
Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and dopamine receptor pharmacological evaluations on ring C
ortho halogenated 1-phenylbenzazepines
Rajan Giria,b, Hari K. Namballaa, Ananta Sarkera, Ian Albertsc, Wayne W. Hardinga,b,d,⁎

a Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, USA
b Program in Chemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, USA
c LaGuardia Community College, Department of Chemistry, 31-10 Thompson Avenue, LIC, NY 11104, USA
d Program in Biochemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, USA

A R T I C L E I N F O

Keywords:
Dopamine
D1
D5
D2
Benzazepine

A B S T R A C T

A series of 1-phenylbenzazepines containing bromine or chlorine substituents at the ortho position of the ap-
pended phenyl ring (2′-monosubstituted or 2′,6′- disubstituted patterns) were synthesized and evaluated for
affinity towards dopamine D1R, D2R and D5R. As is typical of the 1-phenylbenzazepine scaffold, the compounds
displayed selectivity towards D1R and D5R; analogs generally lacked affinity for D2R. Interestingly, 2′,6′-dichloro
substituted analogs showed modest D5R versus D1R selectivity whereas this selectivity was reversed in com-
pounds with a 2′-halo substitution pattern. Compound 10a was identified as a D1R antagonist (Ki = 14 nM;
IC50 = 9.4 nM).

The neurotransmitter dopamine is implicated in a number of phy-
siological functions in both the periphery and central nervous system
(CNS) such as locomotion, blood pressure regulation, cognition and
emotion.1–7 Perturbations in dopaminergic neurotransmission underlie
some CNS disorders such as Parkinson’s disease, schizophrenia and
drug abuse.8–11 Therefore normalization of dopaminergic neuro-
transmission with pharmacological agents has been explored as a means
to treat these conditions.

Dopamine exerts its pharmacological actions via agonist activity at
5 dopamine receptors (D1R – D5R). Dopamine receptors are classified as
“D1-like” (constituted by D1 and D5 receptor sub-types – D1R and D5R)
and “D2-like” (comprising D2R, D3R and D4R) based on the structure
and function of the receptors and pharmacological studies.12–15 The
discovery of ligands that are highly selective for either the D1R or D5R
sub-types has proved challenging due to the close transmembrane
structural similarity between D1R and D5R (> 80% homology in
transmembrane regions). Thus, commercially available D1R ligands (i.e.
“D1R-like” ligands) usually display similar affinity at D5R. It is only
quite recently that D1R subtype selective ligands have been dis-
closed.16,17 The availability of highly selective ligands for either D1R or
D5R is of current interest as such compounds would be useful tools to
unravel the individual roles of D1R and D5R in various physiological
processes and serve as lead molecules for related CNS disorders.

The 1-phenylbenzazepine framework is a classical template for D1R-
like ligands and numerous compounds along a continuum of functional

activity (i.e. full agonists, partial agonists, antagonists) have been
identified with this scaffold.18–23 A number of these compounds are
used as research tools in pharmacological studies. For example, SCH
23,390 (1, Fig. 1) is a widely used D1R-like antagonist tool; it displays
very high affinity for D1R and D5R (0.2 and 0.3 nM respectively).24 SKF
38,393 (2) is a widely used D1R-like agonist with strong affinity for D1R
and D5R (1.0 and 0.5 nM respectively).25 Fenoldopam (3), a periph-
erally restricted D1R-like partial agonist is currently the only compound
from this class that is in use clinically (it is used as a fast-acting anti-
hypertensive drug).26

There have been several structure-activity relationship (SAR) stu-
dies on 1-phenylbenzazepines as D1R-like receptor ligands and these
studies have established that the aryl substituent groups as well as the
nitrogen substituent can significantly impact D1R-like affinity, D1R-like
selectivity versus “D2-like” receptors as well as functional activity.27–32

Although several SAR studies have been performed on the scaffold, it
has not been determined how halogen substituents in the ortho position
of ring C in the 1-phenylbenzazepine framework impacts affinity and
selectivity for dopamine receptors; there is no data available concerning
the D1R versus D5R affinity of the compounds. Given this gap in the SAR
of 1-phenylbenzazepines, we set out to examine the role of ring C ortho
halo substituents on D1R/D5R affinity in this scaffold. We hypothesized
that such substituents might cause differences in receptor interactions
with the substituents themselves and/or lead to modified conformations
of the molecule as a whole that could directly influence D1R and D5R
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affinity and selectivity. Thus, we set out to synthesize a set of 1-phe-
nylbenzazepine derivatives with variations in the ring A moiety (either
a catechol or protected catechol motif), nitrogen alkyl group substituent
and ring C ortho halogenated motif.

The analogs were synthesized as shown in Scheme 1. The epoxides 9
were available commercially or could be readily synthesized from the
corresponding styrenes 8. We initially attempted reaction of amine 4
and epoxides 9 to form amino alcohols 5 without the use of any ad-
ditives/catalysts, as is typically done for the synthesis of 1-phe-
nylbenzazepine syntheses,33–35 but found the reactions to be low
yielding. Presumably this less than favorable outcome was due to the
steric hindrance in the epoxides used. Lewis acids or lithium salts have
often been used to promote ring opening of epoxides with amine nu-
cleophiles.36–38 As LiNTf2 was reported to provide high yields in such
reactions,39 we examined the use of this reagent and were happy to find
that the reactions of 4 and 9 to form 5 proceeded in reasonable yield.

Acid-catalyzed cyclization of 5 afforded the benzazepine framework of
compounds 6a-d. Compounds 6a-d served as key intermediates from
which the synthesis diverged to prepare other analogs with variations
in the phenolic moiety and/or N-substituent.

Thus, treatment of compounds 6b with BBr3 gave the catecholic
compound 7. The secondary amine in compounds 6b-d was methylated
via reductive amination to give analogs 10a-c respectively. Treatment
of compounds 6b-d with allyl bromide allowed for the preparation of N-
allylated analogs 11a-c. Compounds 10c and 11c in turn were de-
methylated by reaction with BBr3 affording catechols 12 and 13 re-
spectively.

The binding affinity of compounds 6a-d, 7, 10a-c, 11a-c, 12 and 13
were assessed at dopamine D1, D2 and D5 receptors. Data for these as-
sessments are presented in Table 1 as Ki values in nM. Compounds 6a-d
had D1R affinities ranging from 72 to 147 nM. Affinities at D5R for this
sub-group of compounds were slightly lower overall (ranging from 82
to 483 nM), so that on a whole, compounds 6a-d were slightly more
selective for D1R over D5R. Compound 6c is interesting as it is the only
compound of the 6a-d subset that was D5R selective over D1R (3-fold).
Compounds 6a, 6b and 6d displayed modest selectivity for D1R over
D5R (up to 3-fold).

Compound 7 with a bromo substituent, showed strong D1R and D5R
affinity. In comparing phenol 7 to its C7 methoxy analog 6d, it is ap-
parent that the effect of cleavage of the C7 methoxy group to give the
catechol 7, results in a roughly 3-fold increase in D1R affinity; im-
provement in affinity at D5R was more modest.

Compounds 10a-c are the N-methylated analogs of 6b-d respec-
tively; compounds 10a-c as a group displayed stronger D1R affinity

Fig. 1. Structures of typical 1-phenylbenzazepine D1R-like ligands –
Fenoldopam, SCH 23,390 and SKF 38393.

Scheme 1. Reagents and Conditions: (a) 1. mCPBA, DCM, rt, 12 h; 2. NaOH, rt, (88–96%); (b) 9, LiNTf2, THF, reflux, 24 h, (56–76)%; (c) 1. TFA, H2SO4, rt, 5 h; 2.
NaOAc, (43–54%); (d) BBr3, DCM, 0 °C, 4 h, (56–80%); (e) HCHO, Na(OAc)3BH, ACN, rt, 12 h, (23–48%); (f) Allyl Bromide, TEA, ACN, rt, 16 h, (56–64%).
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than their N-des-methyl counterparts. Compounds 10a and 10c had the
strongest D1R affinity of any compound evaluated for this study (Ki of
14 and 16 nM for 10a and 10c respectively). The compounds in this
sub-group with mono-halogen substituents (10a and 10c) showed
modest D1R selectivity over D5R (3-fold and 4-fold respectively), but
this selectivity was reversed in the dichloro substituted compound 10b.

Similar trends as for the N-methylated analogs 10a-c were seen for
the N-allylated analogs 11a-c. In that regard, both the mono-halo
substituted analogs 11a and 11c were D1R selective whereas the di-
chloro substituted analog was D5R selective. In general, the N-allyl
analogs displayed lower affinity for D1R and D5R than their N-methyl
congeners.

The catecholic analogs 12 and 13 are the O-demethylated analogs of
10c and 11c respectively; both 12 and 13 showed lower D1R and D5R
affinity than their methylated precursors and both also had modest D1R
selectivity versus D5R (in the 3- to 4-fold range).

In analysis of the effect of monohalogenated versus dihalogenated
substitutions in the pendant aryl ring, interesting observations emerge.
In the case of the 6b/6c pair, the dihalogenated compound 6c showed
higher D1R and D5R affinities than the monohalogenated congener 6b.
However, a similar change in the 10a/10b pair and the 11a/11b pair
resulted in diminished D1R and D5R affinities for the corresponding
dihalogenated analogs. This result indicates that the presence of an N-
alkyl substituent is more favorable for binding of the monohalogenated
versus their dihalogenated congeners at D1R/D5R, whereas absence of
such a substituent leads to a stronger preference towards binding of the
dihalogenated versus monohalogenated variants.

Comparison of data for the 6b/6d, 10a/10c and 11a/11c com-
pound pairs enabled an analysis of the effect of monochloro versus
monobromo substitution in the analog series. In the case of the 6b/6d
pair, the bromo analog 6d had higher D1R and D5R affinity than the
chloro analog 6b. However, in the case of the 10a/10c and 11a/11c
pairs, changing from a chloro group to a bromo group did not result in a
similar increase in affinity of the brominated analogs for the D1R as was
seen for 6b/6d; affinities for the chloro and bromo variants were si-
milar (e.g. 14 nM and 16 nM for 10a and 10c respectively at D1R).
Meanwhile, at the D5R, affinities of the bromo and chloro analogs were

similar (for 10a/10c) or were worse for the bromo analog (for 11a/
11c). Therefore, it appears that in this series, the presence of an N-alkyl
substituent group does not lead to a strong preference for binding of the
monobromo versus monochloro variants at D1R; however, the absence
of an N-alkyl substituent leads to stronger binding of the monobromo
versus monochloro congeners at D1R.

We selected the compound with the highest D1-like receptor affinity
for further evaluation of functional activity. Thus, compound 10a was
evaluated for agonist and antagonist activity in D1R assays that mea-
sured cAMP modulation by Eurofins Lead Hunter Discovery Services. As
expected, (based on structural similarity to 3) 10a displayed strong
antagonist activity in these assays (IC50 = 9.4 nM for 10a; IC50 of
positive control SCH 39166 = 1.5 nM). No agonist activity was de-
tected for 10a.

In order to provide insights into the important receptor-ligand in-
teractions between the ortho halogen substituted 1-phenylbenzapines
and the D1R and D5R, computational docking studies were conducted
for the series of analogs in Table 1. In this context, we explored the
docked ligand poses and identified key interactions that have a sig-
nificant impact on binding to the dopamine receptors for this ligand
series. These efforts focused mainly on the compounds 7, 10a and 10c,
which displayed the best experimental binding affinities to D1R.

Homology models of D1R and D5R were generated and utilized in
the docking studies. The D1R homology model was constructed from
the high-resolution crystal structure of the human β2-adrenergic G
protein-coupled receptor (GPCR) with pdb code 2RH1 followed by in-
duced fit docking with several halogenated 1-phenylbenzazepine ana-
logs.40 In a similar manner, the D5R homology model was created from
the high-resolution crystal structure of the β1-adrenergic GPCR with
pdb code 6H7J followed by induced fit docking with the benzazepine
analogs.41 Models of appropriate amino acid backbone and side-chain
orientations in the ligand binding site. The homology model building
procedure involved application of the Schrödinger Prime Structure
Prediction, Induced Fit Docking and Glide software tools in conjunction
with manual intervention to support the formation of known key re-
ceptor-ligand interactions. The docking runs of the 1-phenylbenzaze-
pine analogs into the D1R and D5R binding sites utilized the

Table 1

Binding affinity of analogs at D1R, D2R and D5R.

Cmpd # R R1 X X1 Ki (nM)a.

D1b D2c D5d

6a Me H H H 126.4 ± 9.1 nae 309.9 ± 23
6b Me H H Cl 147.4 ± 4.1 na 482.8 ± 29.4
6c Me H Cl Cl 76.1 ± 3.6 na 25.4 ± 2.6
6d Me H H Br 72 ± 5.6 na 82 ± 6.2
7 H H H Br 26 ± 3.1 na 67 ± 7.1
10a Me Me H Cl 14 ± 2.3 na 46.4 ± 3.8
10b Me Me Cl Cl 144.6 ± 9.0 na 49.1 ± 3.7
10c Me Me H Br 16 ± 1.4 na 47 ± 3.2
11a Me Allyl H Cl 48.3 ± 8.2 na 264.4 ± 13.6
11b Me Allyl Cl Cl 1044 ± 59.2 1507.8 ± 89.2 479.1 ± 39.2
11c Me Allyl H Br 41 ± 2.8 na 501 ± 64
12 H Me H Br 59.4 ± 4.9 na 223.2 ± 18.6
13 H Allyl H Br 132.9 ± 8.9 na 442.2 ± 56
(+)-Butaclamol 4.04 ± 0.2
Haloperidol 5.58 ± 0.3
SKF 83,566 3.95 ± 0.2

aExperiments carried out in triplicate; b[3H]SCH23390 used as radioligand; c[3H]N-methylspiperone used as radioligand; d[3H]SCH23390 used as radioligand; ena –
not active (< 50% inhibition in a primary assay when tested at 10 µM).
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Schrödinger Glide methodology in Standard Precision (SP) mode. Using
this approach, the Glidescore scoring function provided an estimate of
the ligand binding affinities for the highest ranked poses of the ligand
series in the D1R and D5R targets. The binding poses for the compounds
7, 10a and 10c (docked as the R enantiomers), which gave the best D1R
experimental affinities, are depicted in Fig. 2A and 2B.

Compounds 7, 10a and 10c give very similar docked poses in the
D1R binding pocket as shown in Fig. 2A with binding energies in the
range −7.8 kcal/mol to −8.2 kcal/mol. The docked poses display the
quaternary N - Asp103 salt bridge, H-bonding interactions of the ligand
hydroxyl group to the Asn292 side chain, and for compound 7 with an
additional hydroxyl group in the catechol moiety there is also a H-bond
to the Ser198 sidechain, as well as an aromatic H-bond involving the
pendant phenyl group and Ser188.

In the D5R binding site, the main receptor-ligand interactions for the
docked poses of compounds 7, 10a and 10c comprise the quaternary N
- Asp120 salt bridge, hydrogen bonding interactions of the ligand hy-
droxyl group to the Asn316 or Ser229 sidechain, and again for com-
pound 7 there is another hydrogen bond with its second catechol hy-
droxyl group to Ser233, as well as π-π hydrophobic interactions
involving the ligand aromatic rings with Phe312 and Trp116.

Compounds 10a and 10c form docked poses with binding energies of
−8.2 kcal/mol and −8.1 kcal/mol, respectively, which are very similar
to those in the D1R binding pocket.

Overall, the computationally predicted binding energies for the
docked series of halogen substituted 1-phenylbenzapine derivatives in
Table 1 are similar in both the D1R and D5R structures or a little better
in D5R as a consequence of the slightly stronger hydrogen bonding and
π-π hydrophobic interactions. In this context, the docking scores do not
align with the selectivity trends derived from the experimental binding
affinities. This is at least partially attributable to the modest nature of
the observed D1R/D5R experimental selectivities of the ring C haloge-
nated analogs. Furthermore, D1R and D5R are very similar structurally
in the ligand binding pocket, which provides justification for the close
computational binding energies for most of the compounds in these two
target sites. The docking outcomes for the compounds in Table 1 in-
volved the R enantiomers whereas the affinity data were obtained with
racemic mixtures and this could also have an impact on the match
between the experimental and computational results. Docking simula-
tions were investigated with the S enantiomers, however, they gener-
ated similar trends compared to the R enantiomers with, in general,
slightly worse predicted binding energies in both the D1R and D5R
targets.

In conclusion, this study extends the available SAR information on
1-phenylbenzazepines as D1R-like ligands with regards to the effect of
ring C ortho halogen substituents. As is evident from examination of the
data, the compounds in this study maintain selectivity for D1-like re-
ceptors over D2R, with modest selectivity for either D1R or D5R. As
compared to known 1-phenylbenzapeine D1R-like tools such as 1 and 2,
it is apparent that the ortho halogen group does not significantly im-
prove D1R or D5R affinity. However, one of the findings from this work
is that compounds with di-ortho-halo substituents (i.e. C2′/C6′ sub-
stitution) favor binding to D5R, whereas compounds with a mono-ortho-
halo (C2′) substituent favor D1R binding over D5R. In addition, the SAR
data suggests that the most favorable outcome for good D1R affinity is
to have either mono-ortho-halogenation in tandem with N-alkyl sub-
stitution or di-ortho-halogenation without N-alkyl substitution.

Evaluation of the functional activity of 10a reaffirms the idea that
an 8-hydroxy-7-methoxy moiety favors antagonist rather than agonist
activity. This result is in line with the generally accepted view that a
catechol motif is required for agonist activity in the 1-phenylbenzaze-
pine scaffold.

Our molecular docking studies revealed interactions that were re-
levant for affinity of the molecules at D1R and D5R, but were unable to
resolve interactions necessary for the observed modest D1R sub-type
selectivity of 7, 10a and 10c. Examination of larger sets of compounds
with ortho halogenated patterns in future, including enantiopure ana-
logs, may provide a larger body of data to aid in the challenging opti-
mization of these ligands towards D1R or D5R potency and sub-type
selectivity.
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