutathione transferase activity leading to death of NCI/ADR-RES³³ or it may not be ROS-mediated as observed with 126 doxorubicin.

Figure 3

130 Since doxorubicin-induced apoptosis in response to DNA damage is p53-mediated, we also assess whether the cytotoxic 131 effects of compound 3 is also p53-mediated.¹⁸ Because OVACAR-8 and NCI/ADR-RES are carrying a p53 mutant,²⁶⁻²⁷ we assess 132 caspase activation since it is downstream of p53 induction in response to DNA damage using LNCaP with wild-type p53 as a 133 representative cell. Using Western blot,²⁵ we assessed the protein levels of p53 and caspase 9 upon treatment of doxorubicin and 134 compound 3 using GAPDH as a loading control. Doxorubicin significantly up-regulated p53 and cleaved caspase-9 at 3 µM, 135 thereby activating it, in LnCaP cells, while compound **3** at the same concentration did not alter p53 but slightly activated caspase-9, 136 suggesting the cytotoxic effects of compound $\mathbf{3}$ is not p53-mediated (Figure 4). This is further supported by our MTT results that 137 show no comparable difference in activity in p53 wild type (U2OS) and p53 null (PC3 and H1299) cell lines (Table 1).

- 138
- 139

Figure 4

140

We have discovered a new class of anthraquinone derivatives that inhibit cancer cell proliferation in the low micromolar range. We have shown compound 3 can overcome drug resistance in NCI/ADR-RES, with IC_{50} 's 20 times greater than doxorubicin. Interestingly, compound 3's cytotoxic effect does not appear to be ROS or p53-mediated suggesting its mechanism of action may be different from previously reported doxorubicin and emodin. Further studies are required to further assess the precise mechanism of action, perhaps targeting potential new anticancer targets. Additionally, these new compounds may be beneficial for the treatment of resistant cancer or used in adjuvant therapy with other anticancer agents.

147

148 Acknowledgements

149 We thank the Royal Golden Jubilee Ph.D. Program Fellowship (PHD/0075/2553) to S.S., and the Advanced Materials,

150 Chulalongkorn University, the Integrated Innovation Academic Center: IIAC Chulalongkorn University Centernary Academic

151 Development Project (CU56-FW10) to N.M. and This work was partially supported by the Higher Education Research Promotion

- 152 and National Research University Project of Thailand, Office of the Higher Education Commission (FW657B), and the Center of
- 153 Innovative Nanotechnology (CIN) for funding

155 **References and Notes** 156 1. Muggia, F.M.; Green, M.D. Critical reviews in oncology/hematology. 1991, 11, 43. 157 2. Momparler, R.L.; Karon, M.; Siegel, S.E.; Avila, F. Cancer research. 1976, 36, 2891. 158 3. Agbandje, M.; Jenkins, T.C.; McKenna, R.; Reszka, A.P.; Neidle, S. Journal of medicinal chemistry. 1992, 35, 1418. 159 4. McKnight, R.E.; Zhang, J.; Dixon, D.W. Bioorganic & medicinal chemistry letters. 2004, 14, 401. 160 5. Fojo, T.; Coley, H.M. Clinical breast cancer. 2007, 7, 749. 161 6. Octavia, Y.; Tocchetti, C.G.; Gabrielson, K.L.; Janssens, S.; Crijins, H.J.; Moens, A. Journal of molecular and cellular cardiology. 2012, 52, 162 1213. 163 7. Huang, Q.; Lu, G.; Shen, H.M.; Chung, M.C.; Ong, C.N. Medicinal research reviews. 2007, 27, 609. 164 8. Srinivas, G.; Babykutty, S.; Sathiadevan, P.P.; Srinivas, P. Medicinal research reviews. 2007, 27, 591. 165 9. Zhang, L.; Hung, M.C. Oncogene. 1996, 12, 571. 166 Wang, W.; Sun, Y.P.; Huang, X.Z.; He, M.; Chen, Y.Y.; Shi, G.Y.; Li, H.; Yi, J.; Wang, J. Biochemical pharmacology. 2010, 79, 1134. 10. 167 Cai, J.; Niu, X.; Chen, Y.; Hu, Q.; Shi, G.; Wu, H.; Wang, J.; Yi, J. Neoplasia. 2008, 10, 41. 11. 168 Yang, J.; Li, H.; Chen, Y.Y.; Wang, X.J.; Shi, G.Y.; Hu, Q.S.; Kang, X.L.; Lu, Y.; Tang, X.M.; Guo, Q.S.; Yi, J. Free radical biology & 12. 169 medicine. 2004, 37, 2027. 170 13. Yi, J.; Yang, J.; He, R.; Gao, F.; Sang, H.; Tang, X.; Ye, R.D. Cancer research. 2004, 64, 108. 171 14. Ruiz, J.; Vicente, C.D.; Haro, C.; Espinosa, A. Inorganic chemistry. 2011, 50, 2151. 172 15. Ke, W.; Yu, P.; Wang, J.; Wang, R.; Guo, C.; Zhou, L.; Li, C.; Li, K. Med Oncol. 2011, 28 Suppl 1:S135-141. 173 Tu, H.Y.; Huang, A.M.; Teng, C.H.; Hour, T.C.; Yang, S.C.; Pu, Y.S.; Lin, C.N. Bioorganic & medicinal chemistry. 2011, 19, 5670. 16. 174 Suboj, P.; Babykutty, S.; Srinivas, P.; Gopala, S. Pharmacology. 2012, 89, 91. 17. 175 18. Cui, H.; Schroering, A.; Ding, H.F. Molecular cancer therapeutics. 2002, 1, 679. 176 Carmichael, J.; DeGraff, W.G.; Gazdar, A.F.; Minna, J.D.; Mitchell, J.B. Cancer research. 1987, 47, 943. 19. 177 Munshi, A.; Hobbs, M.; Meyn, R.E. Methods in molecular medicine. 2005, 110, 21. 20. 178 21. NiedziaZielske, A. G. J. Org. Chem. 1987, 52, 1305. 179 Cells were maintained as monolayer cultures in RPMI 1640 supplemented with 10% fetal bovine serum (Gemino-Bioproducts, Woodland, CA) 22. 180 and 2 mM L-glutamine at 37 °C in a humidified atmosphere of 5% CO2. To remove the adherent cells from the flask for passaging and counting, 181 cells were washed with phosphate buffered saline (PBS) without calcium or magnesium, incubated with a small volume of 0.25% (w/v) trypsin-182 EDTA solution (Sigma-Aldrich, St. Louis, MO) for 5-10 minutes, then washed with culture medium and centrifuged. All experiments were 183 performed using cells in exponential growth. Cells were routinely checked for Mycoplasma contamination using a reporter based assay 184 (Invivogen, San Diego, CA). 185 23. Cells were plated in 12-well plates at a density of 100 cells / well and allowed to attach. The next day, serial dilutions of the corresponding 186 compounds were added and allowed to incubate for 24 h. After exposure, cells were washed in PBS and cultured in free media until colonies 187 were formed (8-10 days). Cells were subsequently washed, fixed in 1% (w/w) glutaraldehyde for 30 min, stained with 2% (w/v) crystal violet for 188 30 min, and then thoroughly washed with water. Colonies were imaged on the Versa Doc Imaging System (Bio-Rad) and counted using the 189 Quantity One software package (Bio-Rad). The data reported represent means of at least three independent experiments. 190 24. Cell cycle perturbations were analyzed by propidium iodide DNA staining. Briefly, exponentially growing cells were treated with different doses 191 of 3 for 24 h. At the end of each treatment time, cells were collected and washed with PBS after a gentle centrifugation at 3,000 rpm for 5 mins.

	ACCEPTED MANUSCRIPT
	Cells were thoroughly resuspended in 0.5 mL of PBS and fixed in 70% ethanol overnight at -20 C. Ethanol-resuspended cells were the
	centrigued at 3,000 rpm for 5 min and washed twice in PBS to remove residual ethanol. For cell cycle analysis, the pellets were resuspended in
	mL of PBS containing 0.02 mg/mL of propidium idodide, 0.05 mg/mL of DNase-free RNase A and incubated for 2 h in dark condition. C
	cycle profiles were obtained using BD LSRII flow cytometer (BD Bioscience, San Jose, CA, USA).
25.	Cells were plated in 6 well plates, treated with DOX at 5 μ M and 3 at 0.1, 1.0 2.5 and 5 μ M for 24 h before cells were lysed in 50 μ L of RII
	lysis solution. Equal amounts of protein were electrophoresed on 12% SDS-polyacrylamide gel and transferred to a PVDF membrane. T
	membrane was incubated for 1 h in blocking buffer (5% skim milk powder in TBS containing 0.1% Tween) and then incubated with the model of the state
	antibody against human p53 and caspase-9 (Cell Signaling Technology, Beverly, MA) at 4 °C overnight. Membranes were washed with TB
	and incubated with mouse secondary antibody (SantaCruz Biotechnology, CA) before detection by enhanced chemiluminescence (ECL) systemeters and incubated with mouse secondary antibody (SantaCruz Biotechnology, CA) before detection by enhanced chemiluminescence (ECL) systemeters.
	on the ChemiDoc system (Biorad. Hercules, CA).
26.	Liu, Y.Y.; Patwardhan, G.A.; Bhinge. K.; Gupta, V.; Gu, X.; Jazwinski, S.M. Cancer Res. 2011, 71, 2276.
27.	Ogretmen, B.; Safa, AR. Oncogene. 1997, 14, 499.
28.	Katz, D.; Ito, E.; Lau, K.S.; Mocan, J.D.; Bastianutto, C.; Schimmer, A.D.; Liu, F.F. BioTechniques for Preclinical Development. 2008, 44, Pi
29.	Zielske, A. G. J. Org. Chem. 1987, 52, 1305.
30.	Kuo, M.T. Antioxidants & redox signaling. 2009, 11, 99.
31.	Siddik, Z.H. Oncogene. 2003, 22, 7265.
32.	Cui, H.; Schroering, A.; Ding, H.F. Molecular cancer therapeutics. 2002, 1, 679.
33.	Deffie, A.M.; Alam, T.; Seneviratne, C.; Beenken, S.W.; Batra, J.K.; Shea, T.C.; Henner, W.D.; Goldenberg, G.J. Cancer research. 1988,
	3595.
5	
1	

	ACCEPTED MANUSCRIPT
229	
230	List of Figures
231	
232	Figure 1. Chemical structures of (A) doxorubicin, (B) anthraquinone, and (C) emodin.
233	
234	Figure 2. Compounds 2-4 inhibit cell proliferation and colony formation. (A) Compounds 2-4 inhibit colony formation in
235	NCI/ADR-RES cells. (B) Dose response of compounds 2-4 in MTT cell proliferation assay. (C) Representative colony formation
236	of compound 3 in NCI/ADR-RES cell line.
237	
238	Figure 3. Compound 3 arrest cells in G2/M of NCI/ADR-RES cells treated with compound 3 at 10 µM for 24 h. Control cells
239	were untreated.
240	
241	Figure 4. Antioxidants have no effect on compound 3-mediated cytotoxicity. NCI/ADR-RES cells were pretreated with NAC or
242	GSH prior to 72 h treatment with compound 3 .
243	
244	Figure 5. Compound 3 does not up-regulate p53 in LNCaP was treated at doses within the range of 0.1-5 μ M for 24 h. Thirty
245	microgram of total protein from each sample was analyzed by Western blot.
246	· ·

n	Λ	7
2	4	1

List of Tables

- Table 1. Antiproliferative activities of compounds 2-9.
- Acception

Table 1. Antiproliferative activities of compounds 2-9

Compound (20 µM)	Cell Proliferation (% Inhibition)									
	BXPC3	MIAPaCa-2	NCI/ADR-RES	CAOV3	OVCAR-8	PC-3	DU145	LNCaP	H1229	U20S
2	85.2±3.9	80.6±3.1	80.4±1.6	84.6±1.0	64.4±3.5	81.2±2.9	69.1±2.7	79.9±1.0	63.5±1.0	66.1±1.0
3	94.0±1.0	91.1±2.3	80.5±1.3	85.7±1.0	85.4±1.0	75.8±5.2	87.2±3.3	88.9±2.5	75.1±1.6	92.3±1.0
4	91.5±7.4	81.4±3.5	77.8±1.0	83.1±2.8	58.2± 3.2	46.2±5.5	62.2±4.5	78.7±4.9	53.3±1.0	59.8±2.0
5	14.5±9.8	35.9±5.0	15.3±15	42.7±8.9	8.5±7.3	9.9±4.1	9.0±1.9	26.7±7.4	31.4±5.7	43.0±6.1
6	15.3±3.2	53.4±8.9	20.4±7.1	47.3±10.0	13.1±4.4	16.6±1.82	16.8±4.3	24.5±1.6	46.9±6.9	44.2±2.3
7	11.8±1.2	29.5±1.2	1.7±1.0	48.2±5.4	5.5±0.4	23.7±3.9	21.6±3.2	40.3±6.8	47.8±2.8	41.9±7.3
8	23.1±2.5	31.1±0.4	46.4±3.6	7.3±6.8	3.4±1.6	10.6±2.9	10.0±1.0	46.9±5.2	44.3±6.3	32.4±2.0
9	17.5±6.9	36.1±0.8	41.5±6.2	16.3±6.7	37.4±0.8	16.4±1.0	17.7±4.5	38.2±2.0	6.4±6.1	11.1±1.2
DOX	96.2±2.3	88.1±1.0	41.4±1.0	92.6±1.0	86.0± 3.4	6.9±2.3	80.6±3.5	85.8±1.3	83.5±1.0	90.0±1.0

Dox = Doxorubicin. Cytotoxicity was derived after 74 h exposure to the compound from the MTT assay as a surrogate measure of the number of viable cells and is relative to that of the control (no treatment) culture. Data are shown as the mean \pm SD derived from three independent experiments.

Table 2. Antiproliferative activities of active compounds 2-4

Compound	Cell Proliferation Inhibition, $IC_{50} (\mu M)^a$									
Compound	BXP3	MIAPaCa-2	NCI/ADR-RES	CAOV3	OVCAR-8	PC-3	DU145	LNCaP	H1229	U20S
2	2.4 ± 0.3	4.5 ± 0.4	2.2 ± 0.3	2.5 ± 1.2	4.4 ± 0.6	> 20	6.5 ± 1.5	2.4 ± 0.3	4.0 ± 0.8	4.8 ± 1.0
3	1.8 ± 0.3	2.7 ± 0.3	0.8 ± 0.2	2.5 ± 0.3	3.5 ± 0.3	6.5 ± 0.7	5.4 ± 1.1	0.4 ± 0.1	3.8 ± 0.3	2.8 ± 0.3
4	0.6 ± 0.1	1.9 ± 0.3	1.2 ± 0.1	1.8 ± 0.7	8.0 ± 1.1	8.0 ± 0.5	2.2 ± 0.2	0.9 ± 0.3	> 20	4.5 ± 0.3
DOX	0.4 ± 0.1	< 0.1	> 20	< 0.1	0.6 ± 0.1	1.0 ± 0.1	0.2 ± 0.0	0.2 ± 0.0	1.5 ± 0.1	0.3 ± 0.1

 ${}^{a}IC_{50}$, is the drug concentration that caused a 50% decrease in the cell viability as determined using the MTT assay. Data are shown as the mean \pm SD.

Scheme 1.

Figure. 1

ACCEPTED MANUSCRIPT

V

N

Figure 3

Compounds (20 µM)

Figure 4

Figure 5.

Graphic abstract