Asymmetric Synthesis of α '-Silylated α -Iodo Ketones via Iodination with Trifluoroiodomethane

Dieter Enders*, Daniela Klein, Gerhard Raabe, Jan Runsink

Institut für Organische Chemie, Rheinisch-Westfälische Technische Hochschule, Professor-Pirlet-Straße 1, D-52074 Aachen, Germany,

Fax: (int.)+241 8888 127; E-mail: Enders@RWTH-Aachen.de

Received 2 September 1997

Abstract: The diastereo- and enantioselective syntheses of various α' -t-butyldimethylsilyl- α -iodo ketones **4a-h** is described. The carbon iodine bond formation is achieved using trifluoroiodomethane as the electrophilic iodination reagent. The iodo ketones **4** are obtained in good yields and with excellent diastereo- and enantiomeric excesses ($de, ee \ge 98\%$).

 α -Halogen substituted ketones are known as synthetically useful materials ¹⁻³. In contrast to the chloro and bromo ketones, there have been only a few reports on convenient methods for the synthesis of α -iodo ketones, which are rather sensitive compounds. Known iodination methods for the synthesis of α -iodo ketones include halogen-iodine substitution ⁴⁻⁶, electrophilic iodination reagents ⁷⁻⁹, metal salt/iodine combinations ¹⁰⁻¹⁸ and electrolysis ¹⁹.

We would like to disclose the first diastereo- and enantioselective synthesis of α '-silylated α -iodo ketones via carbon-iodine bond

3-4	a	b	c	d	e	f	g	h
R ¹	-(CH ₂) ₄ -	Me	Me	Me	Et	Et	n-Pr	<i>n</i> -P:
R ²		Me	<i>p</i> -Br- Bn	BnCH ₂	<i>p</i> -Br-Bn	BnCH ₂	<i>p</i> -Br-Bn	BnCl

- a) SAMP, 60°C, neat
- b) For symmetrical ketones (R¹=R²):
 1) LDA, THF, 0°C; tBuMe₂SiOTf, -78°C→rt 2) O₃, pentane, -78°C: → (R)-3
- c) For unsymmetrical ketones (R²=H):
 1) LDA, THF, 0°C; tBuMe₂SiOTf, -78°C→rt 2) LDA, THF, 0°C; R²I, -78°C→rt 3) O₃, pentane, -78°C: → (S)-3
- d) LDA, THF, 0°C; CF₃I-THF-solution (inverse addition), -100°C \rightarrow rt: (R)-3 \rightarrow (R,R)-4, (S)-3 \rightarrow (S,S)-4

Scheme 1

formation with trifluoroiodomethane as electrophilic iodination reagent. As shown in Scheme 1, starting from simple ketones 1 enantiomerically pure α -t-butyldimethylsilyl ketones 3 were synthesized in three to four steps based on our SAMP/RAMP-hydrazone method²⁰⁻²². Using symmetrically substituted ketones 1 as starting material the (R)-enantiomers of the α -silyl ketones 3 are obtained in three steps, whereas use of unsymmetrical ketones as starting materials led to the respective (S)-enantiomers of 3 in four steps with high enantiomeric excesses ($ee \ge 98\%$). The diastereoselective iodination of the chiral α -t-butyldimethylsilyl ketones 3 with trifluoroiodomethane afforded the α -t-butyl-dimethylsilyl- α -iodo ketones 4.

For carbon-iodine bond formation the enantiopure α -silyl ketones 3 were deprotonated with lithium diisopropylamide (LDA) in tetrahydrofuran (THF) at 0°C. After cooling to –100°C the enolate was dropped into a solution of trifluoroiodomethane in THF at the same temperature *via* cannula (inverse addition). After aqueous workup the α '-*t*-butyldimethylsilyl- α -iodo ketones 4 were isolated in good yields (40-89%) and with excellent diastereo- and enantiomeric excesses ($de, ee \ge 98\%$, Table 1)²³.

Table 1. Asymmetric synthesis of α' -t-butyldimethylsilyl- α -iodo ketones 4

4	R1	R ²	yield 3→4	$[\alpha]_{\rm D}^{22}$	deª,ee [%]	confg.
			[%]	(c, CHCl ₃)		
а	-(CH ₂) ₄ -		47	-40.1 (1.00)	≥98	(R,R)
b	Me	Me	85	+229.5 (1.44)	≥98	(R,R)
\mathbf{b}^{b}	Me	Me	89	-239.5 (1.56)	≥98	(S,S)
c	Me	p-Br-Bn	69	-169.3 (0.90)	≥98	(S,S)
d	Me	BnCH ₂	45	-192.6 (1.37)	≥98	(S,S)
e	Et	p-Br-Bn	76	-97.9 (1.10)	≥98	(S,S)
f	Et	BnCH ₂	87	-138.0 (0.69)	≥98	(S,S)
g	n-Pr	p-Br-Bn	42	-58.2 (0.44)	≥98	(S,S)
h	n-Pr	BnCH ₂	40	-168.0 (0.87)	≥98	(S,S)

^a Diastereomeric excesses were determined by ¹H- and ¹³C-NMR spectroscopy (500 MHz).

Both enantiomers of the α' -t-butyldimethylsilyl- α -iodo ketones 4 can be obtained at will as is shown for the products (R,R)- and (S,S)-4b by using SAMP or RAMP as chiral auxiliary. The diastereomeric excesses of the iodo ketones 4 were determined by 1 H- and 13 C-NMR spectroscopy. The absolute configuration of compound (S,S)-4e was determined by X-ray crystal structure analysis 24 . Furthermore, the relative configurations of the new generated stereogenic centres of the title compounds 4a-h were confirmed by extensive NOE experiments.

The virtually complete diastereofacial selectivity observed for iodination of compounds 3 is apparently due to the sterically demanding α -silyl group and the (E)-geometry of the lithium enolate generated. Thus, the (R)-configured silyl ketones 3 gave rise to the (R,R)-4 products and (S)-3 led to (S,S)-4, respectively.

b RAMP was used as chiral auxiliary

1272 LETTERS SYNLETT

In summary, an efficient asymmetric synthesis of α' -t-butyl-dimethylsilyl- α -iodo ketones **4** in good yields and with excellent diastereo- and enantiomeric excesses ($de,ee \geq 98\%$) has been developed, employing the commercially available trifluoromethyl iodide as iodinating reagent. Work is currently in progress to effect the carbon silicon bond cleavage to access virtually enantiopure α -iodo ketones for the first time as well as subsequent stereoselective reactions of the carbonyl and iodo groups.

Acknowledgements. This work was supported by the Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 380, Leibniz prize) and the Fonds der Chemischen Industrie. We thank Degussa AG, BASF AG, Bayer AG, Hoechst AG (CF₃I) and Wacker Chemie for the donation of chemicals.

References and Notes

- (1) Cardillo, G.; Shimizu, M. J. Org. Chem. 1977, 42, 4268.
- (2) Sket, B.; Zupet, P.; Zupan, M.; Dolenc, D. Bull. Chem. Soc. Jpn. 1989, 62, 3406.
- (3) Reuss, R. H.; Hassner, A. J. Org. Chem. 1974, 39, 1785 and literature cited therein.
- (4) Modarai, B.; Khoshdel, E. J. Org. Chem. 1977, 42, 3527.
- (5) Rosenkranz, G.; Mancera, O.; Gatica, J.; Djerassi, C. J. Am. Chem. Soc. 1950, 72, 4077.
- (6) Evans, R. M.; Hamlet, J. C.; Hunt, J. S.; Jones, P. G.; Long, A. G.; Oughton, J. F.; Spephenson, L; Walker, T; Wilson, B.M. J. Chem. Soc. 1956, 4356.
- (7) Djerassi, C.; Grossman, C. J.; Thomas, G. H. J. Am. Chem. Soc. 1955, 77, 3826.
- (8) Djerassi, C.; Lenk, C. T. J. Am. Chem. Soc. 1953, 75, 3493.
- (9) Evans, R. D.; Schauble, J. H. Synthesis 1986, 727.
- (10) Horiuchi, C. A.; Kiji, S. Bull. Chem. Soc. Jpn. 1997, 70, 421 and literature cited therein.
- (11) Horiuchi, C. A.; Satoh, J. Y. Synthesis 1981, 312.
- (12) Cambie, R. C.; Hayward, R. C.; Jurlina J. L.; Rutledge, P. S.; Woodgate, P. D. J. Chem. Soc. Perkin Trans. I 1978, 126.
- (13) Rubottom, G. M.; Mott, R. C. J. Org. Chem. 1979, 44, 1731.
- (14) Cort, A. D. J. Org. Chem. 1991, 56, 6708.
- (15) Barluenga, J.; Martinez-Gallo, J. M.; Najera, C.; Yus, M. Synthesis 1986, 678.

(16) Motohashi, S.; Satomi, M. Synthesis 1982, 1021.

- (17) Rubottom, G. M.; Mott, R. C.; Juve, H. D., Jr. J. Org. Chem. 1981, 46, 2717.
- (18) D'Ascoli, R.; D'Auria, M.; Nucciarelli, L.; Piancatelli, G.; Scettri, A. Tetrahedron Lett. 1980, 21, 4521.
- (19) Torii, S.; Inohuchi, T.; Misima, S.; Kobayashi, T. J. Org. Chem. 1980, 45, 2731.
- (20) Enders, D.; Lohray, B. B.; Burkamp, F.; Bhushan, V.; Hett, R. *Liebigs Ann.* **1996**, 189 and literature cited therein.
- (21) Enders, D. In *Asymmetric Synthesis*, Vol. 3B; Morrison, J. D., Ed.; Academic Press: Orlando, 1984; p 275.
- (22) Enders, D.; Fey, P.; Kipphardt, H. Org. Synth. 1987, 65, 173, 183.
- (23) Synthesis of α'-t-butyldimethylsilyl-α-iodo ketones 4a-h:

 The α'-t-butyldimethylsilyl ketones 3 (5 mmol) were added to a solution of LDA (6.5 mmol) in dry THF (50 mL) at 0°C. After 4h at 0°C the reaction mixture was cooled to -100°C and added to a solution of trifluoromethyl iodide (19.5 mmol) in dry THF (50 mL) via cannula at -100°C. After warming to room temperature overnight and aqueous work up (NH₄Cl-solution, Et₂O, MgSO₄) the α'-t-butyldimethylsilyl-α-iodo ketones 4 were purified by flash chromatography (SiO₂, ether/petroleum ether 1/1) and HPLC (Lichrosorb®, Merck, 25cm, 25mm, Si60, 7μm, ether/petroleum ether 5/95).
 - 1-*p*-Bromophenyl-2-*t*-butyldimethylsilyl-4-iodohexane-3-one **4e**: yellow crystals, mp = 59-60°C. IR (KBr) 1680 cm⁻¹ (C=O). 1 H NMR (500 MHz, CDCl₃): δ = -0.003 (s, 3H, SiCH₃), 0.11 (s, 3H, SiCH₃), 0.95 (t, J = 7.1 Hz, 3H, CH₂CH₃), 0.99 (s, 9H, C(CH₃)₃), 1.56-1.67 (m, 1H, CH₂CH₃), 1.79-1.90 (m, 1H, CH₂CH₃), 2.69 (dd, J = 13.5/2.0 Hz, 1H, CH₂CHSi) 3.01 (dd, J = 12.1/2.0 Hz, 1H, CH₂CHSi), 3.27 (dd, J = 13.7/11.9 Hz, 1H, CHSi), 4.20 (dd, J = 9.7/4.0 Hz, 1H, CHI), 7.04 (d, J = 8.0 Hz, 2H, CH_{ar}), 7.36 (d, J = 8.4 Hz, 2H, CH_{ar}). 13 C NMR (75 MHz, CDCl₃): δ = -6.90 (CH₃), -5.52 (CH₃), 14.26 (CH₃), 18.15 (C_{quart}), 26.79 (CH₂), 26.87 (C(CH₃)₃), 33.24 (CH₂), 38.71 (CHI), 44.59 (CHSi), 119.96 BrC_{quart})130.99 (CH_{ar}), 131.26 (CH_{ar}), 139.98 (C_{quart}), 202.77 (C=O). MS, m/z = 438.9 (M⁺-*t*-Bu). HRMS Calcd. for C₁₄H₁₉ 79 Br¹²⁷IOSi: 436.9433, found: 436.9436.
- (24) Details of the crystal structure investigation may be obtained from the Cambridge Crystallographic Data Centre (CCDC, 12 Union Road, GB-Cambridge CB2 1EZ; Tel.: Int. +1223/336-408, Telefax: Int. +1223/336-033; E-mail: deposit@chemcrys.cam. ac.uk; World Wide Web: http://www.ccdc.cam.ac.uk.