

A Journal of the Gesellschaft Deutscher Chemiker A Deutscher Chemiker GDCh International Edition www.angewandte.org

Accepted Article

Title: Platinum-catalyzed Desaturation of Lactams, Ketones and Lactones

Authors: Ming Chen, Alexander J Rago, and Guangbin Dong

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201811197 Angew. Chem. 10.1002/ange.201811197

Link to VoR: http://dx.doi.org/10.1002/anie.201811197 http://dx.doi.org/10.1002/ange.201811197

WILEY-VCH

WILEY-VCH

Platinum-catalyzed Desaturation of Lactams, Ketones and Lactones

Ming Chen[†], Alexander J. Rago[†] and Guangbin Dong^{*†}

In memory of Professor Jack Halpern.

Abstract: The development of a general platinum-catalyzed desaturation of *N*-protected lactams, ketones, and lactones to their conjugated α , β -unsaturated counterparts is reported. The reaction is operated under mildly acidic conditions at room temperature or 50 °C. It is scalable and tolerates a wide range of functional groups. The complementary reactivity to the palladium-catalyzed desaturation is demonstrated in the efficient conversion of iodide, bromide and sulfur-containing substrates.

Desaturation of carbonyl compounds is a strategically important transformation.^[1] This is not only because the resulting electrondeficient conjugated alkenes are frequently found in bioactive natural products and drugs (Figure 1),^[2] but also because these α,β -unsaturated moieties are often utilized as versatile intermediates for subsequent β -functionalization or α,β difunctionalization of carbonyl compounds.^[3] Among various α,β desaturation methods, the catalytic approaches are primarily dominated by using palladium, which involves formation of a Pd(II)-enolate, followed by β-hydrogen elimination and further oxidation of the Pd(0) intermediate back to the Pd(II) catalyst.^[4] While it has been demonstrated to be a highly powerful reaction for desaturating a diverse range of carbonyl compounds, including ketones, esters, cyanides, carboxylic acids and amides efficiently,^[5] some limitation still exists for the palladium catalysis. For example, Pd(0) is known to undergo facile oxidative addition with aryl iodides and halogen-abstraction with alkyl halides, [6] thus compatibility of these structural motifs in the Pd-catalyzed desaturation could be a major concern (vide infra, Table 3). Scattered examples of using other transition metals, such as Cu,^[7] Ir^[8] and Ru^[9], for catalytic desaturation of carbonyl compounds have also been reported, but the generality of these methods has not been fully established. Stimulated by such a chemoselectivity challenge, we herein describe the development of a *platinum*-catalyzed desaturation method suitable for various lactams, ketones, and lactones with complementary reactivity to the palladium catalysis.

Despite in the same group, homogeneous platinum catalysis has found much fewer applications compared with palladium catalysis to date.^[10] We were inspired by the facts that oxidative addition of Pt(0) with C-X (X: halogen) bonds is less common than the one of Pd(0)^[11] and β -hydrogen elimination with a Pt(II) enolate has been observed by Hartwig and co-workers^[12] (Scheme 1a). Thus, we hypothesized that Pt(II) salts could be capable of catalyzing ketone desaturation without affecting these

[[†]]Department of Chemistry, University of Chicago, Chicago, Illinois, 60637, United States

* Correspondence: <u>gbdong@uchicago.edu</u> (G. D.)

Supporting information for this article is given via a link at the end of the document.

redox-active C-X bonds (Scheme 1b).

Figure 1. Representative bioactive natural products and drugs containing α,βunsaturated carbonyl moieties.

To test the hypothesis, valeroalactam 1a was employed as a model substrate. Indeed, when using Pt(COD)Cl₂ as the precatalyst, a catalytic amount of AgTFA as a chloride scavenger, and diallyl carbonate (DAC) as the oxidant, the desired α , β unsaturated lactam 2a was obtained in 98% yield at room temperature through in situ forming a boron-enolate intermediate (Table 1).^[5m,13] To gain more insights of this reaction, the role of each reactant was explored through control experiments. First, no product was observed without Pt(COD)Cl₂ or AgTFA (entries 1 and 2). A range of other metal complexes has also been examined (entry 3). First, PtCl₂ cannot catalyze this reaction and Pt(MeCN)₂Cl₂ only gave a 15% yield. In contrast, using Pt(COD)(TFA)₂ in the absence of the silver salt still afforded 80% yield of 2a, which indicated that the TFA anion is important and the silver metal is not critical for the reactivity. Other metal complexes except Pd gave no or low reactivity. While Pd(TFA)2 could still give 41% yield of the desired product 2a, its efficiency is lower than the Pt(COD)Cl₂/AgTFA system; interestingly, the corresponding Pd(COD)Cl₂/AgTFA combination gave no desired product. A number of oxidants have been examined (entry 4). The quinone-type oxidants previously used in the Pd-catalyzed

desaturation^[5m] showed low to moderate reactivity, whereas the allyl oxidants employed by Newhouse and co-workers^[5g,5h] were found to be more effective in this case. Ultimately, allyl carbonates proved to be superior. Unsurprisingly, soft enolization using Bu₂BOTf and DIPEA remained critical for the lactam activation (entries 5 and 6). The platinum loading could be further reduced to 5-6 mol% without significantly compromising the yield (entries 7 and 8). A survey of solvent effect suggested that aromatic solvents, such as toluene and fluorobenzene, are optimal, although 1,4-dioxane also delivered the product in 92% yield (entries 9 and 10).

Table 1. Selected optimization studies.

0 N 1a 'star	$\begin{array}{c} & 10 \text{ mol\% Pt(COD)Gl}_2\\ C_6F_5 & \underline{30 \text{ mol\% AgTFA}}\\ & 2 \text{ equiv DAC}\\ Bu_2BOTf^{[b]}, DIPEA^{[b]}\\ & \text{toluene, rt}\\ \text{ndard' conditions} \end{array}$	2 0 0 → N C ₆ F ₅ 2a, 98% (95% isolated)
Entry Variat	ions from the 'standard' conditi	ions Yield (%) of 2a ^[a]
1	Without Pt(COD)Cl ₂	0
2	Without AgTFA	0
3	C2-7 instead of Pt(COD)Cl ₂	Listed below
4	Ox2-7 instead of Ox1	Listed below
5	Without Bu ₂ BOTf	0
6	Without DIPEA	6
7	6 mol% Pt(COD)Cl₂	96 ^[d]
8	5 mol% Pt(COD)Cl ₂	88 ^[d]
9	solvent = PhF	98
10	solvent = 1,4-dioxane	92
11	solvent = THF	11
12 SOIVENT = MECIN OF DCM U		
PtCl ₂	Pt(MeCN) ₂ Cl ₂	Pt(COD)(TFA) ₂
C2, 0%	C2, 15%	C4, 80% ^[C]
Pd(COD)Cl ₂		Ru(COD)Cl ₂
C5, 0%	C6, 0%	C7 , 0%
(DME)NiCl ₂	[lr(COD)Cl] ₂	Pd(TFA) ₂
C8, 0%	C9, 6%	C10, 41% ^[c] (96%) ^[a]
BQ	2,5-di- <i>t</i> Bu-BQ	tetra-Me-BQ
Ox2 , 16	6% Ox3 , 10%	Ox4 , 44%
~^ ⁰	Ac P-OEt OEt	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Ox5 , 68	% Ox6 , 10%	Ox7 , 94%

[a] Each reaction was run on a 0.1 mmol scale in a sealed 4 mL vial for 24 h; yields were determined by ¹H NMR using CH_2Br_2 as the internal standard. [b] 1.3 equiv. [c] No AgTFA was added. [d] 50 °C was used. TFA = trifluoroacetate, DAC = diallyl carbonate, COD = 1,5-cyclooctadiene.

Table 2. Substrate scope with lactams, ketones and lactones.[a,b]

WILEY-VCH

With the optimized conditions in hand, the substrate scope was explored (Table 2). First, various substitutions on valeroalactams at the β , γ , and δ -positions can all be tolerated (2a-2s). Note that, compared with the prior Pd system,^[5m] higher yields and full conversion for these lactams were obtained with the Pt catalyst. This is advantageous because it is typically very difficult to separate the unsaturated products from the remaining starting materials; for example, pure products 2m, 2n, and 2p were not obtained previously under the Pd-catalyzed conditions.^[5m] Gratifyingly, a wide range of functional groups were compatible, which included aryl chloride (2d), bromide (2e), ester (2f), trifluoromethyl (2g), nitro (2h), nitrile (2i), sulfone (2j), ketone (2p), electron-rich aromatic rings (2k and 2l) and alkyne (2n). In the presence of an additional enolizable tertiary amide, desaturation of lactam 1o still occurred selectively at the lactam moiety. In addition, lactams with different ring sizes (2t-2v) were effective substrates. Moreover, Ts was not a suitable protecting group in the prior Pd-catalyzed desaturation; but here good to excellent yields of the Ts-protected lactams were achieved, [14] suggesting that the platinum condition is more general.

Next, benzofused lactams with different ring sizes were examined. In the case of benzofused six-member ring substrates, high yields and excellent chemoselectivity were observed and the products underwent simultaneous deprotection to give 2-quinolones 4a-4f. Benzofused seven- and eight-membered substrates also worked; fluorobenzene was found to be a better solvent for the benzofused eight-membered compounds (4I-4n). Finally, the feasibility of desaturating ketones and lactones was also tested with the Pt catalysis (6a-8g). Cyclohexanones and benzofused six- and sevenmembered ketones were competent substrates. Note that desaturation of 2-substituted cyclohexanones preferred to occur at the less sterically hindered side. \delta-Lactones with or without benzofused scaffolds could give the corresponding unsaturated products. A linear ester (8c) also reacted albeit in a lower efficiency.

To show the complementarity of this method to the Pdcatalyzed desaturation, substrates containing aryl iodides, alkyl bromides and thioethers were investigated under both the Pt and Pd catalysis conditions (Table 3). It is clear that aryl iodides (**9a**, **9c**, **9e**, **9f**, **9g** and **9j**) that were not tolerated under the Pd conditions did not interfere with the reactions catalyzed by platinum. On the other hand, substrates that contain alkyl bromides (**9b**, **9d** and **9h**)^[15] gave low yields with the Pd catalysis; but they worked well under the Pt conditions. Recently, we found that thioethers could direct sp³ C-H activation reaction using Pd catalysis;^[16] while such a substrate (**9i**) gave no desired product with Pd, it became a competent substrate for the Pt-catalyzed desaturation. Thus, the platinum-catalyzed desaturation can be more chemoselective.

10.1002/anie.201811197

WILEY-VCH

[a] Each reaction was run on a 0.2 mmol scale in a sealed 4 mL vial for 24 h. [b] Isolated yields. [c] 50 °C was used. [d] PhF was used as the solvent. [e] Separation of the pure product from the starting material was difficult and 24% of the starting material remained. [f] These products underwent simultaneous deprotection during the desaturation reaction. PG^F = COC₆F₅. Ts= p-toluenesulfonyl.

To test the practicality of this method, gram-scale reactions were carried out with 5 mol% of the platinum pre-catalyst. Satisfactory yields were obtained with either the perfluorobenzoyl- or Ts-protected substrates (Scheme 2). A variety of transformations has been employed to extend the utilities of this desaturation method (Scheme 3). First, the acyl

protecting group could be easily removed to reveal the free lactam (**10**) under mild conditions. The α , β -unsaturated lactams could undergo diverse efficient conjugate addition reactions to form β -tertiary or quaternary stereocenters through C–C, C–N, C–S and C-Si bond formation.^[18]

Scheme 2. Gram-scale reactions. 5 mol% Pt(COD)Cl 30 mol% AgTFA, 2 equiv DAC 1.1 equiv Bu₂BOTf, 1.1 equiv DIPEA PG PG toluene. 50 °C. 24 h **2a,** PG = PG^F, 80%, 1.16 g 2w, PG = Ts, 88%, 1.1 g

WILEY-VCH

Table 3. Complementary to the Pd-catalyzed desaturation.^[a,b]

[a] Each reaction was run on a 0.2 mmol scale in a sealed 4 mL vial for 24 h. [b] Isolated yields. [c] 50 °C was used. [d] PhF as solvent. [e] Pd condition: 10 mol% Pd(TFA)₂ was used instead of Pt(COD)Cl₂ and no AgTFA was added (see Table 1, **C10**).

Scheme 3. Synthetic utilities.

[a] 1.5 equiv 1,1'-biphenyl-3-ylboronic acid, 2.5 mol% [Rh(COD)CI]₂, 2 M K₃PO₄ in dioxane, rt, 12 h; [b] 2 equiv PhB(OH)₂, 5 mol% Pd(TFA)₂, 6 mol% bipyridine in 50 mM NaTFA, 100 °C, 6 h; [c] 4 equiv PhB(OH)₂, 5 mol% Pd(TFA)₂, 6 mol% bipyridine in 50 mM NaTFA, 100 °C, 6 h; [d] 2.1 equiv MeMgBr, 1.2 equiv CuBr•MS, 3 equiv TMSCI in THF, 2 h; [e] 1.1 equiv butane-2-thiol and 5 mol% NaH in DCM, 50 °C, 12 h; [f] 2 equiv morpholine in toluene, 50 °C, 12 h; brsm: based on recovered starting material.

In summary, the first platinum-catalyzed desaturation of carbonyl compounds has been developed. The reaction operates at room temperature or 50 °C, with tolerating a wide range of functional groups. Complementary features to the prior palladium-catalyzed methods have been disclosed. Such a unique chemoselectivity could be useful for complex molecule synthesis. It is also anticipated that the unique mode of reactivity discovered here should inspire the future exploration of other platinum-catalyzed reactions.

Acknowledgements

We thank University of Chicago for a startup fund. M.C. thanks Shanghai Institute of Organic Chemistry for a postdoc fellowship. Professors Chuan He and Jack Halpern are thanked for the gifts of platinum salts. Mr. Chengpeng Wang is acknowledged for checking the experiments.

Keywords: desaturation • lactam • ketone • lactone • platinum catalysis

- a) D. R. Buckle, I. L. Pinto, In Comprehensive Organic Synthesis, (Ed.: B. M. Trost), Pergamon, Oxford, **1991**, 7, 119; b) K. C. Nicolaou, N. A. Petasis, Selenium in Natural Products Synthesis; CIS, Inc.: Philadelphia, **1984**; Chapter 3; c) J. Muzart, *Eur. J. Org. Chem.* **2010**, 3779.
- [2] a) R. C. Barcelos, J. C. Pastre, D. B. Vendramini-Costa, V. Caixeta, G. B. Longato, P. A. Monteiro, J. E. Carvalho, R. A. Pilli, *ChemMedChem* 2014, 9, 2725; b) V. R. Rao, P. Muthenna, G. Shankaraiah, C. Akileshwari, K. H. Babu, G. Suresh, K.S. Babu, R. S. C. Kumar, K. R. Prasad, P. A. Yadav, J. M. Petrash, G. B. Reddy, J. M. Rao, *Eur. J. Med. Chem.* 2012, 57, 344; c) Y. Dong, Q. Shi, Y-N. Liu, X. Wang, K. F. Bastow, K-H. Lee, *J. Med. Chem.* 2009, *52*, 3586; d) X. Wang, K. F. Bastow, C-M. Sun, Y-L. Lin, H-J. Yu, M-J. Don, T-S. Wu, S. Nakamura, K-H. Lee, *J. Med. Chem.* 2004, *47*, 5816; e) M. D. Méndez-Robles, H. H. Permady, M. E. Jaramillo-Flores, E. C. Lugo-Cervantes, A. Cardador-Martinez, A. A. Canales-Aguirre, F. Lopez-Dellamary, C. M. Cerda-Garcia-Rojas, J. Tamariz, *J. Nat. Prod.* 2006, *69*, 1140.
- [3] a) B. E. Rossiter, N. M. Swingle, *Chem. Rev.* **1992**, *92*, 771; b) A. Gutnov, *Eur. J. Org. Chem.* **2008**, 4547; c) T. Hayashi, K. Yamasaki, *Chem. Rev.* **2003**, *103*, 2829; d) Z. Huang, G. Dong; *Tetrahedron Lett.* **2014**, *55*, 5869; e) M. J. Chapdelaine, M. Hulce in *Organic Reactions*, Vol. 38, (Eds.: L. A. Paquette), Wiley, New York, **1990**, 225; f) Y. Chen, D. Huang, Y. Zhao, T. R. Newhouse, *Angew. Chem. Int. Ed.* **2017**, *56*, 8258.
- [4] a) S. S. Stahl, T. Diao, Comp. Org. Synth. 2014, 7, 178; b) D. Wang, A. B. Weinstein, P. B. White, S. S. Stahl, Chem. Rev. 2018, 118, 2636; c) A. Turlik, Y. Chen, T. R. Newhouse, Synlett 2016, 331.
- [5] For leading references, see: a) R. J., Theissen, J. Org. Chem. 1971, 36, 752. b) Y. Ito, T. Saegusa, J. Org. Chem. 1978, 43, 1011; c) Y. Izawa, D. Pun, S. S. Stahl, Science 2011, 333, 209; d) D. Pun, T. Diao, S. S. Stahl, J. Am. Chem. Soc. 2013, 135, 8213; e) T. Diao, S. S. Stahl, J. Am. Chem. Soc. 2011, 133, 14566; f) T. Diao, D. Pun, S. S. Stahl, J. Am. Chem. Soc. 2013, 135, 8205; g) Y. Chen, J. P. Romaire, T. R. Newhouse, J. Am. Chem. Soc. 2015, 137, 5875; h) Y. Chen, A. Turlik, T. R. Newhouse, J. Am. Chem. Soc. 2016, 138, 1166; i) A. Turlik, Y. Chen, T. R. Newhouse, Synlett 2016, 27, 331; j) Y. Zhao, Y. Chen, T. R. Newhouse, Angew. Chem. Int. Ed. 2017, 56, 13122; k) D. Huang, Y. Zhao, T. R. Newhouse, Org. Lett. 2018, 20, 684; l) S. M. Szewczyk, Y. Zhao, H. A. Sakai, P. Dube, T. R. Newhouse, Tetrahedron 2018, 74, 3293; m) M. Chen, G. Dong, J. Am. Chem. Soc. 2017, 139, 7757.

- [6] J. Tsuji in *Palladium Reagents and Catalysts, New Perspectives for the 21th Century*, Wiley, Chichester, **2004**.
- [7] a) X. Jie, Y. Shang, X. Zhang, W. Su, J. Am. Chem. Soc. 2016, 138, 5623;
 b) Y. Shang, X. Jie, K. Jonnad, S. N. Zafar, W. Su, Nat. Commun. 2017, 8, 2273;
 c) L. Liang, G. Yang, F. Xu, Y. Niu, Q. Sun, P. Xu, Eur. J. Org. Chem. 2013, 6130.
- [8] a) Z. Wang, Z. He, L. Zhang, Y. Huang, J. Am. Chem. Soc. 2018, 140, 735;
 b) M. G. Manas, L. S. Sharninghausen, E. Lin, R. H. Crabtree, J. Organomet. Chem. 2015, 792, 184.
- [9] a) C. S. Yi, D. W. Lee, Organometallics 2009, 28, 947.
- [10] a) J. A. Labinger, Chem. Rev. 2017, 117, 8483; b) F. Dénès, A. Pérez-Luna, F. Chemla, Chem. Rev. 2010, 110, 2366; c) G. K. Anderson, Platinum-Carbon σ-Bonded Complexes. In Comprehensive Organometallic Chemistry II, (Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson), Elsevier: Oxford, U.K., 1995, 9, 431; d) Chemistry of the Platinum Group Metals (Hrsg.: F. R. Hartley), Elsevier, Amsterdam, 1991.
- [11] C. Mateo, C. Fernández-Rivas, D. J. Cárdenas, A. M. Echavarren, Organometallics 1998, 17, 3661.
- [12] E. J. Alexanian, J. F. Hartwig, J. Am. Chem. Soc. 2008, 130, 15627.
- [13] Y. Sakamoto, T. Amaya, T. Suzuki, T. Hirao, Chem. Eur. J. 2016, 22, 18686.
- [14] Boc and regular benzoyl were found still not suitable protecting groups.
- [15] C. Wang, G. Dong, J. Am. Chem. Soc. 2018, 140, 6057.
- [16] L. Jin, J. Wang, G. Dong, Angew. Chem. Int. Ed. 2018, 57, 12352.
- [17] V. Pace, J. P. Rae, D. J. Procter, Org. Lett. 2014, 16, 476.
- [18] a) R. Perlmutter, Conjugate Addition Reactions in Organic Synthesis (Eds.: J. E. Baldwin, P. D. Magnus), Pergamon, Oxford, **1992**; b) T. Senda, M. Ogasawara, T. Hayashi, J. Org. Chem. **2001**, 66, 6852; c) M. Pineschi, F. D. Moro, F. Gini, A. J. Minnaard, B. L. Feringa, Chem. Commun. **2004**, 1244; d) R. V. Zeeland, L. M. Stanley, ACS Catal. **2015**, 5, 5203; e) G. R. Dake, M. D. B. Fenster, P. B. Hurley, B. O. Patrick, J. Org. Chem. **2004**, 69, 5668

ccepted Manuscri

This article is protected by copyright. All rights reserved.

WILEY-VCH

Accepted Manuscri

COMMUNICATION

Entry for the Table of Contents

cat. Pt(COD)Cl2, cat. AgTFA

BugBOTf, DIPEA, DAC

65 examples

Pt: 75% Pd: 0%

COMMUNICATION

Ming Chen, Alexander J. Rago and Guangbin Dong*

Page No. – Page No.

Platinum-catalyzed Desaturation of Lactams, Ketones and Lactones

The first platinum-catalyzed desaturation of *N*-protected lactams, ketones and lactones is reported. The reaction is operated under mild conditions, scalable and chemoselective. In particular, functional groups incompatible under the palladium-catalyzed desaturation conditions were tolerated by the platinum catalyst.

₽GF

EtO₂C

Pt: 88% Pd: 6% PG

Pt: 90% Pd: 0%

66%

`n∕^{Ts}

Pt: 92% Pd: 0%

96%

This article is protected by copyright. All rights reserved.