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Summary: Effective and convenient syntheses of solenopsin A and B have been developed which involve the 

Beckmann rearrangement-alkylation reaction promoted by organoaluminum reagents and a new stereo- 

selective reduction of imino functional group. 

The recent discovery of the aluminum method for the direct synthesis of o-alkylated amines from the 

simple oxime sulfonate (eq. 1) has substantially simplified the task of the synthesis in this area. 1 
Thus, 

the method should be especially useful in the field of alkaloid synthesis: for example, it provides a simple 

approach to the structure of 2,6-dialkylated piperidines from o-alkylcyclopentanones. Solenopsin A (i) 

and B (z), naturally occuring piperidine alkaloids isolated from the venom of the fire ant, Solenopsis 

savissima, 
2 

are members of these class of compounds which exhibit pronounced hemolytic, 
3 

insecticidal, 

and antibiotic4 activity. As far as we know there were no known synthetic methods capable of generating 

stereospecifically m-2,6-disubstituted piperidine structure, characteristic of 1 and 2. 5 
This fact, 

together with the occurrence of the same structural unit in other natural products, 6 
led us to study the 

stereospecific route to solenopsin A and B. 

1 : SOLENOPSlh A (n=lO) 

2 : SOLENOPSIX B (n=12) 
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The starting oxime sulfonate 2 was synthesized from cyclopentanone in three steps: Reaction of excess 

cyclopentanone (10 equiv) with 1-undecene (1 equiv) in the presence of silver oxide (1 equiv) at 130°C for 5 h7 

produced after isolation in the usual way o-undecylcyclopentanone which was treated with hydroxylamine 

hydrochloride (1.5 equiv)-sodium acetate (2 equiv) in methanol at 25°C for 5 h. Chromatography of the crude 

product on silica gel with 20% ether in hexane led to the isolation of pure &-oxime $8 in 73% overall yield 

from 1-undecene as a semi-solid, which was converted to the corresponding mesylate 2 with methane- 

sulfonyl chloride (1.1 equiv)-triethylamine (1.5 equiv) in methylene chloride at -20°C for 40 min (-95-100%). 

Treatment of the oxime mesylate 3 in dry methylene chloride with 2 equiv of trimethylaluminum (a 2 _M 

toluene solution) 
10 

at -78°C for 5 min and at 25°C for 1 h resulted in formation of the imine .$, in 540/O yield 
11 

after work up by NaF-H20 method. I 

Completion of the synthesis requires reduction of the C=N double bond of 2 with correct configurations. 

Unfortunately, however, it was soon apparent from examination of the literature that existing methodology 

was totally inadequate for the selective reduction of 2 into w-2,6-disubstituted piperidine structure. 
12 

Thus, the reduction of 2 using usual aluminum- or borohydride type reagents 
13 

in different solvents at low 

temperature afforded solenopsin A (A) and its @ isomer 0 in the range of <l/99 to 80/20 (GC analysis) as 

illustrated in Table I (Entry l-10). Excellent stereoselectivity was finally attained in the formation of the 

m form A by adding trimethylaluminum (1 equiv to LiA1H4) into the reaction mixture at low temperature, 

and solenopsin A (:) was obtained almost exclusively ( )95%, Entry 17). 
14 

The spectral data (lH NMR and 

IR) of synthetic solenopsin A was identical with the reported ones. 2 

I Me3A1 
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In a similar manner, solenopsin B (2) was prepared with high stereoselectivity (-95% by GC assay) 

using procedures which exactly paralleled those described above for the synthesis of solenopsin A. 

Table I. Stereoselectivity of the Reduction of the Imine 2 with Hydride Reagents. a 

Entry Hydride Reagent Solvent 
Product Ratio Ir 

($:A) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

DIBAH (4 eq) 

LiAlH4 (7 eq)-NaOMe (14 eq)C 

NaBH3CN (3 eq)-HCld 

LiA1H4 (‘7 eq)-Ti(OPr1)4 (7 eq) 

n-BuLi (5 eq)-DIBAH (5 eq)c 

LiA1H4 (25 eq)-LiCl (50 eq)c 

LiA1H4 (7 eq)-NiC12 (7 eq)’ 

LiA1H4 (5 eq)-TiC13 (10 eq)C 

LiAlH4 (25 eq) 

LiA1H4 (25 eq) 

Mg(AlH4)2 (25 es) 

LiAlH4 (7 eq)-BF3 0Et2 (7 eq) 

LiA1H4 (7 eq)-TiC14 (7 eq) 

LiA1H4 (7 eq)-Me 
i3 

Al (7 eq)e 

LiA1H4 (7 eq)-BugAl (7 eq) 

LiA1H4 (7 eq)-MegAl (7 eq) 

LiAlH4 (7 eq)-MegAl (7 eq) 

THF 99: 1 

MeOH 98 : 2 

THF so : 10 

Ether 83 : 17 

THF 80 : 20 

THF 75 : 25 

THF 67 : 33 

CH2C12 or THF 67 : 33 

Ether 20 : 80 

Ether 33 : 67 

Ether 33 : 67 

THF 25 : 75 

Ether 13 : 87 

THF 6:S4 

DME 6:S4 

THF 5 : 95 

a) All reactions were carried out on a 0.3-l mmol scale. Unless specified, the imine & 
was added to hydride reagents at -78°C under argon, and then additives were introduced. 
The reaction mixture was stirred at -78°C for 30 min, at -45°C for 1 h, at -20°C for 1 h, 
and finally at 0°C for 1 h. After work-up by NaF-HZ0 method, the crude product was 
purified by column chromatography to give a mixture of cis and m isomers in 94-97s 
yield. b) Isomeric ratio was determined by GLC (OV-101, 210°C): t,(g) = 3.91 min, 
t (i) = 4.31 min. 
al -78°C. 

c) The imine was added to a mixture of hydride reagents and additives 
d) The imine was reduced at 25°C for 20 h, and worked up in a usual manner. 

e) The use of excess LiAlH.4 (7 eq of LiA1H4 to 4 eq of Me3A1) or excess Me3A1 (10 eq of 
Me3Al to 5 eq of LiA1H4) did not affect the ratio of 2 to A. 
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