Note

Subscriber access provided by Kaohsiung Medical University

One-pot Synthesis of Indole-3-Acetic Acid Derivatives through Cascade Tsuji-Trost Reaction and Heck Coupling

Dongsheng Chen, Yuanyuan Chen, Zhilong Ma, Lei Zou, Jiangi Li, and Yu Liu

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/acs.joc.8b01056 • Publication Date (Web): 15 May 2018

Downloaded from http://pubs.acs.org on May 16, 2018

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

One-pot Synthesis of Indole-3-Acetic Acid Derivatives through Cascade Tsuji-Trost Reaction and Heck Coupling

Dongsheng Chen^{a, b}, Yuanyuan Chen^{a, b}, Zhilong Ma^{a, b}, Lei Zou^{a, b}, Jianqi Li^{*a, b} and Yu Liu^{*a, b}

^a Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry, China
 State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, PR China;
 ^b Shanghai Engineering Research Center of Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, PR China
 Email of the corresponding authors: lijianqb@126.com (Jianqi Li), liuyu_tianjin@126.com (Yu Liu)

Abstract: A practical palladium-mediated cascade Tsuji-Trost reaction/Heck coupling of N-Ts *o*-bromoanilines with 4-acetoxy-2-butenonic acid derivatives using a $Pd(OAc)_2/P(o-tol)_3/DIPEA$ system is described for a straightforward synthesis of indole-3-acetic acid derivatives. This methodology was successfully applied to synthesize various substituted indole/azaindole-3-acetic acid derivatives and Almotriptan, which is a drug for the acute treatment of migraine. Moreover, a plausible cyclization mechanism has been proposed.

Indole-3-acetic acid is an endogenous growth hormone in plants. Its scaffold (Figure 1) is frequently found in a series of biologically active compounds such as Bunodosine 391¹ and therapeutically effective drugs such as Indomethacin², Sumatriptan³ and Rizatriptan⁴. Owing to its great importance in medicinal chemistry, much effort has been focused on the development of more effective synthetic methods over the past years (Scheme 1. A).

Figure 1. Examples of bioactive molecules containing indole-3-acetic acid scaffold.

Among these synthetic methods⁵⁻⁷, Fischer indole synthesis⁸⁻¹¹ is the most widely used method which relies on the use of phenylhydrazines and ketones or aldehydes and especially works well for 5-substituted electron-rich indoles. Other variant approaches, for examples, domino synthesis of indoles through Zinc-promoted hydrohydrazination of terminal alkynes¹² and reductive Fischer indolization of N-aryl conjugated hydrazones with tert-butyl iodide¹³, provide more choices for

the preparation of indole-3-acetic acid compounds. However, Fischer method has suffered from some problems when it was applied to synthesize 4- or 6-monosubstituted indoles due to its selectivity. During the past few decades, transition-metal-catalyzed reactions have offered a powerful tool for construction of C-C and C-heteroatom bonds. The application of these reactions such as Heck coupling catalyzed by palladium¹⁴⁻¹⁶ and C-H functionalization by $Rh_2(OAc)_4^{17}$ in the synthesis of indole-3-acetic acid derivatives which greatly enriched the diversity of substrate structures has also been explored. Despite these advances, the development of a straightforward method to access indole-3-acetic acid through one-pot process would be of great value. Herein, we report a novel palladium-mediated cascade Tsuji-Trost reaction¹⁸⁻²²/Heck coupling²³⁻²⁷ to synthesize indole-3-acetic acid and its derivatives from readily available starting materials (Scheme 1. B).

Scheme 1. Synthetic Routes for the Preparation of Indole-3-acetic acid Compounds

The reaction of N-Ts o-iodoaniline (1a) and ethyl (E)-4-acetoxybut-2-enoate (2a) was used to screen for suitable reaction conditions. At first, the reaction was performed in DMA at 100°C in the presence of Pd(OAc)₂ (5 mol %), $P(o-tol)_3$ (10 mol %), $n-Bu_4NBr$ (1.2 equiv)²⁸⁻³⁰ and K₂CO₃ (3.0 equiv). Disappointedly, the reaction did not give any products after 16h (Table 1, entry 1). However, after the base K₂CO₃ was replaced with KOAc and the amounts of catalyst and ligand were increased at the same time, the reaction afforded the desired product 3aa in 32% yield after 24h (Table 1, entry 2). Encouraged by the result, we investigated other bases and the results revealed that the type of the base had a significant effect on the outcome of the reaction. Among the screened bases, organic bases such as TEA and DIPEA gave the better results than inorganic bases such as K_2CO_3 and KOAc (Table 1, entries 1–3). Next, we tried to optimize the amounts of catalyst and ligand, and found that the yield would decrease significantly when the amounts of Pd(OAc)₂ and P(o-tol)₃ were reduceed to 3 mol % and 6 mol % respectively (Table 1, entries 3-5). Interestedly, the absence of $n-Bu_4NBr$ had no effect on the result (Table 1, entries 4 and 6). Furthermore, the investigation showed that the ligands play a favorable role in the reaction and $P(o-tol)_3$ could improve the reaction rate more apparently than PPh₃ (Table 1, entries 6-8). A survey of palladium source on the reaction showed that $Pd(OAc)_2$ and $Pd_2(dba)_3$ have similar catalytic activities (Table 1, entries 6 and 9). Toluene, 1,4-dioxane and CH₃CN were screened as solvents and no one was found to afford a comparable result to DMA (Table 1, entries 10-12). The amino of aniline without protection or protected with other protective groups such as CH₃CO, CF₃CO, MeSO₂, Boc and PMB were also investigated under the condition of entry 6, however,

they gave quite poor results. Finally, the optimal reaction conditions were determined as follows: **1a** (1 equiv), **2a** (1.2 equiv), $Pd(OAc)_2$ (5 mol %), $P(o-tol)_3$ (10 mol %) and TEA (or DIPEA) (3 equiv) in DMA.

î

	NHTs + Aco OEt (Pd), Ligant, aditive Det							
		1a	2:	a	3aa ^{Ts}			
Entry	Cat. (5 mol %)	L (10 mol %)	Base (3.0 eq.)	Additive (1.2 eq.)	Solvent ^[a]	Temp. (°C)	Time (h)	3aa ^[b] (yield, %)
1	$Pd(OAc)_2$	$P(o-tol)_3$	K_2CO_3	<i>n</i> -Bu ₄ NBr	DMA	100	16	NR
2 ^[c]	Pd(OAc) ₂	P(o-tol) ₃	KOAc	<i>n</i> -Bu ₄ NBr	DMA	100	24	32 ^[d]
3 ^[c]	$Pd(OAc)_2$	P(o-tol) ₃	TEA ^[e]	<i>n</i> -Bu ₄ NBr	DMA	100	24	84
4	$Pd(OAc)_2$	$P(o-tol)_3$	TEA	<i>n</i> -Bu ₄ NBr	DMA	100	12	83
5 ^[f]	Pd(OAc) ₂	P(o-tol) ₃	TEA	<i>n</i> -Bu ₄ NBr	DMA	100	16	23 ^[d]
6	Pd(OAc) ₂	P(o-tol) ₃	TEA		DMA	100	10	82
7	Pd(OAc) ₂		TEA		DMA	100	12	34 ^[d]
8	Pd(OAc) ₂	PPh ₃	TEA		DMA	100	24 ^[g]	83
9	$Pd_2(dba)_3$	P(o-tol) ₃	TEA		DMA	100	12	84
10	$Pd_2(dba)_3$	P(o-tol) ₃	TEA		Toluene	100	12	14
11	$Pd_2(dba)_3$	P(o-tol) ₃	TEA		1,4-dioxane	100	12	7
12	Pd(OAc) ₂	P(o-tol) ₃	TEA		CH ₃ CN	80	16	72
Conditions: 1a (1.0 mmol), 2a (1.2 mmol), $c = 0.2$ M. [a] anhydrous solvent, under N ₂ atmosphere; [b] isolated yields; [c] Pd(OAc) ₂ (12 mol %), P(<i>o</i> -tol) ₃ (20 mol %); [d] 1a has remained; [e] DIPEA gave a similar result; [f] Pd(OAc) ₂ (3 mol %), P(<i>o</i> -tol) ₃ (6 mol %); [g] 1a has remained after 18h, disappeared after 24h.								

Table 1. Optimization of the Reaction Conditions

Based on the optimized reaction conditions, the scope of this one-pot process was then examined. Diverse substituted indole-3-ethyl acetate compounds were obtained in moderate to good yields (Schemes 2). As shown in Scheme 2, for the substrate N-Ts *o*-haloanilines, a variety of substituents (-Br, -Cl, -F, -OCF₃, -OMe and -CO₂Me) were applicable, affording products **3ba~3ma** in 41~91% yields. The position and electronic nature of aromatic substituents seem to affect the yields: electron-donating substituents at *para*-position of halogen on anilines lead to poorer yields (**3ha**), while electron-withdrawing substituents give better yields (**3ga** and **3ia**); for substituents at *meta*-position of halogen on anilines, the electronic effects do not seem to play an important role in reaction yields (**3ba**, **3ca**, **3da** and **3ea**); for electron-withdrawing substituents at *orth*-position of nitrogen on anilines, the reactions can also give good results (**3ja**, **3ka** and **3la**). Besides, the substituents have a big influence on the reaction rate: the substrates **1e** and **1g** were not consumed completely after 24h, while the reaction was finished for **1i**, **1k** and **1l** after 12h.

Scheme 2. Scope of Cascade Tsuji-Trost/Heck Reaction to Form Substituted Indole-3-Acetates (3xa)^{ab}

^{*a*}Conditions: **1b~1m** (1.0 mmol), **2a** (1.2 mmol), Pd(OAc)₂ (5 mol %), P(*o*-tol)₃ (10 mol %), DIPEA (3 mmol), anhydrous DMA (5 mL), under N₂ atmosphere; ^{*b*}Isolated yield after chromatography.

In order to expand the diversity of the substrates, we examined the cyclization reaction of N-Ts *o*-haloanilines with amide **2b** (Scheme 3). The investigation showed that the substrate amide **2b** gave equivalent or better results (**1ab~1mb** except for **1lb**) than its corresponding ester **2a**, while the effects of the position and electronic nature of aromatic substituents were similar to those displayed for the reactions of **1a~1m** with **2a**. Interestingly, for substituents at *orth*-position of halogen on anilines, the reactions gave better results (**3nb**, **3ob** and **3pb**) than its corresponding ester **2a**, while there was almost no reaction between **2a** and **1n**, **1o**, **1p**.

Scheme 3. Scope of Cascade Tsuji-Trost/Heck Reaction to Form Substituted Indole-3-Acetamides (3xb)^{ab}

^{*a*}Conditions: **1a~1i** (1.0 mmol), **2b** (1.2 mmol), Pd(OAc)₂ (5 mol %), P(*o*-tol)₃ (10 mol %), DIPEA (3 mmol), anhydrous DMA (5 mL), under N₂ atmosphere; ^{*b*}Isolated yield after chromatography.

The scope of this process was further expanded by utilizing N-Ts bromo-aminopyridines as substrates (Scheme 4). As expected, azaindoles³¹⁻³² were obtained smoothly. The substrate **1q** gave ester **3qa** or amide **3qb** at 100°C for 24h in 72% yield or for 12h in 81% yield respectively, while **1r** afforded **3ra** or **3rb** at 120°C for 24h in 67% or 62% yield respectively.

Scheme 4. Scope of Cascade Tsuji-Trost/Heck Reaction to Form Azaindoles^{ab}

Page 5 of 19

^{*a*}Conditions: **1**q/1**r** (1.0 mmol), **2**a/2**b** (1.2 mmol), Pd(OAc)₂ (5 mol %), P(*o*-tol)₃ (10 mol %), DIPEA (3 mmol), anhydrous DMA (5 mL), under N₂ atmosphere; ^{*b*}Isolated yield after chromatography.

With this newly established methodology, an efficient approach to the synthesis of Almotriptan³³, a specific serotonin 5-HT 1B/1D agonist for the acute treatment of migraine, has been accomplished on gram scale (Scheme 5). It is easy to conduct the reaction of **1s** and **2a** to afford **3sa** in 77% yield. Subsequent reduction and deprotection lead to **3sa-2** in high yield. Finally, Almotriptan was obtained successfully through a one-pot process from **3sa-2** in 78% yield.

Scheme 5. Application in the synthesis of Almotriptan

The cascade Tsuji-Trost/Heck reaction mechanism for the cyclization was preliminarily confirmed by the phenomena observed during the synthesis of **3ha**. Besides desired product **3ha**, another product **3ha'** was separated contemporaneously in 51% yield (Scheme 6, eq (a)), which indicated cyclization probably started from Tsuji-Trost alkylation. To further establish the mechanism of the cyclization reaction, three control experiments were performed. When **1h** and **2a** were mixed under the conditions without palladium catalyst and ligand, the reaction did not proceed (Scheme 6, eq (b)), which indicated that **3ha'** was generated via Tsuji-Trost alkylation. Under the same conditions as eq (a), **1t** was not react with **2a** (Scheme 6, eq (c)), while **3ha'** could be converted into **3ha** (Scheme 6, eq (d)) through Heck coupling³⁴.

Scheme 6. The Evidence for the Cascade Tsuji-Trost/Heck Reaction Process

On the basis of the above results and previous reports, a plausible mechanism for this cascade reaction has been proposed (Scheme 7). It involves, as a first step, oxidative addition of allyl ester **2a** to the palladium complex, forming the electrophilic η^3 -allyl Pd(II) complex, which subsequently reacts with nucleophilic N-Ts *o*-haloaniline in the presence of base to produce intermediate **6** and regenerate the Pd(0) catalyst. The next step is the intramolecular Heck coupling, that is, the palladium-mediated cyclization of **6**, to afford cyclization product **9**. The Heck reaction proceeds well under the help of ester group which could stabilize the palladium species by coordination. The last step is the isomerization of **9**, providing indole-3-actic ester **3**.

Scheme 7. Proposed Mechanism for Cyclization

In conclusion, we have developed a practical protocol for the synthesis of substituted indole-3-actic acid derivatives through palladium catalyzed Tsuji-Trost alkylation and Heck coupling. The cascade reaction could be successfully performed from readily available substrates: substituted N-Ts *o*-haloanilines and allyl ester/amide. This methodology provided an alternative for the synthesis of indole-3-actic acid scaffold valuable in medicinal chemistry.

Experimental Section

General Information. Unless otherwise noted, all solvents and reagents are commercially available and used without further purification. Pd(OAc)₂ and P(*o*-tol)₃ were purchased from J&K Scientific Ltd.. Substituted *o*-haloaniline and anhydrous DMA were purchased from Energy Chemical. Normal-phase column chromatography was performed using silica gel (200–300 mesh). Unless otherwise noted, all reagents were weighed and handled in air at room temperature. The yields of all the reactions refer to isolated yields. ¹H NMR spectra were recorded on a Brucker Avance 400 and 600MHz NMR spectrometer, ¹³C NMR spectra were recorded on a Brucker Avance 100 and 150MHz NMR spectrometer. Chemical shifts were reported in parts per million (ppm, δ) (CDCl₃: δ = 7.26 ppm for ¹H NMR and δ = 77.1 ppm for ¹³C NMR; DMSO-*d6*: δ = 2.50 ppm for ¹H-NMR and δ = 39.5 ppm for ¹³C-NMR). Proton coupling patterns are described as

singlet (s), doublet (d), triplet (t), quartet (q) and multiplet (m). IR spectra were measured on a PE Spectrum Two. HRMS spectra were measured on a Waters Xevo G2-XS QTof.

General produce for the preparation of Ts protected *o*-haloanilines. To a stirred solution of substituted *o*-haloaniline (10 mmol) in Pyr/THF (18 mL/6 mL) was added TsCl (12 mmol) slowly at room temperature. The reaction mixture was allowed to stir at 40°C overnight. After the solvent was removed under reduced pressure, ethyl acetate (100 mL) was added, and the mixture was washed with brine (50 mL×2), and dried over anhydrous Na₂SO₄. The solvent was then removed under reduced pressure and the residue was purified by column chromatography to yield corresponding compounds $1a^{35}$, $1b^{36}$, $1c^{37}$, $1d^{38}$, $1e^{39}$, $1f^{40}$, $1g^{38}$, $1h^{41}$, $1q^{42}$, $1r^{43}$ and $1t^{44}$.

Methyl 4-bromo-3-((4-methylphenyl)sulfonamido)benzoate (1i): EtOAc/PE = 1/10, 2.7 g, 70%, white solid. **Mp**:124-125°C; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ (ppm): 10.11 (s, 1H), 7.77-7.73 (m, 1H), 7.60 (d, *J* = 8.0 Hz, 2H), 7.37 (d, *J* = 8.0 Hz, 2H), 3.83 (s, 3H), 2.37 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm): 165.5, 143.9, 137.7, 136.1, 134.3 130.2, 130.1, 128.4, 128.0, 127.2, 125.9, 53.0, 21.5; **HRMS** (ESI-TOF) *m/z* [M+H]⁺ calcd for C₁₅H₁₅BrNO₄S 383.9905/385.9885, found 383.9902/385.9882.

N-(2-bromo-6-fluorophenyl)-4-methylbenzenesulfonamide(1j): EtOAc/PE = 1/10, 2.1g, 61%, white solid. Mp:184-186°C; ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 9.93 (s, 1H), 7.61 (d, *J* = 8.4 Hz, 2H), 7.51-7.49 (m, 1H), 7.37 (d, *J* = 8.8 Hz, 2H), 7.29-7.25 (m, 2H), 2.31 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 160.0 (d, *J*_{C,F} = 251 Hz), 143.4, 139.2, 130.7 (d, *J*_{C,F} = 7.4 Hz), 129.9, 129.3, 127.1, 125.8, 124.2, 124.1, 116.3 (d, *J*_{C,F} = 21.5 Hz), 21.5; ATR-IR: v 3249, 1594, 1339, 1156 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd for C₁₃H₁₂BrFNO₂S 343.9756/345.9736, found 343.9759/345.9738.

Methyl 3-bromo-2-((4-methylphenyl)sulfonamido)benzoate(1k): EtOAc/PE = 1/10, 1.4g, 36%, white solid. Mp:152-153°C; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 9.98 (s, 1H), 7.80 (dd, J = 8.0, 2.0 Hz, 1H), 7.68 (dd, J = 8.0, 1.6 Hz, 1H), 7.42 (d, J = 8.4 Hz, 2H), 7.34-7.30 (m, 3H), 3.66 (s, 3H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 166.6, 143.9,137.9, 136.1, 135.4, 129.8, 129.4, 128.9, 127.9, 127.7, 124.6, 52.5, 21.6; ATR-IR: v 3238, 1596, 1397, 1158 cm⁻¹; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₁₅H₁₅BrNO₄S 383.9905/385.9885, found 383.9899/385.9880.

N-(2-bromo-4,6-difluorophenyl)-4-methylbenzenesulfonamide (11): EtOAc/PE = 1/10, 1.5g, 41%, white solid. Mp:179-181°C; ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 9.95 (s, 1H), 7.61 (d, J = 8.0 Hz, 2H), 7.55 (dt, J = 8.0, 2.4 Hz, 1H), 7.42 (dd, J = 10.0, 3.2 Hz, 1H), 7.38 (d, J = 8.4 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 161.1 (dd, $J_{C,F} = 249.3$, 13.7 Hz), 160.1 (dd, $J_{C,F} = 253.1$, 14.9 Hz), 143.5, 139.0, 130.0, 127.1, 126.6 (d, $J_{C,F} = 13.1 \text{ Hz}$), 121.2 (d, $J_{C,F} = 15.6 \text{ Hz}$), 116.9 (d, $J_{C,F} = 24.0 \text{ Hz}$), 105.2 (t, $J_{C,F} = 25.8 \text{ Hz}$), 21.5; ATR-IR: *v* 3243, 1590, 1340, 1166 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd for C₁₃H₁₁BrF₂NO₂S 361.9662/363.9641, found 361.9650/363.9630.

N-(2-bromo-6-chloro-4-fluorophenyl)-4-methylbenzenesulfonamide (1m): EtOAc/PE = 1/10, 984mg, 26%, white solid. Mp:163-166°C; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 10.03 (s, 1H), 7.70 (dd, J = 7.6, 2.4 Hz, 1H), 7.63-7.58 (m, 3H), 7.38 (d, J = 8.0 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm): 160.4 (d, $J_{C,F} = 250.8$ Hz), 143.4, 139.7, 136.1 (d, $J_{C,F} = 112.6$ Hz), 130.4 (d, $J_{C,F} = 3.9$ Hz), 129.9, 127.5 (d, $J_{C,F} = 10.9$ Hz), 127.1, 120.1 (d, $J_{C,F} = 24.2$ Hz), 117.5 (d, $J_{C,F} = 25.1$ Hz), 21.5; **ATR-IR**: *v* 3266, 1590, 1339, 1162 cm⁻¹; **HRMS** (ESI-TOF) *m/z* [M]⁺ calcd for C₁₃H₁₀BrClFNO₂S 376.9288, found 376.9294; *m/z* [M+Na]⁺ calcd for

C₁₃H₁₀BrClFNO₂SNa 401.9165, found 401.9164.

N-(2-bromo-3-fluorophenyl)-4-methylbenzenesulfonamide (1n): EtOAc/PE = 1/10, 2.3g, 67%, white solid. Mp:105-107°C; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 10.05 (s, 1H), 7.63 (d, J = 8.0 Hz, 2H), 7.39-7.23 (m, 3H), 7.21 (td, J = 8.4, 1.2 Hz, 1H), 7.02 (d, J = 8.4 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm): 159.3 (d, $J_{C,F} = 242.1$ Hz), 143.9, 137.9, 137.6, 130.2, 129.5 (d, $J_{C,F} = 9.2$ Hz), 127.2, 122.9, 114.4 (d, $J_{C,F} = 22.8$ Hz), 107.5 (d, $J_{C,F} = 20.9$ Hz), 21.5; ATR-IR: v 3277, 1597, 1322, 1154 cm⁻¹; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₁₃H₁₂BrFNO₂S 343.9756/345.9736, found 343.9754/345.9733.

N-(2-bromo-3-chlorophenyl)-4-methylbenzenesulfonamide (10): EtOAc/PE = 1/10, 2.3g, 64%, white solid. Mp:110-111°C; ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 10.05 (s, 1H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.46 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.38 (d, *J* = 8.4 Hz, 2H), 7.33 (t, *J* = 8.4 Hz, 1H), 7.13 (dd, *J* = 8.4, 1.6 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 143.9, 137.9, 137.8, 134.8, 130.2, 129.3, 128.4, 127.2, 125.9, 121.0, 21.5; ATR-IR: *v* 3270, 1595, 1377, 1167 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd for C₁₃H₁₂BrClNO₂S 359.9461/361.9440, found 359.9460/361.9437.

N-(2-bromo-3,4-difluorophenyl)-4-methylbenzenesulfonamide (1p): EtOAc/PE = 1/10, 1.5g, 42%, white solid. Mp:100-101°C; ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 10.09 (s, 1H), 7.59 (d, J = 8.4 Hz, 2H), 7.46 (q, J = 9.2 Hz, 1H), 7.38 (d, J = 8.0 Hz, 2H), 7.02-6.98 (m, 1H), 2.38 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 148.7 (dd, $J_{C,F} = 247.4$, 13.8 Hz), 147.7 (dd, $J_{C,F} = 243.5$, 14.6 Hz), 143.9, 137.7, 133.1, 130.2, 127.2, 124.0 (d, $J_{C,F} = 4.8$ Hz), 116.9 (d, $J_{C,F} = 18.0$ Hz), 110.4 (d, $J_{C,F} = 18.6$ Hz), 21.5; ATR-IR: *v* 3254, 1595, 1378, 1167 cm⁻¹; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₁₃H₁₁BrF₂NO₂S 361.9662/363.9641, found 361.9656/363.9633.

N-(2-iodo-4-((pyrrolidin-1-ylsulfonyl)methyl)phenyl)-4-methylbenzenesulfonamide (1s): To a stirred solution of 4-((pyrrolidin-1-ylsulfonyl)methyl)aniline (3.6 g, 15 mmol) in dichloromethane (4 mL) and pyridine (3.6g, 45 mmol) was added iodine (8.4 g, 33 mmol) at 0°C. After stirred for 4h at room temperature, the reaction mixture was added TsCl (3.4 g, 18 mmol) and stirred for another 3h at room temperature. Then the mixture was added dichloromethane (60 mL), H₂O (45 mL) and Na₂S₂O₃ (4.8 g, 30 mmol). After stirred for 10 minutes at 0°C, the mixture solution was adjusted pH to 4~5 with 12M HCl solution. Then the organic layer was separated, washed with H₂O (45 mL×2) and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was dissolved in ethyl acetate (20 mL) while stirring at 80°C. After cooling to room temperature, the mixture was filtered to obtain a pale yellow solid (6.2 g, 79%). **Mp**:215-217°C; ¹**H NMR** (400 MHz, DMSO- d_6) δ (ppm): 9.73 (s, 1H), 7.87 (d, J = 2.0 Hz, 1H), 7.58 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 2.0 Hz, 1H), 7.04 (d, J = 8.4 Hz, 1H), 4.39 (s, 2H), 3.12-3.09 (m, 4H), 2.38 (s, 3H), 1.78-1.75 (m, 4H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 143.6, 142.1, 138.5, 138.1, 131.7, 130.6, 130.1, 127.3, 126.9, 98.3, 52.4, 48.1, 25.8, 21.5; **ATR-IR**: v 3238, 2972, 1596, 1327, 1165 cm⁻¹; **HRMS** (ESI-TOF) m/z [M+H]⁺ calcd for C₁₈H₂₂IN₂O₄S₂ 521.0066; Found 521.0067.

Ethyl (*E*)-4-acetoxybut-2-enoate (2a)⁴⁵. (Method A) To a stirred solution of (*E*)-4-acetoxybut-2-enoic acid⁴⁶ (46 mmol) and K₂CO₃ (23 mmol) in DMF (100 mL) was added iodoethane (50.6 mmol) slowly at 0°C. The reaction mixture was allowed to stir for 2h at room temperature. The solvent was then removed under reduced pressure and ethyl acetate (150 mL) was added. The organic mixture was washed with brine (50 mL×3), and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by column

chromatography (EtOAc/PE = 1/10) to yield corresponding compound as colorless oil (6.9g, 87%). (Method B) A mixture of ethyl (*E*)-4-bromobut-2-enoate (52 mmol) and KOAc (104 mmol) in CH₃CN (100 mL) was stirred at room temperature for 5h. The solvent was then removed under reduced pressure and ethyl acetate (150 mL) was added. The organic mixture was washed with brine (50 mL×2), and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography (EtOAc/PE = 1/10) to yield corresponding compound as colorless oil (7.2g, 81%). The characterization data were consistent with those reported previously.

(*E*)-4-morpholino-4-oxobut-2-en-1-yl acetate (2b)⁴⁷. To a stirred solution of (*E*)-4-acetoxybut-2enoic acid (50 mmol), EDCI (60 mol) and DMAP (1 mmol) in DCM (150 mL) was added morpholine (50 mmol) slowly at 0°C. The reaction mixture was allowed to stirred for 3h, then washed with 1N HCl (50 mL) and brine (50 mL×2) successively, and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography (EtOAc/PE = 1/1) to yield corresponding compound as colorless oil (8.7g, 82%). The characterization data were consistent with those reported previously.

General produce for the cascade Tsuji-Trost reaction and Heck coupling. A three-necked round bottom flask charged with a magnetic stir bar, 1 (1 mmol), 2 (1.2 mmol), Pd(OAc)₂ (0.05 mmol), P(*o*-tol)₃ (0.1 mmol), DIPEA (3 mmol) was equipped with a condenser, and then evacuated and backfilled with N₂. Anhydrous DMA (5 mL) was added through syringe and the reaction mixture was stirred for 12~24 h at 100 °C (for iodoaniline) or 120 °C (for bromoaniline) under nitrogen atmosphere. After the reaction mixture was cooled to room temperature, the solvent was removed under reduced pressure and ethyl acetate (60 mL) was added. The organic mixture was washed with brine (20 mL×6), and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by column chromatography to yield corresponding compound.

Ethyl 2-(1-tosyl-1H-indol-3-yl)acetate (3aa)⁴⁸: Et₃N as base, 12h, EtOAc/PE = 1/15, 293mg, 82%, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.00 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 8.0 Hz, 2H), 7.60 (s, 1H), 7.52 (d, J = 7.6 Hz, 1H), 7.34 (t, J = 7.2 Hz, 1H), 7.27 (d, J = 8.0 Hz, 1H), 7.23 (d, J = 8.0 Hz, 1H), 4.19 (q, J = 6.8 Hz, 2H), 3.70 (s, 2H), 2.34 (s, 3H), 1.26 (t, J = 6.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 170.5, 144.9, 135.3, 135.0, 130.5, 129.9, 126.8,

124.8, 124.7, 123.2, 119.6, 115.2, 113.6, 61.1, 31.1, 21.5, 14.2; ATR-IR: v 2981, 1733, 1596,

1367, 1171 cm⁻¹; **HRMS** (ESI-TOF) m/z [M+H]⁺ calcd for C₁₉H₂₀NO₄S 358.1113; Found 358.1107.

1-Morpholino-2-(1-tosyl-1H-indol-3-yl)ethan-1-one (3ab): 12h, EtOAc/PE = 1/1, 343mg, 86%, white solid. **Mp**:134-135°C; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ (ppm): 7.92 (d, *J* = 8.4 Hz, 1H), 7.83 (d, *J* = 8.4 Hz, 2H), 7.70 (s, 1H), 7.57 (d, *J* = 8.0 Hz, 1H), 7.39-7.32 (m, 3H), 7.25 (t, *J* = 7.2 Hz, 1H), 3.80 (s, 2H), 3.51-3.42 (m, 8H), 2.31 (s, 3H); ¹³C **NMR** (150 MHz, DMSO-*d*₆) δ (ppm):168.4, 145.9, 134.8, 134.7, 131.2, 130.7, 127.1, 125.2, 125.1, 123.6, 120.9, 117.6, 113.5, 66.5, 66.5, 46.3, 42.2, 30.0, 21.5; **ATR-IR**: *v* 2969, 1649, 1598, 1361, 1170 cm⁻¹; **HRMS** (ESI-TOF) *m*/*z* [M+H]⁺ calcd for C₂₁H₂₃N₂O₄S 399.1379; Found 399.1380.

Ethyl 2-(5-bromo-1-tosyl-1H-indol-3-yl)acetate (3ba): (24h, EtOAc/PE = 1/20, 178mg, 41%), pale yellow solid. **Mp**:80-81°C; ¹**H NMR** (400 MHz, DMSO- d_{δ}) δ (ppm): 7.88 (d, J = 9.2 Hz, 1H), 7.84 (d, J = 8.4 Hz, 2H), 7.793-7.788 (m, 2H), 7.50 (dd, J = 2.0, 8.4 Hz, 1H), 7.39 (d, J = 8.4

Hz, 2H), 4.09 (q, J = 7.2 Hz, 2H), 3.81 (s, 2H), 2.32 (s, 3H), 1.17 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm): 170.7, 146.2, 134.4, 133.5, 132.8, 130.8, 127.9, 127.1, 127.0, 123.5, 116.5, 115.9, 115.5, 60.9, 30.3, 21.5, 14.5; **ATR-IR**: v 2974, 1738, 1593, 1366, 1168 cm⁻¹; **HRMS** (ESI-TOF) m/z [M+H]⁺ calcd for C₁₉H₁₉BrNO₄S 436.0218/438.0198; Found 436.0212/438.0193.

2-(5-Bromo-1-tosyl-1H-indol-3-yl)-1-morpholinoethan-1-one (3bb): 16h, EtOAc/PE = 1/1, 272 mg, 58%, white solid. **Mp**:178-180°C; ¹**H** NMR (600 MHz, DMSO- d_6) δ (ppm): 7.88 (d, J = 8.4Hz, 1H), 7.83 (d, J = 8.4 Hz, 2H), 7.81 (s, 1H), 7.76 (s, 1H), 7.49 (d, J = 9.0 Hz, 1H), 7.40 (d, J = 8.4 Hz, 2H), 3.81 (s, 2H), 3.51-3.44 (m, 8H), 2.33 (s, 3H). ¹³C NMR (100 MHz, DMSO-d₆) δ (ppm): 168.2, 146.2, 134.4, 133.6, 133.2, 130.8, 127.8, 127.1, 126.5, 123.6, 117.2, 116.4, 115.5, 66.5, 66.4, 46.2, 42.1, 29.7, 21.5; ATR-IR: v 2965, 1638, 1598, 1370, 1173 cm⁻¹; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₂₁H₂₂BrN₂O₄S 477.0484/479.0463; Found 477.0484/479.0465. Ethyl 2-(5-fluoro-1-tosyl-1H-indol-3-yl)acetate (3ca): (16h, EtOAc/PE = 1/20, 309mg, 82%), pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm): 7.93 (dd, J = 4.4, 9.2 Hz, 1H), 7.76 (d, J =8.4 Hz, 2H), 7.61 (s, 1H), 7.25 (d, J = 8.0 Hz, 2H), 7.17 (dd, J = 2.4, 9.2 Hz, 1H), 7.06 (dd, J = 2.4, 9.2 Hz, 1H), 4.19 (q, J = 6.8 Hz, 2H), 3.65 (d, J = 1.2 Hz, 2H), 2.37 (s, 3H), 1.27 (t, J = 6.8 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 170.3, 159.6 (d, J_{CF} = 239.7 Hz), 145.1, 135.1, 131.6 (d, $J_{CF} = 9.3$ Hz), 131.4, 129.9, 126.8, 126.4, 115.1 (d, $J_{CF} = 3.5$ Hz), 114.7 (d, $J_{CF} = 8.0$ Hz), 112.9 (d, J_{CF} = 23.7 Hz), 105.4 (d, J_{CF} = 25.0 Hz), 61.2, 31.1, 21.6, 14.1; **ATR-IR**: v 2982, 1733, 1595, 1369, 1168 cm⁻¹; **HRMS** (ESI-TOF) m/z [M+H]⁺ calcd for C₁₉H₁₉FNO₄S 376.1019; Found 376.1009.

2-(5-Fluoro-1-tosyl-1H-indol-3-yl)-1-morpholinoethan-1-one (3cb): 16h, EtOAc/PE = 1/1, 345 mg, 83%, white solid. **Mp**:152-153°C; ¹**H NMR** (600 MHz, DMSO-*d*₆) δ (ppm): 7.92 (dd, *J* = 4.2, 9.0 Hz, 1H), 7.83 (d, *J* = 8.4 Hz, 2H), 7.77 (s, 1H), 7.40-7.37 (m, 3H), 7.20 (dt, *J* = 8.0, 9.0 Hz, 1H), 3.79 (s, 2H), 3.53-3.43 (m, 8H), 2.33 (s, 3H); ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ (ppm): 168.2, 159.3 (d, *J*_{C,F} = 236.2 Hz), 146.1, 134.4, 132.5 (d, *J*_{C,F} = 9.8 Hz), 131.2, 130.7, 127.1, 127.0, 117.7 (d, *J* = 3.6 Hz), 115.0 (d, *J* = 8.7 Hz), 113.0 (d, *J* = 26.2 Hz), 106.7 (d, *J* = 24.8 Hz), 66.5, 66.5, 46.2, 42.2, 29.8, 21.5; **ATR-IR**: *v* 2971, 1636, 1594, 1366, 1169 cm⁻¹; **HRMS** (ESI-TOF) *m*/*z* [M+H]⁺ calcd for C₂₁H₂₂FN₂O₄S 417.1284; Found 417.1282.

Ethyl 2-(1-tosyl-5-(trifluoromethoxy)-1H-indol-3-yl)acetate (3da): 16h, EtOAc/PE = 1/20, 359mg, 81%, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.99 (d, *J* = 9.2 Hz, 1H), 7.79 (d, *J* = 8.8 Hz, 2H), 7.66 (s, 1H), 7.38 (d, *J* = 1.2 Hz, 1H), 7.74 (d, *J* = 8.8 Hz, 2H), 7.20 (dd, *J* = 1.2, 8.8 Hz, 1H), 4.19 (q, *J* = 7.2 Hz, 2H), 3.68 (d, *J* = 0.8 Hz, 2H), 2.38 (s, 3H), 1.27 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 170.2, 145.3, 135.0, 133.2, 131.2, 130.0, 127.6, 126.9, 126.5, 120.6 (d, *J*_{C,F} = 256.5 Hz), 118.4, 115.0, 14.6, 112.3, 61.2, 31.0, 21.6, 14.1; ATR-IR: v 2984, 1734, 1596, 1372, 1162 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd for C₂₀H₁₉F₃NO₅S 442.0936; Found 442.0931.

1-Morpholino-2-(1-tosyl-5-(trifluoromethoxy)-1H-indol-3-yl)ethan-1-one (3db): 14h, EtOAc/PE = 1/1, 389 mg, 80%, white solid. Mp:141-142°C; ¹H NMR (600 MHz, DMSO- d_6) 8 (ppm): 8.02 (d, J = 9.6 Hz, 1H), 7.87 (d, J = 8.4 Hz, 2H), 7.85 (s, 1H), 7.60 (s, 1H), 7.41 (d, J = 8.4 Hz, 2H), 7.34 (d, J = 9.6 Hz, 1H), 3.83 (s, 2H), 3.52-3.42 (m, 8H), 2.33 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) 8 (ppm): 168.3, 146.3, 144.8, 144.8, 134.4, 133.1, 132.2, 130.8, 127.19, 127.16, 120.6 (d, $J_{C,F} = 254.0$ Hz), 118.5, 117.6, 114.9, 113.7, 66.5, 66.5, 46.2, 42.2, 29.6, 21.5; ATR-IR: v 3122, 1654, 1597, 1365, 1171 cm⁻¹; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₂₂H₂₂F₃N₂O₅S 483.1202; Found 483.1204.

Methyl 3-(2-ethoxy-2-oxoethyl)-1-tosyl-1H-indole-5-carboxylate (3ea): 24h, EtOAc/PE = 1/15, 244mg, 59%; recovered start material **1e** 94mg, 84% brsm, pale yellow solid. **Mp**:133-134°C; ¹**H NMR** (600 MHz, DMSO-*d*₆) δ (ppm): 8.20 (s, 1H), 8.06 (d, *J* = 9.0 Hz, 1H), 7.96 (d, *J* = 9.0 Hz, 1H), 7.89-7.87 (m, 3H), 7.41 (d, *J* = 8.4 Hz, 2H), 4.10 (q, *J* = 7.2 Hz, 2H), 3.88 (s, 2H), 3.86 (s, 3H), 2.32 (s, 3H), 1.18 (t, *J* = 7.2 Hz, 3H); ¹³C **NMR** (100 MHz, DMSO-*d*₆) δ (ppm): 170.7, 166.6, 146.3, 137.2, 134.4, 130.9, 130.7, 127.2, 127.0, 126.1, 125.2, 122.6, 116.8, 113.7, 61.0, 52.6, 30.4, 21.5, 14.5; **ATR-IR**: *v* 2979, 1735, 1721, 1609, 1593, 1370, 1164 cm⁻¹; **HRMS** (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₁H₂₂NO₆S 416.1168; Found 416.1165.

Methyl 3-(2-morpholino-2-oxoethyl)-1-tosyl-1H-indole-5-carboxylate (3eb): (24h, EtOAc/PE = 1/1, 330 mg, 72%), white solid, **Mp**:208-209°C; ¹**H NMR** (600 MHz, DMSO- d_6) δ (ppm): 8.23 (s, 1H), 8.05 (d, J = 9.0 Hz, 1H), 7.95 (d, J = 9.0 Hz, 1H), 7.88 (d, J = 7.8 Hz, 2H), 7.83 (s, 1H), 7.41 (d, J = 7.8 Hz, 2H), 3.88 (s, 2H), 3.86 (s, 3H), 3.54-3.44 (m, 8H), 2.33 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm): 168.3, 168.7, 146.3, 137.3, 134.4, 131.2, 130.8, 127.2, 126.5, 126.1, 122.9, 118.1, 113.6, 66.5, 52,6, 46.2, 42.2, 29.7, 21.5; **ATR-IR**: *v* 2953, 1729, 1648, 1613, 1597, 1364, 1174 cm⁻¹; **HRMS** (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₃H₂₅N₂O₆S 457.1433; Found 457.1430.

Ethyl 2-(6-bromo-1-tosyl-1H-indol-3-yl)acetate (3fa): 16h, EtOAc/PE = 1/15, 253 mg, 58%, pale yellow solid. Mp:86-87°C; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 8.04 (d, J = 1.6 Hz, 1H), 7.87 (d, J = 8.4 Hz, 2H), 7.79 (s, 1H), 7.52 (d, J = 8.4 Hz, 1H), 7.45 (dd, J = 1.6, 8.4 Hz, 1H), 7.42 (d, J = 8.4 Hz, 1H), 4.08 (q, J = 7.2 Hz, 2H), 3.80 (s, 2H), 2.33 (s, 3H), 1.16 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm): 170.6, 146.3, 135.4, 134.4, 130.9, 129.9, 127.1, 126.79, 126.3, 122.6, 118.0, 116.3, 116.0, 60.9, 30.3, 21.5, 14.5; ATR-IR: *v* 2982, 1740, 1594, 1369, 1170 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd for C₁₉H₁₉BrNO₄S 436.0218/438.0198; Found 436.0207/438.0190.

2-(6-Bromo-1-tosyl-1H-indol-3-yl)-1-morpholinoethan-1-one (3fb): 24h, EtOAc/PE = 1/2, 292 mg, 61%, white solid. **Mp**:99-100°C; ¹**H NMR** (600 MHz, DMSO-*d*₆) δ (ppm): 8.04 (s, 1H), 7.86 (d, *J* = 9.6 Hz, 2H), 7.75 (s, 1H), 7.55 (d, *J* = 9.6 Hz, 1H), 7.45-7.42 (m, 3H), 3.81 (s, 2H), 3.51-3.42 (m, 8H), 2.34 (s, 3H); ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ (ppm): 168.2, 146.3, 135.4, 130.9, 130.3, 127.1, 126.7, 125.8, 122.9, 117.9, 117.6, 115.9, 66.5, 66.4, 46.2, 42.2, 29.8, 21.5; **ATR-IR**: *v* 3103, 1647, 1595, 1375, 1167 cm⁻¹; **HRMS** (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₁H₂₂BrN₂O₄S 477.0484/479.0463; Found 477.0482/479.0463.

Ethyl 2-(6-fluoro-1-tosyl-1H-indol-3-yl)acetate (3ga) 24h, EtOAc/PE = 1/20, 233mg, 62%; recovered start material **1g** 31mg, 68% brsm, pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm): 7.78 (d, *J* = 8.0 Hz, 2H), 7.72 (dd, *J* = 2.4, 9.6 Hz, 1H), 7.55 (s, 1H), 7.45 (dd, *J* = 5.6, 8.8 Hz, 1H), 7.26 (d, *J* = 7.6 Hz, 2H), 7.02 (dt, *J* = 2.4, 8.8 Hz, 1H), 4.18 (q, *J* = 7.2 Hz, 2H), 3.67 (d, *J* = 0.8 Hz, 2H), 2.38 (s, 3H), 1.26 (t, *J* = 7.2 Hz, 3H); ¹³**C NMR** (150 MHz, CDCl₃) δ (ppm): 170.4, 161.0 (d, *J*_{C,F} = 239.7 Hz), 145.2, 135.2 (d, *J*_{C,F} = 12.5 Hz), 135.1, 130.0, 126.9, 126.7, 124.9 (d, *J*_{C,F} = 3.8 Hz), 120.5 (d, *J*_{C,F} = 9.8 Hz), 115.0, 111.7 (d, *J*_{C,F} = 24.0 Hz), 101.0 (d, *J*_{C,F} = 27.8 Hz), 61.1, 31.1. 21.6, 14.1; **ATR-IR**: v 2924, 1733, 1597, 1369, 1170 cm⁻¹; **HRMS** (ESI-TOF) *m*/z [M+H]⁺ calcd for C₁₉H₁₉FNO₄S 376.1019; Found 376.1010.

2-(6-Fluoro-1-tosyl-1H-indol-3-yl)-1-morpholinoethan-1-one (3gb): 24h, EtOAc/PE = 1/1, 249 mg, 60%, white solid. **Mp**:160-162°C; ¹**H NMR** (400 MHz, DMSO- d_6) δ (ppm): 7.88 (d, J = 8.8 Hz, 2H), 7.71-7.68 (m, 2H), 7.59 (dd, J = 5.6, 8.8 Hz, 1H), 7.41 (d, J = 8.0 Hz, 2H), 7.15 (dt, J =

1.6, 8.8 Hz, 1H), 3.83 (s, 3H), 3.80 (s, 2H), 3.50-3.41 (m, 8H), 2.33 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm): 168.3, 160.6 (d, $J_{CF} = 239.7$ Hz), 146.2, 134.8 (d, $J_{CF} = 12.3$ Hz), 134.4, 130.8, 127.8, 127.2, 125.5 (d, $J_{CF} = 3.2$ Hz), 122.4 (d, $J_{CF} = 10.2$ Hz), 117.6, 111.9 (d, $J_{CF} = 22.7$ Hz), 100.6 (d, $J_{CF} = 27.8$ Hz), 66.5, 66.5, 42.2, 46.3, 29.9, 21.5; ATR-IR: v 2966, 1651, 1598, 1361, 1169 cm⁻¹; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₂₁H₂₂FN₂O₄S 417.1284; Found 417.1284.

Ethyl 2-(6-methoxy-1-tosyl-1H-indol-3-yl)acetate (3ha): 24h, EtOAc/PE = 1/20, 166 mg, 43%, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.76 (d, *J* = 8.8 Hz, 2H), 7.53 (d, *J* = 2.0 Hz, 1H), 7.46 (s, 1H), 7.38 (d, *J* = 8.4 Hz, 1H), 7.24 (d, *J* = 8.4 Hz, 2H), 6.89 (dd, *J* = 2.0, 8.4 Hz, 1H), 4.17 (q, *J* = 7.2 Hz, 2H), 3.89 (s, 3H), 3.65 (s, 2H), 2.36 (s, 3H), 1.25 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ (ppm): 170.6, 158.1, 144.9, 136.1, 135.3, 129.8, 126.8, 124.3, 123.4, 120.1, 115.3, 112.3, 98.0, 61.0, 55.8, 31.2, 21.6, 14.2; ATR-IR: *v* 2981, 1732, 1596, 1365, 1168 cm⁻¹; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₀H₂₂NO₅S 388.1219; Found 388.1216.

Ethyl (E)-4-((N-(2-bromo-5-methoxyphenyl)-4-methylphenyl)sulfonamido)but-2-enoate (3ha'): 24h, EtOAc/PE = 1/20, 198 mg, 51%, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.768 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 9.2 Hz, 1H), 7.31 (d, J = 8.0 Hz, 2H), 6.90 (dt, J = 6.4, 16.0 Hz, 1H), 6.81-6.77 (m, 2H), 5.88 (dt, J = 1.2, 14.8 Hz, 1H), 4.41-4.28 (m, 2H), 4.18 (q, J = 7.2 Hz, 2H), 3.76 (s, 3H), 2.46 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm):165.6, 159.1, 143.9, 141.8, 138.1, 136.5, 134.1, 129.6, 127.9, 124.4, 118.2, 116.3, 115,1, 60.5, 55.6, 51.9, 21.6, 14.2; ATR-IR: v 2980, 1717, 1592, 1352, 1159 cm⁻¹; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₂₀H₂₃BrNO₅S 468.0480/470.0460; Found 468.0479/470.0458.

2-(6-Methoxy-1-tosyl-1H-indol-3-yl)-1-morpholinoethan-1-one (3hb): 24h, EtOAc/PE = 1/2, 248 mg, 58%, white solid, **Mp**:181-182°C; ¹**H NMR** (600 MHz, DMSO-*d*₆) δ (ppm): 7.83 (d, *J* = 7.8 Hz, 2H), 7.54 (s, 1H), 7.46 (d, *J* = 8.4 Hz, 1H), 7.40-7.39 (m, 3H), 6.90 (d, *J* = 9.0 Hz, 1H), 3.83 (s, 3H), 3.75 (s, 2H), 3.49-3.42 (m, 8H), 2.32 (s, 3H); ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ (ppm): 168.4, 158.1, 145.9, 135.9, 134.5, 130.7, 127.1, 124.8, 123.6, 121.6, 117.6, 112.4, 97.9, 66.5, 66.4, 56.0, 46.3, 42.1, 30.2,21.5; **ATR-IR**: *v* 3109, 1647, 1596, 1372, 1167 cm⁻¹; **HRMS** (ESI-TOF) *m*/*z* [M+H]⁺ calcd for C₂₂H₂₅N₂O₅S 429.1484; Found 429.1482.

Methyl 3-(2-ethoxy-2-oxoethyl)-1-tosyl-1H-indole-6-carboxylate (3ia): 12h, EtOAc/PE = 1/15, 358 mg, 86%, pale yellow solid, **Mp**:99-100°C; ¹**H NMR** (600 MHz, DMSO-*d*₆) δ (ppm): 8.52 (s, 1H), 7.98 (s, 1H), 7.87 (d, *J* = 8.4 Hz, 1H), 7.82 (d, *J* = 8.4 Hz, 2H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.42 (d, *J* = 8.4 Hz, 2H), 4.09 (q, *J* = 7.2 Hz, 2H), 3.91 (s, 3H), 3.85 (s, 2H), 2.32 (s, 3H), 1.17 (t, *J* = 7.2 Hz, 3H), ¹³C **NMR** (100 MHz, DMSO-*d*₆) δ (ppm): 170.6, 166.7, 146.3, 134.6, 134.5, 134.3, 130.9, 128.9, 127.0, 126.4, 124.3, 121.0, 116.6, 114.6, 61.0, 52.8, 30.3, 21.5, 14.5; **ATR-IR**: *v* 2955, 1719, 1706, 1594, 1371, 1303, 1170 cm⁻¹; **HRMS** (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₁H₂₂NO₆S 416.1168; Found 416.1164.

Methyl 3-(2-morpholino-2-oxoethyl)-1-tosyl-1H-indole-6-carboxylate (3ib): 12h, EtOAc/PE = 1/2, 406 mg, 89%, white solid, **Mp**:212-213°C; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ (ppm): 8.52 (d, J = 0.8 Hz, 1H), 7.93 (s, 1H), 7.86 (dd, J = 1.4, 8.2 Hz, 1H), 7.81 (d, J = 8.4 Hz, 2H), 7.69 (d, J = 8.0 Hz, 2H), 7.41 (d, J = 8.4 Hz, 2H), 3.91 (s, 3H), 3.85 (s, 2H), 3.51-3.42 (m, 8H), 2.32 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm): 168.2, 168.7, 146.3, 135.0, 134.5, 134.3, 130.9, 128.49, 126.9, 126.3, 124.3, 121.3, 117.9, 114.6, 66.5, 66.5, 52.8, 46.2, 42.2, 29.7, 21.5; **ATR-IR**: *v* 2967, 1710, 1645, 1593, 1370, 1169 cm⁻¹; **HRMS** (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₃H₂₅N₂O₆S 457.1433; Found 457.1435.

Ethyl 2-(7-fluoro-1-tosyl-1H-indol-3-yl)acetate (3ja): 24h, EtOAc/PE = $1/10 \sim 1/5$, 316mg, 84%, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.85 (d, J = 7.6 Hz, 2H), 7.79 (s, 1H), 7.32-7.28 (m, 3H), 7.19-7.14 (m, 1H), 7.00-6.95 (m, 1H), 4.21 (q, J = 7.2 Hz, 2H), 3.73 (s, 2H), 2.40 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 170.4, 149.7 (d, $J_{C,F} = 249.1$ Hz), 145.0, 135.5, 134.7 (d, $J_{C,F} = 249.1$ Hz), 129.8, 127.7 (d, $J_{C,F} = 3.0$ Hz), 127.2, 123.9 (d, $J_{C,F} = 7.4$ Hz), 122.1 (d, $J_{C,F} = 10.9$ Hz), 115.4 (d, $J_{C,F} = 3.6$ Hz), 113.8 (d, $J_{C,F} = 2.1$ Hz), 111.4 (d, $J_{C,F} = 19.8$ Hz), 61.2, 31.0, 21.6, 14.2; ATR-IR: v 2982, 1595, 1369, 1171 cm⁻¹; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₁₉H₁₉FNO₄S 376.1019, found 376.1017.

2-(7-fluoro-1-tosyl-1H-indol-3-yl)-1-morpholinoethan-1-one (3jb): 16h, EtOAc/PE = $1/1 \sim 1/3$, 353mg, 85%, pale yellow solid. Mp:190-192°C; ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 7.84 (s, 1H), 7.78 (d, *J* = 7.6 Hz, 2H), 7.45-7.41 (m, 3H), 7.25-7.20 (m, 1H), 7.14-7.09 (m, 1H), 3.86 (s, 2H), 3.57-3.45 (m, 8H), 2.35 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 168.2, 149.3 (d, *J*_{C,F} = 246.0 Hz), 145.9, 135.6, 135.1, 130.7, 127.7, 127.5, 124.7 (d, *J*_{C,F} = 6.2 Hz), 121.5 (d, *J*_{C,F} = 9.2 Hz), 117.1, 116.6, 111.7 (d, *J*_{C,F} = 21.0 Hz), 66.6, 46.3, 42.2, 29.7, 21.5; **ATR-IR**: *v* 2980, 1655, 1596, 1365, 1171 cm⁻¹; **HRMS** (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₁H₂₂FN₂O₄S 417.1284, found 417.1285.

Methyl 3-(2-ethoxy-2-oxoethyl)-1-tosyl-1H-indole-7-carboxylate (3ka): 12h, EtOAc/PE = 1/10, 302mg, 73%, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.61-7.51 (m, 5H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.17 (d, *J* = 8.4 Hz, 2H), 4.14 (q, *J* = 6.8 Hz, 2H), 3.95 (s, 3H), 3.63 (s, 2H), 2.34 (s, 3H), 1.22 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 170.0, 168.9, 144.7, 134.7, 132.7, 132.2, 129.4, 128.2, 126.9, 125.8, 123.8, 122.7, 122.1, 117.6, 61.1, 52.6, 31.0, 21.5, 14.1; ATR-IR: *v* 2982, 1727, 1595, 1368, 1171 cm⁻¹; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₁H₂₂NO₆S 416.1168, found 416.1165.

Methyl 3-(2-morpholino-2-oxoethyl)-1-tosyl-1H-indole-7-carboxylate (3kb): 12h, EtOAc/PE = $1/1 \sim 1/2$, 319mg, 70%, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 7.65 (dd, J = 8.0, 1.2 Hz, 1H), 7.65 (d, J = 8.0, 1.2 Hz, 2H), 7.55 (dd, J = 7.2, 0.8 Hz, 1H), 7.40 (s, 1H), 7.34 (t, J = 7.6 Hz, 1H), 7.19 (d, J = 8.0 Hz, 2H), 3.94 (s, 3H), 3.70 (s, 2H), 3.64-3.32 (m, 8H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 168.8, 167.9, 144.9, 134.9, 132.5, 132.2, 129.6, 127.3, 126.8, 126.0, 123.9, 122.7, 122.2, 118.1, 66.7, 66.4, 52.6, 46.5, 42.1, 30.7, 21.6; ATR-IR: v 2922, 1727, 1595, 1365, 1173 cm⁻¹; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₃H₂₅N₂O₆S 457.1433, found 457.1431.

Ethyl 2-(5,7-difluoro-1-tosyl-1H-indol-3-yl)acetate (3la): 12h, EtOAc/PE = $1/10 \sim 1/6$, 357mg, 91%, pale yellow solid. Mp:93-94°C; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 7.96 (s, 1H), 7.78 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 7.31 (dd, J = 8.8, 2.0 Hz, 1H), 7.22 (td, J = 9.6, 2.0 Hz, 1H), 4.11 (q, J = 6.8 Hz, 2H), 3.85 (s, 2H), 2.36 (s, 3H), 1.20 (t, J = 6.8 Hz, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm): 170.6, 158.5 (dd, $J_{CF} = 238.7$, 10.5 Hz), 148.8 (dd, $J_{CF} = 250.5$, 13.8 Hz), 146.2, 135.3 (dd, $J_{CF} = 10.5$, 3.8 Hz), 134.8, 130.8, 129.9, 127.5, 118.4 (d, $J_{CF} = 11.9$ Hz), 115.6, 61.0, 30.1, 21.5; **ATR-IR**: *v* 2983, 1740, 1597, 1362, 1164 cm⁻¹; **HRMS** (ESI-TOF) m/z [M+H]⁺ calcd for C₁₉H₁₈F₂NO₄S 394.0925, found 394.0918.

2-(5,7-difluoro-1-tosyl-1H-indol-3-yl)-1-morpholinoethan-1-one (3lb): 12h, EtOAc/PE = 1/1, 361mg, 83%, pale yellow solid. Mp:185-188°C; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 7.92 (s, 1H), 7.78 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.0 Hz, 2H), 7.30 (dd, J = 8.4, 2.0 Hz, 1H), 7.21 (td, J = 9.2, 2.0 Hz, 1H), 3.84 (s, 2H), 3.57-3.45 (m, 8H), 2.36 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm): 168.2, 158.5 (dd, $J_{CF} = 239.7$, 11.4 Hz), 148.8 (dd, $J_{CF} = 249.3$, 12.5 Hz), 146.1, 135.7 (d,

 $J_{C,F} = 6.5$ Hz), 134.9, 130.8, 129.5, 127.5, 118.4 (d, $J_{C,F} = 11.7$ Hz), 116.9, 103.0 (dd, $J_{C,F} = 23.6$ Hz), 101.1 (dd, $J_{C,F} = 30.5$, 23.9 Hz), 66.5, 66.5, 46.2, 29.5, 21.5; **ATR-IR**: *v* 2963, 1637, 1603, 1364, 1170 cm⁻¹; **HRMS** (ESI-TOF) m/z [M+H]⁺ calcd for C₂₁H₂₁F₂N₂O₄S 435.1190, found435.1190.

Ethyl 2-(7-chloro-5-fluoro-1-tosyl-1H-indol-3-yl)acetate (3ma): 16h, EtOAc/PE = $1/10 \sim 1/5$, 340mg, 83%, pale yellow solid. Mp:82-84°C; ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 8.05 (s, 1H), 7.72 (d, *J* = 8.0 Hz, 2H), 7.48 (dd, *J* = 8.4, 2.4 Hz, 1H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.32 (dd, *J* = 9.2, 2.4 Hz, 1H), 4.13 (q, *J* = 7.2 Hz, 2H), 3.88 (s, 2H), 2.38 (s, 3H), 1.21 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 170.6, 158.4 (d, *J*_{C,F} = 239.3 Hz), 145.7, 136.3, 135.6 (d, *J*_{C,F} = 9.9 Hz), 131.5, 130.6, 128.5, 127.3, 119.0 (d, *J*_{C,F} = 13.2 Hz), 115.0 (d, *J*_{C,F} = 29.9 Hz), 115.0 (d, *J*_{C,F} = 25.0 Hz), 105.8 (d, *J*_{C,F} = 23.6 Hz), 61.0, 30.1, 21.5, 14.5; ATR-IR: v 2987, 1739, 1596, 1365, 1171 cm⁻¹; HRMS (ESI-TOF) *m*/*z* [M+H]⁺ calcd for C₁₉H₁₈ClFNO₄S 410.0629, found 410.0630.

2-(7-chloro-5-fluoro-1-tosyl-1H-indol-3-yl)-1-morpholinoethan-1-one (3mb): 16h, EtOAc/PE = 2/1, 359mg, 80%, pale yellow solid. Mp:199-200°C; ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 8.0 (s, 1H), 7.72 (d, *J* = 8.0 Hz, 2H), 7.48 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.31 (dd, *J* = 8.8, 2.0 Hz, 1H), 3.87 (s, 2H), 3.60-3.47 (m, 8H), 2.38 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 168.2, 158.3 (d, *J*_{C,F} = 242.0 Hz), 145.7, 136.3, 136.1 (d, *J*_{C,F} = 10.4 Hz), 131.1, 130.6, 128.5, 127.3, 118.9 (d, *J*_{C,F} = 11.3 Hz), 116.3 (d, *J*_{C,F} = 2.9 Hz), 114.9 (d, *J*_{C,F} = 28.7 Hz), 106.0 (d, *J*_{C,F} = 23.4 Hz), 66.6, 66.5, 46.2, 42.2, 29.4, 21.5; ATR-IR: v 2972, 1641, 1604, 1346, 1170 cm⁻¹; HRMS (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₁H₂₁CIFN₂O₄S 451.0895, found 451.0894.

2-(4-fluoro-1-tosyl-1H-indol-3-yl)-1-morpholinoethan-1-one (3nb): 24h, EtOAc/PE = $1/1 \sim 1/2$, 216mg, 52%, pale yellow solid. Mp:204-206°C; ¹H NMR (400 MHz, DMSO-*d*₆) δ (ppm): 7.87 (d, *J* = 8.8 Hz, 2H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.64 (s, 1H), 7.41 (d, *J* = 8.4 Hz, 2H), 7.35-7.29 (m, 1H), 7.03-6.99 (m, 1H), 3.84 (s, 2H), 3.59-3.45 (m, 8H), 2.34 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 168.6, 156.4 (d, *J*_{C,F} = 246.3 Hz), 146.2, 137.0 (d, *J*_{C,F} = 9.8 Hz), 134.4, 130.8, 127.2, 126.2 (d, *J*_{C,F} = 5.9 Hz), 125.5, 119.8 (d, *J*_{C,F} = 19.5 Hz), 115.7, 110.0, 109.3 (d, *J*_{C,F} = 18.6 Hz), 66.6, 66.6, 46.0, 42.2, 30.4, 21.5; **ATR-IR**: *v* 2959, 1641, 1591, 1373, 1177 cm⁻¹; **HRMS** (ESI-TOF) *m*/z [M+H]⁺ calcd for C₂₁H₂₂FN₂O₄S 417.1284, found 417.1287.

2-(4-chloro-1-tosyl-1H-indol-3-yl)-1-morpholinoethan-1-one (3ob): 24h, EtOAc/PE = $1/1 \sim 1/2$, 91mg, 21%, pale yellow solid. Mp:216-218°C; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 7.91 (d, J = 7.6 Hz, 1H), 7.86 (d, J = 7.2 Hz, 2H), 7.73 (s, 1H), 7.41 (d, J = 7.6 Hz, 2H), 7.31 (t, J = 7.2 Hz, 1H), 7.25 (d, J = 7.6 Hz, 1H), 3.94 (s, 2H), 3.60-3.34 (m, 8H), 2.33 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 169.0, 145.3, 136.4, 134.8, 130.0, 127.1, 126.9, 126.5, 125.8, 125.4, 124.4, 115.8, 112.5, 66.9, 66.6, 46.3, 42.2, 31.5, 21.6; ATR-IR: v 2958, 1637, 1591, 1371, 1172 cm⁻¹; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₂₁H₂₂CIN₂O₄S 433.0989, found 433.0987.

2-(4,5-difluoro-1-tosyl-1H-indol-3-yl)-1-morpholinoethan-1-one (3pb): 16h, EtOAc/PE = $1/1 \sim 1/2$, 340mg, 78%, pale yellow solid. Mp:166-168°C; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 7.87 (d, J = 8.0 Hz, 2H), 7.75-7.72 (m, 2H), 7.43-7.35 (m, 3H), 3.86 (s, 2H), 3.60-3.45 (m, 8H), 2.34 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm): 168.3, 146.4 (dd, $J_{CF} = 240.2$, 10.1 Hz), 145.5, 143.6 (dd, $J_{CF} = 249.0$, 14.1 Hz), 134.7, 132.4 (d, $J_{CF} = 6.9$ Hz), 130.1, 126.9, 126.3, 120.7 (dd, $J_{CF} = 15.5$ Hz), 114.2 (d, $J_{CF} = 20.9$ Hz), 109.5 (t, $J_{CF} = 5.5$ Hz), 66.9, 66.6, 46.3, 42.3, 30.5, 21.6; **ATR-IR**: v 2960, 1637, 1591, 1373, 1170 cm⁻¹; **HRMS** (ESI-TOF) m/z [M+H]⁺ calcd for

$C_{21}H_{21}F_2N_2O_4S$ 435.1190, found 435.1187.

Ethyl 2-(1-tosyl-1H-pyrrolo[3,2-b]pyridin-3-yl)acetate (3qa): 100°C, 24h, EtOAc/PE = 1/15, 259mg, 72%, pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ (ppm): 8.54 (dd, J = 1.6, 4.8 Hz, 1H), 8.26 (dd, J = 1.6, 8.8 Hz, 1H), 7.87 (s, 1H), 7.77 (d, J = 8.8 Hz, 2H), 7.27-7.25 (m, 3H), 4.21 (q, J = 7.2 Hz, 2H), 3.86 (s, 2H), 2.37 (s, 3H), 1.28 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 170.7, 147.7, 146.0, 145.4, 135.0, 130.1, 128.5, 127.7, 126.8, 120.9, 119.3, 116.3, 61.1, 29.2, 21.6, 14.2; **ATR-IR**: *v* 2981, 1732, 1597, 1366, 1168 cm⁻¹; **HRMS** (ESI-TOF) *m/z* [M+H]⁺ calcd for C₁₈H₁₉N₂O₄S 359.1066; Found 359.1066.

1-Morpholino-2-(1-tosyl-1H-pyrrolo[3,2-b]pyridin-3-yl)ethan-1-one (3qb): 12h, EtOAc/PE = 1/4, 324mg, 81%, white solid. **Mp**:136-137°C; ¹**H NMR** (600 MHz, DMSO-*d*₆) δ (ppm): 8.50 (d, J = 4.8 Hz, 1H), 8.30 (d, J = 8.4 Hz, 2H), 7.95 (s, 1H), 7.89 (d, J = 7.8 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 7.37 (dd, J = 4.8, 5.6 Hz, 1H), 3.82 (s, 2H), 3.56-3.44 (m, 8H), 2.33 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm): 168.4, 148.0, 146.3, 146.2, 134.4, 130.8, 128.4, 128.0, 127.2, 121.1, 120.0, 118.5, 66.5, 46.2, 42.2, 28.2, 21.5; **ATR-IR**: *v* 3100, 1651, 1601, 1369, 1168 cm⁻¹; **HRMS** (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₀H₂₂N₃O₄S 400.1331; Found 400.1326.

Ethyl 2-(1-tosyl-1H-pyrrolo[2,3-b]pyridin-3-yl)acetate (3ra): 24h, EtOAc/PE = 1/20, 241mg, 67%, pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm): 8.45 (dd, J = 1.6, 4.4 Hz, 1H), 8.09 (d, J = 8.8 Hz, 2H), 7.88 (dd, J = 1.6, 8.0 Hz, 1H), 7.71 (s, 1H), 7.28 (d, J = 7.6 Hz, 2H), 7.20 (dd, J = 4.4, 8.0 Hz, 1H), 4.18 (q, J = 7.2 Hz, 2H), 3.69 (d, J = 0.8 Hz, 2H), 2.38 (s, 3H), 1.27 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃ δ (ppm): 170.3, 147.3, 145.1, 145.1, 135.5, 129.6, 128.3, 128.0, 124.6, 122.8, 118.7, 111.6, 61.2, 31.4, 21.6, 14.2; ATR-IR: v 2981, 1732, 1596, 1370, 1173 cm⁻¹; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₁₈H₁₉N₂O₄S 359.1066; Found 359.1062.

1-Morpholino-2-(1-tosyl-1H-pyrrolo[2,3-b]pyridin-3-yl)ethan-1-one (3rb): 24h, EtOAc/PE = 1/2, 248mg, 62%, white solid. **Mp**:134-136°C; ¹**H NMR** (600 MHz, DMSO-*d*₆) δ (ppm): 8.36 (d, J = 3.6 Hz, 1H), 8.00-7.96 (m, 3H), 7.81 (s, 1H), 7.41 (d, J = 7.8 Hz, 2H), 7.29 (dd, J = 4.8, 7.8 Hz, 1H), 3.85 (s, 2H), 3.56-3.44 (m, 8H), 2.34 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ (ppm): 168.4, 147.1, 145.9, 145.1, 135.2, 130.4, 129.8, 127.9, 124.9, 123.5, 119.4, 114.47, 66.5, 66.5, 46.3, 42.2, 29.9, 21.5; **ATR-IR**: *v* 2963, 1665, 1589, 1353, 1158 cm⁻¹; **HRMS** (ESI-TOF) *m/z* [M+H]⁺ calcd for C₂₀H₂₂N₃O₄S 400.1331; Found 400.1329.

2-(5-((pyrrolidin-1-ylsulfonyl)methyl)-1-tosyl-1H-indol-3-yl)acetate Ethyl (3sa): А three-necked round bottom flask charged with a magnetic stir bar, 11 (6.0 g, 11.5 mmol), 2 (2.0 g, 11.5 mmol), Pd(OAc)₂ (78 mg, 0.35 mmol), P(o-tol)₃ (213 mg, 0.70 mmol), DIPEA (3.6 g, 27.8 mmol) was added anhydrous DMA (50 mL), then equipped with a condenser, evacuated and backfilled with N₂. The reaction mixture was stirred overnight at 100°C under nitrogen atmosphere and then was added water (5 mL) and stirred for another 1 minute. After cooling to room temperature, the mixture was stilled for 2h and filtered. The solid was washed successively with ethyl acetate (20 mL) and ethanol (10 mL), and then was dissolved in ethyl acetate (20 mL) while stirring at 80°C. After cooling to room temperature, the mixture was filtered to obtain a white solid (4.4 g, 76%). **Mp**:216-218°C; ¹**H NMR** (400 MHz, DMSO- d_6) δ (ppm): 7.92 (d, J = 8.8 Hz, 1H), 7.84 (d, J = 8.0 Hz, 2H), 7.76 (s, 1H), 7.56 (s, 1H), 7.41 (d, J = 1.6 Hz, 1H), 7.38 (d, J = 8.4 Hz, 2H), 4.47 (s, 2H), 4.09 (d, J = 7.2 Hz, 2H), 3.78 (s, 2H), 3.12-3.08 (m, 4H), 2.31 (s, 3H), 1.75-1.72 (m, 4H), 1.18 (t, J = 7.2 Hz, 3H); ¹³C NMR (150 MHz, DMSO- d_6) δ (ppm): 170.7, 146.1, 134.43, 134.38, 130.8, 130.7, 128.1, 127.1, 126.3, 125.6, 122.8, 116.2, 113.5, 61.0, 53.6, 48.0, 30.5, 25.7, 21.5, 14.5; ATR-IR: v 2978, 1721, 1594, 1327, 1177 cm⁻¹; HRMS (ESI-TOF)

$m/z [M+H]^+$ calcd for C₂₄H₂₉N₂O₆S₂ 505.1467; Found 505.1461.

2-(5-((pyrrolidin-1-ylsulfonyl)methyl)-1-tosyl-1H-indol-3-yl)ethan-1-ol (3sa-1): To a solution of **3la** (4.2 g, 8.3 mmol) in DMA (30 mL) was added anhydrous CaCl₂ (1.4 g, 12.6 mmol) and NaBH₄ (1.9 g, 50 mmol). The reaction mixture was stirred for 24h at 40 °C. Then the mixture was adjusted pH to 2~3 with 1M HCl solution at 0°C, and then added water (60 mL). After stilled for 2h, the mixture was filtered. The solid was washed with ethyl acetate (20 mL) and ethanol (10 mL), and then was dissolved in ethyl acetate (20 mL) while stirring at 80°C. After cooling to room temperature, the mixture was filtered to obtain a white solid (3.6 g, 95%). **Mp**:204-206°C; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ (ppm): 7.89 (d, *J* = 8.4 Hz, 1H), 7.83 (d, *J* = 8.4 Hz, 2H), 7.61 (s, 2H), 7.38-7.35 (m, 3H), 4.77 (t, *J* = 5.4 Hz, 1H), 4.48 (s, 2H), 3.67 (q, *J* = 5.6 Hz, 2H), 3.11-3.08 (m, 4H), 2.78 (t, *J* = 6.8 Hz, 2H), 2.31 (s, 3H), 1.75-1.72 (m, 4H); ¹³C **NMR** (150 MHz, DMSO-*d*₆) δ (ppm): 145.8, 134.5, 131.4, 130.6, 127.8, 127.1, 125.4, 124.8, 122.7, 120.8, 113.5, 60.7, 53.6, 48.0, 28.5, 25.7, 21.5; **ATR-IR**: *v* 3496, 3104, 1594, 1317, 1171 cm⁻¹; **HRMS** (ESI-TOF) *m/z* [M+Na]⁺ calcd for C₂₂H₂₆N₂O₅S₂Na 485.1181; Found 485.1174.

2-(5-((pyrrolidin-1-ylsulfonyl)methyl)-1H-indol-3-yl)ethan-1-ol (3sa-2): To a solution of **3la-1** (3.3 g, 7.1 mmol) in MeOH (30 mL) was added KOH (1.2 g, 21.3 mmol). The reaction mixture was stirred for overnight at 70 °C. The mixture was adjusted pH to 7 with 1M HCl solution at 0°C, and then MeOH was removed under reduced pressure. The residue mixture was extracted with ethyl acetate (50 mL×2). The organic layer was combined and then washed with saturated NaCl solution (60 mL), dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography (EtOAc/PE = 1:1) to obtain a white solid (2.1g, 96%). **Mp**:186-188°C; ¹**H NMR** (400 MHz, DMSO-*d*₆) δ (ppm): 10.87 (s, 1H), 7.56 (s, 1H), 7.31 (d, *J* = 8.0 Hz, 1H), 7.16 (d, *J* = 2.0 Hz, 1H), 7.11 (dd, *J* = 8.4, 1.2 Hz, 1H), 4.66 (t, *J* = 5.4 Hz, 1H), 4.45 (s, 2H), 3.64 (q, *J* = 6.6 Hz, 2H), 3.12-3.09 (m, 4H), 2.84 (t, *J* = 7.4 Hz, 2H), 1.77-1.73 (m, 4H); ¹³C **NMR** (150 MHz, DMSO-*d*₆) δ (ppm): 136.3, 127.8, 124.2, 124.0, 121.4, 119.7, 112.0, 111.5, 62.1, 54.7, 48.1, 29.3, 25.8; **ATR-IR**: *v* 3497, 3273, 2934, 1627, 1302, 1113 cm⁻¹; **HRMS** (ESI-TOF) *m/z* [M+Na]⁺ calcd for C₁₅H₂₀N₂O₃SNa 331.1092; Found 331.1093.

N,N-dimethyl-2-(5-((pyrrolidin-1-ylsulfonyl)methyl)-1H-indol-3-yl)ethan-1-amine

(Almotriptan): To a solution of **3la-2** (1.8 g, 5.8 mmol) in CH₃CN (30 mL) was added TEA (708 mg, 7.0 mmol) at 0 °C. After stirring for 10mins, the mixture was slowly added MeSO₂Cl (802 mg, 7.0 mmol) and then warmed to room temperature. After stirring for another 20mins, the mixture was added dimethylamine (40% in water, 3.9g, 35 mmol) in one portion and then heated to 60 °C. The solvent was removed under reduced pressure after 5h and the residue was added ethyl acetate (80 mL). The organic layer was then washed with saturated NaCl solution (50 mL×2), dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure after 5h and the residue was added ethyl acetate (80 mL). The organic layer was then washed with saturated NaCl solution (50 mL×2), dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the residue was crystallized with acetone to obtain a white solid (1.5g, 78%). **Mp**:110-112°C; ¹**H** NMR (400 MHz, DMSO-*d*₆) δ (ppm): 10.86 (s, 1H), 7.56 (s, 1H), 7.31 (d, *J* = 8.4 Hz, 1H), 7.17 (d, *J* = 2.0 Hz, 1H), 7.12 (dd, *J* = 8.4, 1.2 Hz, 1H), 4.46 (s, 2H), 3.12-3.09 (m, 4H), 2.81 (t, *J* = 8.0 Hz, 2H), 2.51 (t, *J* = 8.0 Hz, 2H), 2.21 (s, 6H), 1.76-1.73 (m, 4H); ¹³C NMR (150 MHz, DMSO-*d*₆) δ (ppm): 136.3, 127.6, 124.2, 123.7, 121.3, 119.7, 113.1, 111.6, 60.5, 54.8, 48.1, 45.6, 25.8, 23.6; **ATR-IR**: *v* 2849, 1624, 1317, 1146 cm⁻¹; **HRMS** (ESI-TOF) *m/z* [M+H]⁺ calcd for C₁₇H₂₆N₃O₂S 336.1746; Found 336.1744.

Acknowledgments

We are grateful for the financial support from NSFC (81502930) and STCSM (15QB1404400)

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website. ¹H and ¹³C NMR spectra for all new compounds (PDF)

References

(1) Zaharenko, A. J.; Picolo, G.; Ferreira Jr, W. A.; Murakami, T.; Kazuma, K.; Hashimoto, M.; Cury, Y.; de Freitas, J. C.; Satake, M.; Konno, K. Bunodosine 391: An Analgesic Acylamino Acid from the Venom of the Sea Anemone Bunodosoma cangicum. *J. Nat. Prod.* **2011**, *74*, 378.

(2) Bredt, A. B.; Girey, G. Antipyretic effects of indomethacin in liver metastases of solid tumors. *J. Cancer* **1982**, *50*, 1430.

(3) Hata, T.; Hoshi, T.; Kanamori, K.; Matsumae, A.; Sano, Y.; Shima, T.; Sugawara, R. Mitomycin, a new antibiotic from Streptomyces.I. J. Antibiot. **1956**, *9*, 141.

(4) Miller, C.; Harris, H.; Komm, B. Bazedoxifene acetate. Drugs Future 2002, 27, 117.

(5) Humphrey, G. R.; Kuethe, J. T. Practical Methodologies for the Synthesis of Indoles. *Chem. Rev.* 2006, 106, 2875.

(6) Barluenga, J.; Rodriguez, F.; Fananas, F. J. Recent Advances in the Synthesis of Indole and Quinoline Derivatives through Cascade Reactions. *Chem. Asian J.* **2009**, *4*, 1036.

(7) Platon, M.; Amardeil, R.; Djakovitch, L.; Hierso, J. C. Progress in palladium-based catalytic systems for the sustainable synthesis of annulated heterocycles: a focus on indole backbones. *Chem. Soc. Rev.* **2012**, *41*, 3929.

(8) Bullock, M. W.; Hand, J. J. Syntheses of Some Substituted Indole-3-acetic Acids. J. Am. Chem. Soc. 1956, 78, 5852.

(9) Lanzilotti, A. E.; Littell, R.; Fanshawe, W. J.; McKenzie, T. C.; Lovell, F. M. Stereoselective reduction of some indoles with triethylsilane-trifluoroacetic acid. *J. Org. Chem.* **1979**, *44*, 4809.

(10) Wagaw, S.; Yang, B. H.; Buchwald, S. L. A Palladium-Catalyzed Method for the Preparation of Indoles via the Fischer Indole Synthesis. J. Am. Chem. Soc. **1999**, *121*, 10251.

(11) Campos, K. R.; Woo, J. C.; Lee, S.; Tillyer, R. D. A General Synthesis of Substituted Indoles from Cyclic Enol Ethers and Enol Lactones. *Org. Lett.* **2004**, *6*, 79.

(12) Alex, K.; Tillack, A.; Schwarz, N.; Beller, M. Zinc - Promoted Hydrohydrazination of Terminal Alkynes: An Efficient Domino Synthesis of Indoles. *Angew. Chem. Int. Ed.* **2008**, *47*, 2304.

(13) Ito, Y.; Ueda, M.; Takeda, N.; Miyata, O. tert - Butyl Iodide Mediated Reductive Fischer Indolization of Conjugated Hydrazones. *Chem. Eur. J.* 2016, *22*, 2616.

(14) Samizu, K.; Ogasawara, K. An Expedient Route to Indole-3-acetic Acid Derivatives. Synlett 1994, 499.

(15) Wensbo, D.; Annby, U.; Gronowitz, S. Indole-3-Acetic Acids and Hetero Analogues by One Pot Synthesis including Heck Cyclisation. *Tetrahedron* **1995**, *51*, 10323.

(16) Bosch, J.; Roca, T.; Armengol, M.; Fernández-Forner, D. Synthesis of 5-(sulfamoylmethyl)indoles. *Tetrahedron* **2001**, *57*, 1041.

(17) Sarkar, M.; Daw, P.; Ghatak, T.; Bera, J. K. Amide - Functionalized Naphthyridines on a RhII - RhII Platform: Effect of Steric Crowding, Hemilability, and Hydrogen - Bonding Interactions on the Structural Diversity and Catalytic Activity of Dirhodium(II) Complexes. *Chem. Eur. J.* **2014**, *20*, 16537.

(18) Tsuji, J.; Takahashi, H.; Morikawa, M. Organic syntheses by means of noble metal compounds XVII. Reaction of π -allylpalladium chloride with nucleophiles. *Tetrahedron Lett.* **1965**, *6*, 4387.

(19) Trost, B. M.; Fullerton, T. J. New synthetic reactions. Allylic alkylation. J. Am. Chem. Soc. 1973, 95, 292.

(20) Frost, C. G.; Howarth, J.; Williams, J. M. Selectivity in palladium catalysed allylic substitution. <i>Tetrahedron:</i>
Asymmetry 1992 , <i>3</i> , 1089.
(21) Guo, C.; Fleige, M.; Janssen-Müller, D.; Daniliuc, C. G.; Glorius, F. Cooperative N-Heterocyclic
Carbene/Palladium-Catalyzed Enantioselective Umpolung Annulations. J. Am. Chem. Soc. 2016, 138, 7840.
(22) Kljajic, M.; Puschnig, J. G.; Weber, H.; Breinbauer, R. Additive-Free Pd-Catalyzed α-Allylation of
Imine-Containing Heterocycles. Org. Lett. 2017, 19, 126.
(23) Mizoroki, T.; Mori, K.; Ozaki, A. Arylation of Olefin with Aryl Iodide Catalyzed by Palladium. Bull. Chem.
Soc. Jpn. 1971, 44, 581.
(24) Heck, R. F.; Nolley Jr, J. Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and
styryl halides. J. Org. Chem. 1972, 37, 2320.
(25) BabuáNallanati, S.: AshrafáAshfaq, M.: YogiáSreenivas, B. A. Pd-catalyzed direct entry to 11-substituted
6H-isoindolo[2]1-alindol-6-one derivatives as potential anticancer agents RSC adv 2015 5 88686
(26) Yue, G. Lei, K. Hirzo, H. Zhou, J. S. Polladium - Catalyzed Asymmetric Reductive Heck Reaction of Aryl
(20) Fue, G., Eel, K., Hinao, H., Zhou, J. S. Fanadhuni – Cataryzeu Asymmetrie Reductive freek Reaction of Afyr
(27) Dires M. L. Davier, D. L. Durifers 7, C. L. Marrare, M. M. D. Santhariz of Calabitated 4, 5, (and
(27) Pires, M. J., Poerra, D. L., Purincação, S. I., Marques, M. M. B. Synthesis of Substituted 4-, 5-, 6-, and
/-Azaindoles from Aminopyridines via a Cascade C-N Cross-Coupling/Heck Reaction. Org. Lett. 2016, 18, 3250.
(28) Beller, M.; Fischer, H.; Kühlein, K.; Reisinger, CP.; Herrmann, W. J. First palladium-catalyzed Heck
reactions with efficient colloidal catalyst systems. Organomet. Chem. 1996, 520, 257.
(29) Reetz, M. T.; Maase, M. Redox - Controlled Size - Selective Fabrication of Nanostructured Transition Metal
Colloids. Adv. Mater. 1999, 11, 773.
(30) Reetz, M. T.; Westermann, E. Phosphane - Free Palladium - Catalyzed Coupling Reactions: The Decisive
Role of Pd Nanoparticles. Angew. Chem. Int. Ed. 2000, 39, 165.
(31) Song, J. J.; Reeves, J. T.; Gallou, F.; Tan, Z.; Yee, N. K.; Senanayake, C. H. Organometallic methods for the
synthesis and functionalization of azaindoles. Chem. Soc. Rev. 2007, 36, 1120.
(32) McLaughlin, M.; Palucki, M.; Davies, I. W. Efficient Access to Azaindoles and Indoles. Org. Lett. 2006, 8,
3307.
(33) Keam, S. J.; Goa, K. L.; Figgitt, D. P. Almotriptan. Drugs 2002, 62, 387.
(34) Zhang, HC.; Maryanoff, B. E. Construction of Indole and Benzofuran Systems on the Solid Phase via
Palladium-Mediated Cyclizations. J. Org. Chem. 1997, 62, 1804.
(35) Kofink, C. C.; Blank, B.; Pagano, S.; Götz, N.; Knochel, P. Iron-catalyzed aryl-aryl cross-coupling reaction
tolerating amides and unprotected quinolinones. Chem. Commun. 2007, 38, 1954.
(36) da Silva, G. P.; Ali, A.; da Silva, R. C.; Jiang, H.; Paixão, M. W. Tris(trimethylsilyl)silane and visible-light
irradiation: a new metal- and additive-free photochemical process for the synthesis of indoles and oxindoles. <i>Chem.</i>
Commun. 2015. 51, 15110
(37) Fujita T · Sugiyama K · Sanada S · Ichitsuka T · Ichikawa J Platform for Ring-Fluorinated Benzoheterole
Derivatives: Palladium-Catalyzed Regioselective 1 1-Difluoroallylation and Heck Cyclization Org Lett 2016 18
248
(38) Huang A: Chen V: Thou V: Guo W: Wu V: Ma C An Efficient One Pot Synthesis of
Danzel 4 Slimidazel 1 2 alguinevalines via Compar Catalyzad Broasse, One Lett 2012, 15, 5480.
Benzo[4,5]Imidazo[1,2-ajquinoxannes via Copper-Cataryzed Process. <i>Org. Lett.</i> 2015 , <i>15</i> , 5480.
(39) Song, H.; Liu, Y.; Liu, Y.; wang, Q. Self-induced Stereoselective in Situ Trifluoromethylation: Preparation of
Spiro[indoine-5,3] -quinoinej via Palladium-Catalyzed Cascade Reaction. Org. Lett. 2014, 16, 3240.
(40) Kroiski, M. E.; Renaldo, A. F.; Rudisill, D. E.; Stille, J. Palladium-catalyzed coupling of 2-bromoanilines
with vinylstannanes. A regiocontrolled synthesis of substituted indoles. J. Org. Chem. 1988, 53, 1170.
(41) Arısawa, M.; Terada, Y.; Takahashi, K.; Nakagawa, M.; Nishida, A. Development of Isomerization and

1	
2	
3	Cycloisomerization with Use of a Ruthenium Hydride with N-Heterocyclic Carbene and Its Application to the
4	Synthesis of Heterocycles. J. Org. Chem. 2006, 71, 4255.
5	(42) M, PG.; JA, GL. Trapping σ - Alkyl-Palladium(II) Intermediates with Arynes Encompassing
6 7	Intramolecular C-H Activation: Spirobiaryls through Pd - Catalyzed Cascade Reactions. Angew. Chem. Int. Ed.
7	2016 , <i>55</i> , 14389.
9	(43) Schempn T T Daniels B E Staben S T Stivala C E A General Strategy for the Construction of
10	(45) Scheinipp, T. T., Duniels, D. E., Stabell, S. T., Strvard, C. E. A. General Strategy for the Construction of
11	Punctionalized Azamuonines via Dominio Panadrum-Catalyzed neck Cyclization/Suzuki Coupling. Org. Lett. 2017,
12	19, 5010.
13	(44) Arshad, M. N.; Khan, I. U.; Holman, K. T.; Asırı, A. M.; Rafique, H. M.
14	N-(2-Bromophenyl)-4-methyl-N-(4-methylphenylsulfonyl)benzenesulfonamide. Acta Cryst. 2011. E67, o2356.
15	(45) Willand-Charnley, R.; Dussault, P. H. Tandem Application of C-C Bond-Forming Reactions with Reductive
16 17	Ozonolysis. J. Org. Chem. 2013, 78, 42.
18	(46) Könning, D.; Olbrisch, T.; Sypaseuth, F. D.; Tzschucke, C. C.; Christmann, M. Oxidation of allylic and
19	benzylic alcohols to aldehydes and carboxylic acids. Chem. Commun. 2014, 50, 5014.
20	(47) Pilarski, L. T.; Janson, P. G.; Szabó, K. J. Palladium-Catalyzed Selective Acvloxylation Using Sodium
21	Perborate as Oxidant J Org Chem 2011 76 1503
22	(48) Hacking C. M.: Knight D. W. Efficient indole N detocylation using thioglycolate. Tatrahadron Latt 2004, 45
23	(48) Haskins, C. M., Knight, D. W. Efficient indole N-delosylation using thiogrycolate. <i>Tell unear on Lett.</i> 2004, 45,
24	599.
25	
26	
27	
20	
30	
31	
32	
33	
34	
35	
30 37	
37	
39	
40	
41	
42	
43	
44	
45	
40 17	
48	
49	
50	
51	
52	
53	
54	
55	
56	