

Bioorganic & Medicinal Chemistry 11 (2003) 251-263

BIOORGANIC & MEDICINAL CHEMISTRY

Tricyclic Pyrazoles. Part 1: Synthesis and Biological Evaluation of Novel 1,4-Dihydroindeno[1,2-c]pyrazol-based Ligands for CB₁ and CB₂ Cannabinoid Receptors

Jean-Mario Mussinu,^a Stefania Ruiu,^b Antonio C. Mulè,^c Amedeo Pau,^a Mauro A. M. Carai,^b Giovanni Loriga,^{a,b} Gabriele Murineddu^{a,b} and Gérard A. Pinna^{a,*}

^aDipartimento Farmaco Chimico Tossicologico, Università di Sassari, via F. Muroni 23/A, 07100 Sassari, Italy ^bNeuroscienze S.c.a.r.l., Zona Industriale Macchiareddu, 09010 Uta, Cagliari, Italy ^cDipartimento di Scienze del Farmaco, Università di Sassari, via F. Muroni 23/A, 07100 Sassari, Italy

Received 7 May 2002; accepted 18 July 2002

Abstract—Cannabinoids receptors, cellular elements of the endocannabinoid system, have been the focus of extensive studies because of their potential functional role in several important physiological and pathological processes. To further evaluate the properties of CB receptors, especially CB₁ and CB₂ subtypes, we have designed, using SR141716A as a benchmark, a new series of rigid 1-aryl-1,4-dihydroindeno[1,2-*c*]pyrazole-3-carboxamides. Compounds 1 were synthesized from substituted 1-aryl-1,4-dihydro-indeno[1,2-*c*]pyrazole-3-carboxamides. Compounds 1 were synthesized for binding both to the brain and peripheral cannabinoid receptors (CB₁ and CB₂). Seven of the new compounds displayed very high in vitro CB₂ binding affinities, especially 1a, 1b, 1c, 1e, 1g, 1h and 1j which showed K_i values of 0.34, 0.225, 0.27, 0.23, 0.385, 0.037 and 0.9 nM, respectively. Compounds 1a, 1b, 1c and 1h showed the highest selectivity for CB₂ receptor with K_i (CB₁) to K_i (CB₂) ratios of 6029, 5635, 5814 and 9810, respectively. Noticeably, 1h exhibited the highest affinity and selectivity for CB₂ receptors. (C) 2002 Elsevier Science Ltd. All rights reserved.

Introduction

The endogenous cannabinoid system (ECS) in mammals incorporates a variety of cellular elements as potential recognition sites at which a broad group of compounds, termed cannabinoids, interacts. Biological organization of this system includes: (a) two subtypes of G-protein coupled membrane receptors, termed the CB_1^1 receptor (primarily present in the nervous system) and the CB_2^2 receptor (mainly present in the immune system), (b) the endogenous ligands for these receptors anandamide (*N*-arachidonoylethanolamine, AN)³ and 2-arachidonoylglycerol (2-Ara-Gl)⁴ named endocannabinoids and (c) their multiple metabolic pathways for the synthesis degradation⁵ and reuptake (only in the case of anandamide)^{6–9} (Fig. 1).

Over the past several years a tremendous effort has been focused on studying the physiological functions of

endocannabinoid system¹⁰ suggesting that it may play a role in antinociception, brain development, retrograde neuronal communication, memory, appetite, psychomotor control, cardiovascular and immune regulation and cellular proliferation. Recent evidences have indicated that ECS may be a potential therapeutic target for the treatment of diverse patologies¹¹ including asthma, pain, multiple sclerosis, neurodegenerative, immune and inflammatory diseases.

At present different cannabinoid binders have been identified and can be classified into at least five diverse chemical families (exocannabinoids). These compounds include: tricyclic cannabinols¹² (classical cannabinoids whose structure is based on the dibenzopyran template of Δ^9 -THC), bicyclic cannabinols^{13,14} (non classical cannabinoids typified by CP-55,940), indoles, pirroles and indenes¹⁵ (typified by WIN-55,212-2), anandamide analogues¹⁶ and diarylpyrazoles¹⁷ (SR 141716A is the prototypical example) (Fig. 2).

These various types of binders, to a different extent, interact with both receptors and the development of

0968-0896/03/\$ - see front matter 0 2002 Elsevier Science Ltd. All rights reserved. PII: S0968-0896(02)00319-X

^{*}Corresponding author. Tel.: +39-079-228721; fax: +39-079-228720; e-mail: pinger@ssmain.uniss.it

Figure 1. Endogenous cannabinoid receptor ligands and numbering system.

Figure 2. Cannabinoid receptor binder structures and their receptor affinities.

potent and selective ligands for CB_1 and/or CB_2 receptors is of great importance to investigate the involvement of the CB_1 and CB_2 receptors in some (physiological) actions of endocannabinoids (a) in the central nervous system, such as cognition and memory, control of motor function, perception of pain, and (b) some peripheral nerves, where they exert an action in the urogenital, gastrointestinal and cardiovascular systems. The CB_2 receptors are highly expressed in immune cells, B cells and natural killer cells; availability of potent and selective CB_2 receptor ligands would enhance our understanding on the role of this receptor on some effects of cannabinoids such as immunosuppressant and anti-inflammatory.^{11d,18}

There has been considerable effort in recent years to determine the relationship of three-dimensional and/or conformational structure with CB_1 and CB_2 cannabinoid affinity, for some selected molecules, belonging to the above mentioned groups.¹⁹ Understanding the preferred structure would provide new leads for cannabinoid ligands with improved biological properties. Our approach to this was to minimize the flexibility of the lead compound through the use of conformationally restricted analogues.²⁰ It has been proposed that

appropriate structural constraints could restrict a pharmacophoric structural element to a sufficiently small region of conformational space thereby permitting the ligand to bind, with high affinity and selectivity, to its designated receptor.²¹ In this line, we have designed (Fig. 3) and synthesized (Table 1) an extensive series of rigid SR141716A analogues of general structure 1 and determined in vitro their binding affinities for CB₁ and CB₂ receptors.

Chemistry

Synthesis of title compounds 1 is outlined in Scheme 1.

The 1,3-diketoesters **3**, as a tautomeric equilibrium shifted towards the alkenylidene structure (**3**'), were prepared from the indanones **2** and diethyl oxalate in the presence of sodium ethylate. Compounds **3** and the appropriate hydrazines were heated in EtOH to afford the desired 1-arylpyrazoles **4**. The esters **4** were hydrolized and resulting acids **5** treated with SOCl₂ to afford the acid chlorides which were allowed to react with the requisite amines to give the desired amides **1a–o,q,r**. Treatment of **1o** with acetone in ethyl acetate gave the ketimine **1p**.

1

SR141716A

Figure 3. Rigid analogue approach via arrow a to obtain 1,4-dihydroindeno[1,2-c]pirazole derivatives 1.

Table 1.	Structures and	binding data	of compounds ${\bf 1}$
----------	----------------	--------------	------------------------

Compound 1	Receptor affinity R	RI	Q	$K_i CB_1(nM)^a$	Selectivity ratio $K_iCB_1(nM)^b$	$K_i CB_1/K_i CB_2(nM)$
a	6C1	2^{I} , $4^{I}Cl_{2}$	-N	$2050\!\pm\!90$	$0.34 {\pm} 0.06$	6029:1
b	6F	2^{I} , 4^{I} Cl ₂	-N	1268 ± 51	$0.225 {\pm} 0.02$	5635:1
c	6Br	2^{I} , $4^{I}Cl_{2}$	-N	$1570\!\pm\!15$	0.27 ± 0.02	5814:1
d	61	2^{I} , 4^{I} Cl ₂	-N	333 ± 0.5	5.5 ± 0.5	60:1
e	5C1	2^{I} , 4^{I} Cl ₂	-N	$8.25\!\pm\!74$	0.23 ± 0.036	3587:1
f	7C1	2^{I} , 4^{I} Cl ₂	-N	$723\!\pm\!53$	6.788 ± 0.47	105:1
g	Н	2^{I} , 4^{I} Cl ₂	-N	1152 ± 65	$0.385 \!\pm\! 0.04$	2992:1
h	6CH ₃	2^{I} , 4^{I} Cl ₂	-N	363 ± 30	0.037 ± 0.003	9810:1
I	60CH ₃	2^{I} , 4^{I} Cl ₂	-N	$399\!\pm\!24$	12.3 ± 1	32:1
j	6C1	4 ^I Cl	-N	1787 ± 85	$0.9\!\pm\!0.09$	1985:1
k	6C1	Н	-N	> 5000	48 ± 5	104:1
1	6C1	4 ^I OCH ₃	-N	3035 ± 13.5	120 ± 15	25;1
m	6C1	2^{I} , 4^{I} Cl ₂	-N	$798\!\pm\!48$	9.9 ± 0.52	81:1
n	6Cl	$2^{I},4^{I}Cl_{2}$	-N(CH ₃) ₂	1881 ± 119	144 ± 20	13:1
0	6Cl	2^{I} , $4^{I}Cl_{2}$	-NH ₂	2183 ± 123	455±44	5:1
р	6Cl	$2_{I},4^{I}Cl_{2}$	-NCH3	2789 ± 19	978 ± 35	7:1
q	6C1	$2_{I}, 4_{I}Cl_{2}$	-N_CH3	> 5000	> 5000	1:1
r	6C1	2^{I} , 4^{I} Cl ₂	-H ₂ C-	> 5000	> 5000	1:1
SR141716A				1.8 ± 0.075	514 ± 30	0.0035:1
SR144528				70 ± 10	0.28 ± 0.04	250:1

^aAffinnity of compounds for the CB₁ receptor was evaluated using mouse cerebellum membrane and $[{}^{3}H]$ -CP 55,940. ^bAffinity of compunds for the CB₂ receptor was assayed using mouse spleen omogenate and $[{}^{3}H]$ -CP 55,940. K_{i} values were obtained from five indipendent experiments carry out in triplicate are expressed as the mean±standard error.

Scheme 1. (a) Na, dry EtOH, (COOEt)₂; (b) ArNHNH₂·HCl, EtOH; (c) KOH, MeOH; (d) SOCl₂, C_6H_5 –CH₃, CH₂Cl₂, TEA, Q–NH₂; (e) (CH₃)₂CO, EtOAc.

Biology

Affinities at CB_1 and CB_2 receptor for compounds **1** were assessed by competition of [³H]-CP 55,940 in mouse cerebellum membranes and in mouse spleen omogenate, respectively. For comparison purposes and as reference values, we have also included results obtained for the two prototypical cannabinoid ligands SR141716A and SR144528.

Results and Discussion

Examination of Table 1 reveals that several N-piperidin carboxamides containing the planar 1.4-dihvdroindeno[1,2-c]pyrazole template displayed very high in vitro binding affinity for CB₂ receptors comparable to, or exceeding, that of SR144528 claimed as first highly potent and selective ligand for the CB₂ receptor.²² Compound 1a, the ground term of this series of derivatives, possessed high CB₂ receptor affinity and low CB_1 receptor affinity exhibiting higher CB_2 to CB_1 selectivity (6029-fold) than did SR144528 (250-fold). To throw light on the significance of 6-Cl atom in 1a, the substitution with a variety of substituents, such as F, Br, I, CH₃ and OCH₃ groups, was made. Compounds 1b-d have a F, Br and I atom, respectively, in place of the chlorine. The fluoro- and bromo-substituted compounds displayed similar CB₂ affinities and selectivities to those of parent compound while the iodo-derivate was 16-fold less potent. Compounds 1e, f contained a C₅ and a C₇ chlorine atom, respectively. Their CB₂ receptor affinities were either slightly increased with C5 substitution (1e) or decreased with C₇ substitution (1f) suggesting that the shifting of the Cl atom from C_6 to C_5 was well tolerated. The C₆ unsubstituted compound 1g maintained a CB_2 receptor affinity that is comparable to that of 1a. Noticeably the C_6 methyl substituted analogue 1h

had K_i values of 363 nM for CB₁ receptor, 0.037 nM for CB_2 receptor and a CB_2/CB_1 selectivity ratio of 9810. As a result, 1h had both the highest potency and selectivity among all of the new ligand tested in this study. The 6-OCH₃ substituted analogue 1i possessed a 36-fold lower CB_2 receptor affinity than 1a whereas the CB_1 receptor affinity was increased. When the 2^I,4^I-dichloro substitution pattern on the N_1 -phenyl ring of **1a** was modified, some impact on CB₂ receptor affinity was observed. While the removal of the C₂,-Cl atom from the 2^I,4^I-Cl₂ phenyl moiety of 1a, leading to 1j, had a minimal effect on CB₂ receptor affinity (1j: $K_i = 0.9$ nM), the C₂, C₄ removal of both chlorine atoms, as illustrated by compound 1k ($K_i = 48$ nM), led to a marked decrease in affinity at CB_2 receptors. Next, a methoxy in position C₄, as for compound 11 conferred only modest CB₂ affinity ($K_i = 120$ nM). The importance of the piperidine ring of the lead compound **1a** for binding and selectivity was confirmed testing compounds 1m-r. Of the piperidine replacements made, only the pyrrolydinyl derivative 1m maintained a CB_2 receptor affinity even if 29-fold lower potent than **1a**.

In conclusion, the present study investigated a series of 1,4-dihydroindeno[1,2-c]pyrazol-derivatives **1** for their binding affinities for CB₁ and CB₂ receptors. Several compounds in this series exhibited a very high degree of potency and selectivity for CB₂ compared to CB₁. Therefore the synthesis of conformationally restricted analogues of the lead compound SR141716A resulted in either markedly improvement of the CB₂ binding affinity and selectivity. Hence, restriction of the flexible 5-aryl-4-methyl-pyrazole backbone into the rigid and planar 1,4-dihydroindeno[1,2-c]pyrazole architecture suggests that this spatial arrangement is a determining factor in the potency of these derivatives as CB₂ receptor ligands. Moreover, substituents such as F, Cl, Br and CH₃ group, introduced at C₆ on the phenyl ring of

the tricyclic system, give the highest increase in affinity and selectivity for CB₂ receptors. Among them, $1-(2^{I}, 4^{I}$ dichlorophenyl)-6-methyl-*N*-piperidin-1-yl-1,4-dihydroindeno[1,2-*c*]pyrazole-3-carboxamide (**1h**) deserves special attention as being, to our knowledge, the most potent and selective CB₂ ligand describe to date.

Experimental

Chemistry

General information. Melting points were obtained on a Köfler melting point apparatus and are uncorrected. IR spectra were recorded as thin films (for oils) or Nujol mulls (for solids) on NaCl plates with a Perkin-Elmer 781 IR spectrophotometer and are expressed in v (cm^{-1}) . UV–Vis spectra were recorded as ethanolic solution with a Perkin–Elmer λ 5 spectrophotometer and are the absorption wavelength expressed as λ_{max} in nm followed by log ε in dm³·mol⁻¹·cm⁻¹. All NMR spectra were taken on a Varian XL-200 NMR spectrometer with ¹H and ¹³C being observed at 200 and 50 MHz respectively. Chemical shifts for ¹H and ¹³C NMR spectra were reported in δ or ppm downfield from TMS [(CH₃)₄Si]. Multiplicities are recorded as s (singlet), br s (broad singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), m (multiplet). Atmospheric Pressure Ionization Electrospray (API-ES) mass spectra, when reported, were obtained on a Agilent 1100 series LC/MSD spectrometer. Elemental analyses were performed by Laboratorio di Microanalisi, Dipartimento di Chimica, Università di Sassari, Italy and are within $\pm 0.4\%$ of the calculated values. All reactions involving air or moisture-sensitive compounds were performed under argon atmosphere. Unless otherwise specified, all materials, solvents, reagents and precursors 2a-c,g,i were obtained from commercial suppliers. Flash chromatography (FC) was performed using Merck silica gel 60 (230-400 mesh ASTM). Thin layer chromatography (TLC) was performed with Polygram[®] SIL N-HR/HV₂₅₄ precoated plastic sheets (0.2 mm). The starting indanone $(2h)^{23}$ and diketoester $(3g)^{24}$ were prepared according to the previously described literature.

General procedure I: synthesis of carboxamides and hydrazides

A mixture of the appropriate 1,4-dihydroindeno[1,2c]pyrazole-3-carboxylic acid **5** (1 equiv, 4.0 mmol) and thionyl chloride (3.0 equiv) in toluene (30 mL) was refluxed for 2.5–10 h. The solvent and the excess of SOCl₂ were removed under reduced pressure and the resulting dark solid in CH₂Cl₂ (15 mL) was dropwise added to a solution of requisite amine or hydrazine (1.5 equiv) and Et₃N (1.5 equiv) in CH₂Cl₂ (15 mL) at 0 °C. The mixture was warmed to room temperature and stirred for 3 h. The mixture was then poured into a separatory funnel and brine was added. The aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layer were washed with water, dried over Na₂SO₄ and concentrated under reduced pressure. The analytically pure product was isolated by an appropriate method of purification as below indicated.

6-Chloro-1-(2^I,4^I-dichlorophenyl)-*N*-piperidin-1-yl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide 1a. General procedure I was used to convert 5a and N-aminopiperidine hydrochloride into the title product. The mixture was refluxed for 3 h purification by flash chromatography [petroleum ether/EtOAc, 6:4] afforded 1a (0.73g, 43%) as a yellow solid. $R_f = 0.41$ (petroleum ether/ EtOAc 6:4); mp 189/191 °C (triturated with hexane); IR 1665, 3250; UV $\lambda(\log \epsilon)$ 254.1 (4.42), 269.4 (4.51), 281.2 (4.55), 295.3 (4.38), 303.0 (4.28); ¹H NMR (CDCl₃) δ 1.27-1.48 (m, 2H), 1.51-1.80 (m, 4H), 2.82 (t, 4H), 3.82 (s, 2H), 6.83 (d, 1H), 7.13 (d, 1H), 7.43 (dd, 1H), 7.46 (s, 1H), 7.50 (s, 1H), 7.53-7.64 (m, 2H, NH exch. with D₂O); ¹³C NMR (DEPT, CDCl₃) 23.29 (CH₂), 25.36 $(CH_2 \times 2)$, 29.73 (CH_2) , 57.12 $(CH_2 \times 2)$, 119.77 (CH), 126.73 (CH), 126.97 (CH), 128.31 (CH), 129.68 (CH), 130.55 (CH), 128.81 (C), 129.62 (C), 131.74 (C), 133.04 (C), 135.67 (C), 136.24 (C), 141.47 (C), 150.78 (C), 151.29 (C), 158.86 (C); API-ES calcd for C₂₂H₁₉Cl₃N₄O 461.8, found 461.7 and Anal. calcd: C, 57.22; H, 4.15; Cl, 23.03; N, 12.13. Found: C, 57.18; H, 4.02; Cl, 23.21; N, 12.33.

1-(2¹,4¹-Dichlorophenyl)-6-fluoro-*N*-**piperidin-1-yl-1,4-di-hydroindeno[1,2-***c***]pyrazole-3-carboxamide 1b.** General procedure I was used to convert **5b** and *N*-aminopiperidine hydrochloride into the title product. The mixture was refluxed for 4 h purification by crystallization from ethyl acetate/petroleum ether afforded **1b** (0.71g, 40%) as a white solid. R_f =0.52 (petroleum ether/EtOAc 6:4); mp 221/222 °C; IR 1590, 1690, 3260; UV λ (log ϵ) 245.0 (4.46), 277.6 (4.30), 292.6 (4.16), 300.0 (4.09); ¹H NMR (CDCl₃) δ 1.38–1.55 (m, 2H), 1.68–1.88 (m, 4H), 2.88(t, 4H), 3.70 (s, 2H), 6.93 (d,1H), 7.28 (d,1H), 7.43–7.61 (m, 3H), 7.63 (br s, 1H, NH exch. with D₂O), 7.66 (d, 1H); API-ES calcd for C₂₂H₁₉Cl₂FN₄O 445.3, found 445.2, and Anal calcd: C, 59.34; H, 4.30; Cl, 15.92; F, 4.27; N, 12.58. Found: C, 59.06; H, 4.25; Cl, 15.81; F, 4.01; N, 12.77.

6-Bromo-1-(2^I,4^I-dichlorophenyl)-*N*-piperidin-1-yl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide 1c. General procedure I was used to convert 5c and N-aminopiperidine hydrochloride into the title product. The mixture was refluxed for 5 h purification by flash chromatography (petroleum ether/EtOAc, 1:1) afforded 1c (1.40g, 65%) as a bright yellow solid. $R_f = 0.67$ (petroleum ether/EtOAc 1:1); mp 181/183 °C (methanol); IR 1570, 1665, 3360; UV λ(log ε) 242.4 (4.22), 254.6 (4.27), 267.6 (4.28), 281.2 (4.28), 295.0 (4.18), 303.4 (4.09); ¹H NMR (CDCl₃) δ 1.38–1.54 (m, 2H), 1.69–1.92 (m, 4H), 2.88 (t, 4H), 3.89 (s, 2H), 6.84 (d, 1H), 7.37 (dd, 1H), 7.48 (dd, 1H), 7.55 (d, 1H), 7.65 (br s, 1H, NH exch. with D_2O), 7.68 (m, 2H); ¹³C NMR (DEPT, CDCl₃) 23.26 (CH₂), 25.34 (CH₂×2), 29.69 (CH₂), 57.11 (CH₂×2), 120.13 (CH), 128.32 (CH), 129.62 (CH), 129.67 (CH), 129.83 (CH), 130.55 (CH), 121.09 (C), 128.72 (C), 130.01 (C), 131.72 (C), 135.64 (C), 136.26 (C), 141.42 (C), 150.81 (C), 151.48 (C), 158.86 (C); API-ES calcd for C₂₂H₁₉BrCl₂N₄O 506.2, found 506.1 and Anal. calcd: C, 52.20; H, 3.78; Br, 15.78; Cl, 14.01; N, 11.07. Found: C, 52.13; H, 3.90; Br, 15.66; Cl, 14.24; N, 11.01.

1-(2^I,4^I-Dichlorophenyl)-6-iodo-*N*-piperidin-1-yl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide 1d. General procedure I was used to convert 5d and N-aminopiperidine hydrochloride into the title product. The mixture was refluxed for 4 h purification by crystallization from ethyl acetate/petroleum ether afforded 1d (0.56g, 25%) as a yellow solid. $R_f = 0.57$ (petroleum ether/EtOAc 1:1); mp 174/176 °C; IR 1570, 1650, 3170; UV λ(log ε) 247.6 (4.45), 250.8 (4.37), 278.6 (4.30), 304.2 (4.20); ¹H NMR (CDCl₃) δ 1.35–1.55 (m, 2H), 1.73–1.88 (m, 4H), 2.88 (t, 4H), 3.87 (s, 2H), 6.73 (d,1H), 7.43-7.72 (m, 5H, NH exch. with D_2O), 7.91 (s, 1H); ¹³C NMR (DEPT, CDCl₃) 23.28 (CH₂), 25.36 (CH₂×2), 29.52 (CH₂), 57.11 (CH₂×2), 120.45 (CH), 128.30 (CH), 129.65 (CH), 130.54 (CH), 135.42 (CH), 135.72 (CH), 92.43 (C), 128.55 (C), 130.52 (C), 131.71 (C), 135.65 (C), 136.24 (C), 141.41 (C), 150.90 (C), 151.58 (C), 158.84 (C); API-ES calcd for C₂₂H₁₉Cl₂IN₄O 553.2, found 553.1 and Anal. calcd: C, 47.76; H, 3.46; Cl, 12.82; I, 22.94; N, 10.13. Found: C, 47.74; H, 3.22; Cl, 12.91; I, 22.80; N, 10.35.

5-Chloro-1-(2^I,4^I-dichlorophenyl)-*N*-piperidin-1-yl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide 1e. General procedure I was used to convert 5e and N-aminopiperidine hydrochloride into the title product. The mixture was refluxed for 4 h purification by flash chromatography (petroleum ether/EtOAc, 6:4) afforded 1e (1.13 g, 63%) as a colourless solid. $R_f = 0.76$ (petroleum ether/ EtOAc 1:1); mp 160/162 °C (EtOAc/petroleum ether); IR 1570, 1655, 3200; UV $\lambda(\log \epsilon)$ 246.2 (4.24), 264.4 (4.26), 276.6 (4.25), 289.6 (4.12), 297.0 (3.90); ¹H NMR (CDCl₃) δ 1.37–1.56 (m, 2H), 1.67–1.90 (m, 4H), 2.90 (t, 4H), 3.92 (s, 2H), 7.69 (d,1H), 7.15-7.35 (m, 2H), 7.40-7.58 (m, 2H), 7.65 (s, 1H), 7.67 (br s, 1H, NH exch. with D₂O); ¹³C NMR (DEPT, CDCl₃) 23.29 (CH₂), 25.35 (CH₂×2), 29.46 (CH₂), 57.17 (CH₂×2), 117.41 (CH), 127.27 (CH), 128.29 (CH), 128.37 (CH), 129.70 (CH), 130.53 (CH), 128.44 (C), 131.71 (C), 131.85 (C), 132.58 (C), 135.59 (C), 136.27 (C), 141.53 (C), 147.07 (C), 150.98 (C), 158.77 (C); API-ES calcd for $C_{22}H_{19}Cl_3N_4O$ 461.8, found 461.7 and anal. calcd: C, 57.22; H, 4.15; Cl, 23.03; N, 12.13. Found: C, 57.11; H, 4.00; Cl, 23.25 N, 12.34.

7-Chloro-1-(2^I,4^I-dichlorophenyl)-*N*-piperidin-1-yl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide 1f. General procedure I was used to convert 5f and N-aminopiperidine hydrochloride into the title product. The mixture was refluxed for 4 h purification by flash chromatography (petroleum ether/EtOAc, 4:6) afforded 1f (1.20 g, 64%) as a yellow product. $R_f = 0.42$ (petroleum ether/ EtOAc 1:1); mp 237/238 °C (acetone); IR 1610, 1670, 3280; UV $\lambda(\log \epsilon)$ 248.4 (4.27), 260.6 (4.25), 293.4 (4.14), 300.2 (3.96); ¹H NMR (CDCl₃) δ 1.52–1.62 (m, 2H), 1.69–1.87 (m, 4H), 2.88 (t, 4H), 3.88 (s, 2H), 6.93 (d,1H), 7.26 (dd, 1H), 7.46 (s, 1H), 7.49–7.60 (m, 2H), 7.62 (br s, 1H, NH exch. with D_2O), 7.69 (d, 1H); ¹³C NMR (DEPT, CDCl₃) 23.29 (CH₂), 25.37 (CH₂×2), 29.55 (CH₂), 57.13 (CH₂×2), 118.64 (CH), 126.97 (CH), 127.28 (CH), 128.33 (CH), 128.70 (CH), 129.05 (CH), 128.94 (C), 131.76 (C), 132.65 (C), 132.96 (C), 135.60 (C), 136.25 (C), 141.50 (C), 148.07 (C), 151.73 (C), 158.80 (C); API-ES calcd for $C_{22}H_{19}Cl_3N_4O$ 461.8, found 461.7 and

anal. calcd: C, 57.22; H, 4.15; Cl, 23.03; N, 12.13. Found: C, 57.00; H, 4.35; Cl, 23.05; N, 12.22.

1-(2^I,4^I-Dichlorophenyl)-*N*-piperidin-1-yl-1,4-dihydroindeno[1,2-c]pvrazole-3-carboxamide 1g. General procedure I was used to convert 5g and N-aminopiperidine hydrochloride into the title product. The mixture was refluxed for 3 h purification by flash chromatography (petroleum ether/EtOAc, 1:1) afforded 1g (0.71 g, 83%) as a colourless solid. $R_f = 0.65$ (petroleum ether/EtOAc 1:1); mp 228 °C (EtOAc/petroleum ether); IR 1610, 1665, 3290; UV λ(log ε) 245.6 (4.20), 278.0 (4.09), 287.4 (4.02), 296.0 (3.98); ¹H NMR (CDCl₃) δ 1.34–1.56 (m, 2H), 1.65-1.87 (m, 4H), 2.89 (t, 4H), 3.90 (s, 2H), 6.99 (d, 1H), 7.19–7.39 (m, 2H), 7.44–7.63 (m, 3H), 7.62–7.71 (m, 2H, NH exch. with D_2O); ¹³C NMR (DEPT, CDCl₃) 23.26 (CH₂), 25.33 (CH₂×2), 29.71 (CH₂), 57.06 $(CH_2 \times 2)$, 118.97 (CH), 126.26 (CH), 126.58 (CH), 127.00 (CH), 128.14 (CH), 129.66 (CH), 130.44 (CH), 128.67 (C), 131.03 (C), 131.87 (C), 135.83 (C), 136.01 (C), 141.38 (C), 149.60 (C), 151.69 (C), 159.01 (C); API-ES calcd for C₂₂H₂₀Cl₂IN₄O 427.3, found 427.2 and anal. calcd: C, 61.83; H, 4.72; Cl, 16.59; N, 13.11. Found: C, 61.96; H, 4.52; Cl, 16.44; N, 13.26.

1-(2^I,4^I-Dichlorophenyl)-6-methyl-*N*-piperidin-1-yl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide 1 h. General procedure I was used to convert 5h and N-aminopiperidine hydrochloride into the title product. The mixture was refluxed for 5 h purification by flash chromatography (petroleum ether/EtOAc, 1:1) afforded 1h (1.2 g, 67%) as a colourless solid. $R_f = 0.60$ (petroleum ether/ EtOAc 1:1); mp 165°C (EtOAc/petroleum ether); IR 1670, 3250; UV λ(log ε) 250.6 (4.37), 282.2 (4.22), 293.2 (4.14), 301.6 (4.13); ¹H NMR (CDCl₃) δ 1.37–1.53 (m, 2H), 1.69–1.88 (m, 4H), 2.40(s, 3H), 2.89 (t, 4H), 3.66 (s, 2H), 6.89 (d,1H), 7.04 (d, 1H), 7.38 (s, 1H), 7.47 (dd, 1H), 7.55 (d, 1H), 7.66 (br s, 1H, NH exch. with D₂O), 7.67 (d, 1H); ¹³C NMR (DEPT, CDCl₃) 21.61 (CH₃), 23.31 (CH₂), 25.37 (CH₂×2), 29.61 (CH₂), 57.10 (CH₂×2), 118.70 (CH), 127.13 (CH), 127.29 (CH), 128.16 (CH), 129.69 (CH), 130.47 (CH), 128.26 (C), 128.52 (C), 131.87 (C), 135.95 (C), 137.23 (C), 141.38 (C), 144.74 (C), 150.03 (C), 151.81 (C), 159.15 (C); API-ES calcd for C₂₃H₂₂Cl₂N₄O 441.3, found 441.2 and anal. calcd: C, 62.59; H, 5.02; Cl, 16.07; N, 12.69. Found: C, 62.36; H, 5.22; Cl, 16.27; N, 12.61.

1-(2¹,4¹-Dichlorophenyl)-6-methoxy-*N***-piperidin-1-yl-1,4-dihydroindeno[1,2-***c***]pyrazole-3-carboxamide 1i.** General procedure I was used to convert **5i** and *N*-aminopiperidine hydrochloride into the title product. The mixture was refluxed for 2.5 h purification by flash chromatography (petroleum ether/EtOAc, 3:7) afforded **1i** (0.84 g, 46%) as a colourless solid. R_f =0.31 (petroleum ether/ EtOAc 1:1); mp 238 °C (EtOAc/petroleum ether); IR 1610, 1680, 3330; UV λ (log ε) 254.2 (4.32), 287. (4.10), 301.2 (4.08), 311.4 (4.06); ¹H NMR (CDCl₃) δ 1.37–1.54 (m, 2H), 1.64–1.88 (m, 4H), 2.88 (t, 4H), 3.84 (s, 3H), 3.87 (s, 2H), 6.77 (dd, 1H), 6.90 (d, 1H), 7.12 (s, 1H), 7.47 (dd, 1H), 7.55 (d, 1H), 7.65 (br s, 1H, NH exch. with D₂O), 7.66 (d, 1H); ¹³C NMR (DEPT, CDCl₃) 55.52 (CH₃), 23.32 (CH₂), 25.39 (CH₂ x 2), 29.93 (CH₂), 57.11 (CH₂×2), 112.13 (CH), 112.55 (CH), 119.69 (CH), 128.18 (CH), 129.71 (CH), 130.48 (CH), 124.28 (C), 127.56 (C), 131.80 (C), 135.91 (C), 135.96 (C), 141.33 (C), 151.64 (C), 151.95 (C), 159.16 (C), 159.27 (C); API-ES calcd for $C_{23}H_{22}Cl_2N_4O_2$ 457.3, found 457.2 and anal. calcd: C, 60.40; H, 4.85; Cl, 15.50; N, 12.25. Found: C, 60.59; H, 4.95; Cl, 15.44; N, 12.11.

6-Chloro-1-(4^I-chlorophenyl)-N-piperidin-1-yl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide 1j. General procedure I was used to convert 5j and N-aminopiperidine hydrochloride into the title product. The mixture was refluxed for 10 h purification by flash chromatography (petroleum ether/EtOAc, 1:1) afforded 1j (0.95g, 55%) as a colourless solid. $R_f = 0.63$ (petroleum ether/EtOAc 1:1); mp 233–234 °C (EtOAc/petroleum ether); IR 1595, 1690, 3290; UV λ(log ε) 255.0 (4.32), 279.8 (4.40), 295.4 (4.27), 304.4 (4.17); ¹H NMR (CDCl₃) 1.39–1.58 (m, 2H), 1.70–1.89 (m, 4H), 2.90 (t, 4H), 3.88 (s, 2H), 7.22– 7.39 (m, 2H), 7.53–7.77 (m, 6H, NH exch. with D_2O); 13 C NMR (DEPT, CDCl₃) 23.30 (CH₂), 25.39 (CH₂×2), 29.60 (CH₂), 57.14 (CH₂×2), 119.88 (CH), 124.55 (CH×2), 126.94 (CH×2), 129.78 (CH×2), 129.71 (C), 130.16 (C), 133.01 (C), 134.23 (C), 138.03 (C), 141.14 (C), 148.60 (C), 151.48 (C), 158.93 (C); API-ES calcd for $C_{22}H_{20}Cl_2N_4O$ 427.3, found 427.2 and anal. calcd: C, 61.83; H, 4.72; Cl, 16.59; N, 13.11. Found: C, 61.94; H, 4.59; Cl, 16.45; N, 13.16.

6 - Chloro - 1 - phenyl - N - piperidin - 1 - yl - 1,4 - dihydroindeno[1,2-c]pyrazole-3-carboxamide 1k. General procedure I was used to convert 5k and N-aminopiperidine hydrochloride into the title product. The mixture was refluxed for 7 h purification by flash chromatography (petroleum ether/EtOAc, 1:1) afforded 1k (1.06 g, 67%) as a colourless solid. $R_f = 0.53$ (petroleum ether/EtOAc 1:1); mp 191–193 °C (EtOAc/petroleum ether); IR 1595, 1690, 3330; UV $\lambda(\log \epsilon)$ 253.6 (4.30), 270.8 (4.37), 278.6 (4.38), 295.4 (4.23), 304.4 (4.14); ¹H NMR (CDCl₃) δ 1.39-1.53 (m, 2H), 1.69-1.87 (m, 4H), 2.89 (t, 4H), 3.88 (s, 2H), 7.23 (d, 1H), 7.35 (d, 1H), 7.43-7.78 (m, 7H, NH exch. with D₂O); ¹³C NMR (DEPT, CDCl₃) 23.31 (CH₂), 25.39 (CH₂×2), 29.59 (CH₂), 57.14 (CH₂×2), 119.96 (CH), 123.35 (CH×2), 126.82 (CH×2), 128.51 (CH×2), 129.60 (CH), 129.92 (C), 129.95 (C), 132.79 (C), 139.50 (C), 140.84 (C), 148.56 (C), 151.46 (C), 159.11 (C); API-ES calcd for $C_{22}H_{21}CIN_4O$ 392.9, found 392.8 and anal. calcd: C, 67.26; H, 5.39; Cl, 9.02 N, 14.26. Found: C, 67.40; H, 5.31; Cl, 9.21 N, 14.06.

6-Chloro-1-(4^I-methoxyphenyl)-*N*-**piperidin-1-yl-1,4-dihy-droindeno[1,2-***c***]pyrazole-3-carboxamide 11.** General procedure I was used to convert **51** and *N*-aminopiperidine hydrochloride into the title product. The mixture was refluxed for 3 h purification by trituration with petroleum ether containing a few drops of EtOAc afforded **11** (1.28 g, 75%) as a colourless solid. R_f =0.40 (petroleum ether/EtOAc 1:1); mp 166–167 °C; IR 1595, 1680, 3330; UV λ (log ε) 254.0 (4.24), 271.8 (4.36), 279.6 (4.39), 295.4 (4.24), 303.8 (4.13); ¹H NMR (CDCl₃) δ 1.38–1.53 (m, 2H), 1.69–1.91 (m, 4H), 2.89 (t, 4H), 3.87 (s, 2H), 3.91 (s, 3H), 7.05–7.13 (m, 2H), 7.18–7.35 (m, 2H), 7.52–7.64 (m, 3H), 7.71 (br s, 1H, NH exch. with D₂O);

¹³C NMR (DEPT, CDCl₃) 55.67 (CH₃), 23.30 (CH₂), 25.38 (CH₂×2), 29.59 (CH₂), 57.15 (CH₂×2), 114.65 (CH×2), 119.76 (CH), 124.94 (CH×2), 126.79 (CH×2), 129.41 (C), 129.99 (C), 132.59 (C), 132.68 (C), 140.40 (C), 148.67 (C), 151.40 (C), 159.20 (C), 159.65 (C); API-ES calcd for $C_{23}H_{23}CIN_4O_2$ 422.9, found 422.8 and anal. calcd: C, 65.32; H, 5.48; Cl, 8.38; N, 13.25. Found: C, 65.39; H, 5.44; Cl, 8.25; N, 13.14.

6-Chloro-1-(2^I,4^I-dichlorophenyl)-N-pyrrolidin-1-yl-1,4dihydroindeno[1,2-c]pyrazole-3-carboxamide 1m. General procedure I was used to convert 5a and N-aminopyrrolidine hydrochloride into the title product. Because of an excess of the hydrochloride salt, 3 equiv of TEA were used in this reaction. The mixture was refluxed for 3 h purification by crystallization from EtOAc afforded 1m (1.55 g, 86%) as a colourless solid. $R_f = 0.38$ (petroleum ether/EtOAc 1:1); mp 213/215°C; IR 1665, 3200; UV $\lambda(\log \epsilon)$ 255.0 (4.30), 266.8 (4.29), 281.6 (4.27), 294.6 (4.16), 302.8 (4.99); ¹H NMR (CDCl₃) δ 1.84–2.02 (m, 4H), 2.95–3.12 (m, 4H), 3.91 (s, 2H), 6.90 (d, 1H), 7.22 (dd, 1H), 7.43-7.60 (m, 3H), 7.61 (br s, 1H, NH exch. with D₂O), 7.67 (d, 1H); ¹³C NMR (DEPT, CDCl₃) 22.24 (CH₂×2), 29.76 (CH₂), 55.54 (CH₂×2), 119.75 (CH), 126.72 (CH), 126.96 (CH), 128.29 (CH), 129.66 (CH), 130.54 (CH), 128.64 (C), 129.58 (C), 131.76 (C), 133.03 (C), 135.63 (C), 136.25 (C), 141.35 (C), 150.78 (C), 151.26 (C), 159.74 (C); API-ES calcd for $C_{21}H_{17}Cl_3N_4O$ 447.7, found 447.6 and anal. calcd: C, 56.33; H, 3.83; Cl, 23.75; N, 12.51. Found: C, 56.39; H, 3.73; Cl, 23.56; N, 12.77.

6-Chloro-1-(2^I,4^I-dichlorophenyl)-N',N'-dimethyl-1,4-dihydroindeno[1,2-c]pyrazole-3-carbohydrazide 1n. General procedure I was used to convert 5a and dimethyl hydrazine into the title product. The mixture was refluxed for 3 h purification by crystallization from EtOAc afforded 1n (0.95 g, 67%) as a colourless solid. $R_f = 0.43$ (petroleum ether/EtOAc 2.5:7.5); mp 214/ 215°C; IR 1680, 3200; UV λ(log ε) 255.6 (4.30), 266.4 (4.29), 279.6 (4.28), 294.8 (4.15), 302.8 (4.06); ¹H NMR (CDCl₃) δ 2.73 (s, 6H), 3.92 (s, 2H), 6.90 (d, 1H), 7.23 (dd, 1H), 7.43-7.60 (m, 3H), 7.62 (br s, 1H, NH exch. with D_2O), 7.67 (d, 1H); ¹³C NMR (DEPT, CDCl₃) 29.76 (CH₂), 47.72 (CH₃×2), 119.74 (CH), 126.71 (CH), 126.97 (CH), 128.30 (CH), 129.65 (CH), 130.54 (CH), 128.61 (C), 129.53 (C), 131.75 (C), 133.05 (C), 135.59 (C), 136.28 (C), 141.24 (C), 150.81 (C), 151.23 (C), 159.21 (C); API-ES calcd for C₁₉H₁₅Cl₃N₄O 421.7, found 421.6 and anal. calcd: C, 54.11; H, 3.59; Cl, 25.22; N, 13.29. Found: C, 54.30; H, 3.38; Cl, 25.33; N, 13.20.

6-Chloro-1-(2¹,4^I-dichlorophenyl)-1,4-dihydroindeno[1,2c]pyrazole-3-carbohydrazide 10. General procedure I was used to convert 5a and hydrazine hydrate into the title product. The mixture was refluxed for 3 h purification by trituration with from petroleum ether afforded 10 (1.40 g, 90%) as a pink solid. R_f =0.29 (CHCl₃/ MeOH 8.5:1.5); mp 201/202 °C; IR 1660, 3160, 3340; UV λ (log ε) 253.4 (4.12), 281.6 (4.10), 294.4 (3.98), 302.8 (3.88); ¹H NMR (CDCl₃) 3.89 (s, 2H), 4.06 (br s, 2H, NH₂ exch. with D₂O), 6.91 (d, 1H), 7.24 (dd, 1H), 7.44–7.54 (m, 2H), 7.55 (s, 1H), 7.66 (d, 1H), 8.03 (br s, 1H, NH exch. with D₂O); ¹³C NMR (DEPT, CDCl₃/ DMSO) 28.52 (CH₂), 118.87 (CH), 125.56 (CH), 125.96 (CH), 127.43 (CH), 128.91 (CH), 129.31 (CH), 126.92 (C), 128.57 (C), 130.33 (C), 131.59 (C), 134.56 (C), 135.00 (C), 139.85 (C), 149.38 (C), 149.94 (C), 160.68 (C); API-ES calcd for $C_{17}H_{11}Cl_3N_4O$ 393.6, found 393.5 and anal. calcd: C, 51.87; H, 2.82; Cl, 27.02; N, 14.23. Found: C, 51.83; H, 2.70; Cl, 27.21; N, 14.29.

6-Chloro-1-(2^I,4^I-dichlorophenyl)-N-(4-methylpiperazin-1yl)-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamide 1q. General procedure I was used to convert 5a and N-amino-N-methyl piperazine into the title product. The mixture was refluxed for 3 h purification by crystallization from acetone containing a few drop of EtOAc afforded 1q (1.42 g, 60%) as a colourless solid. $R_f = 0.61$ (CHCl₃/MeOH 8.5:1.5); mp 172/173 °C; IR 1695, 3300; UV $\lambda(\log \epsilon)$ 255.8 (4.36), 265.6 (4.35), 280.4 (4.33), 282.2 (4.32), 295.0 (4.20), 303.0 (4.11); ¹H NMR (CDCl₃) δ 2.33 (s, 3H), 2.60–2.74 (m, 4H), 2.90–3.09 (m, 4H), 3.89 (s, 2H), 6.90 (d, 1H), 7.22 (dd, 1H), 7.45-7.58 (m, 3H), 7.60 (br s, 1H, NH exch. with D_2O), 7.67 (d, 1H); ¹³C NMR (DEPT, CDCl₃) 45.76 (CH₃), 29.74 (CH₂), 54.31 (CH₂×2), 55.58 (CH₂×2), 119.71 (CH), 126.66 (CH), 126.93 (CH), 128.26 (CH), 129.63 (CH), 130.48 (CH), 128.69 (C), 129.48 (C), 131.69 (C), 133.00 (C), 135.48 (C), 136.24 (C), 141.13 (C), 151.10 (C), 151.14 (C), 158.87 (C); API-ES calcd for C₂₂H₂₀Cl₃N₅O 476.8, found 476.7 and anal. calcd: C, 55.42; H, 4.23; Cl, 22.31; N, 14.69. Found: C, 55.26; H, 4.50; Cl, 22.20; N, 14.67.

6-Chloro-1-(2^I,4^I-dichlorophenyl)-N-[(1-ethylpyrrolidin-2-yl)methyl]-1,4-dihydroindeno[1,2-c] pyrazole-3-carboxamide 1r. General procedure I was used to convert 5a and N-ethyl-2-aminomethylpirrolidine into the title product. The mixture was refluxed for 3 h purification by crystallization from ethyl acetate afforded **1r** (1.54g, 79%) as a colourless solid. $R_f = 0.64$ (CHCl₃/MeOH 8.5:1.5); mp 213–215°C; IR 1655, 3390; UV λ(log ε) 253.6 (4.46), 265.4 (4.43), 279.4 (4.41), 294.6 (4.28), 303.0 (4.19); ¹H NMR (CDCl₃) δ 1.12 (t, 3H), 1.60–2.01 (m, 4H), 2.10–2.40 (m, 2H), 2.63–3.00 (m, 2H), 3.13– 3.35 (m, 2H), 3.65-3.80 (m, 1H), 3.89 (s, 2H), 6.91 (d, 1H), 7.18–7.38 (m, 2H, NH exch. with D₂O), 7.48 (dd, 1H), 7.51–7.61 (m, 2H), 7.66 (d, 1H); ¹³C NMR (DEPT, CDCl₃) 13.98 (CH₃), 22.87 (CH₂), 28.58 (CH₂), 29.71 (CH₂), 41.30 (CH₂), 48.54 (CH₂), 53.69 (CH₂), 62.78 (CH), 119.74 (CH), 126.71 (CH), 126.94 (CH), 128.24 (CH), 129.63 (CH), 130.54 (CH), 128.22 (C), 129.77 (C), 131.69 (C), 132.88 (C), 135.80 (C), 136.06 (C), 142.11 (C), 150.74 (C), 151.20 (C), 161.97 (C); API-ES calcd for C₂₄H₂₃Cl₃N₄O 489.8, found 489.7 and anal. calcd: C, 55.85; H, 4.73; Cl, 21.71; N, 11.44. Found: C, 58.68; H, 4.88; Cl, 21.61; N, 11.49.

6-Chloro-1-(2^I,4^I - dichlorophenyl)-*N***'-(1-methylethylidene)-1,4-dihydroindeno[1,2-***c***]pyrazole-3-carbohydrazide 1p.** Compound **1o** (0.5 g, 1.27 mmol) was dissolved in ethyl acetate (5 mL) and acetone (2 mL). The reaction mixture was stirred at reflux for 1 h and then cooled to room temperature. The crystallized product was filtered off to give the title compound **1p** (0.46g, 84%). R_f =0.23 (petroleum ether/EtOAc 1:1); mp 201/202 °C; IR 1730, 3360; UV λ (log ε) 263.6 (4.36), 282.2 (4.27), 294.4 (4.12), 303.0 (4.01); ¹H NMR (CDCl₃) δ 1.97 (s, 3H), 2.15 (s, 3H), 3.94 (s, 2H), 6.92 (d, 1H), 7.23 (dd, 1H), 7.51 (dd, 1H), 7.55 (s, 1H), 7.59 (s, 1H), 7.68 (d, 1H), 9.51 (br s, 1H, NH exch. with D₂O); ¹³C NMR (DEPT, CDCl₃) 16.62 (CH₃), 25.55 (CH₃), 29.80 (CH₂), 119.75 (CH), 126.73 (CH), 126.99 (CH), 128.26 (CH), 129.63 (CH), 130.56 (CH), 128.79 (C), 129.53 (C), 131.78 (C), 133.11 (C), 135.62 (C), 136.27 (C), 141.09 (C), 150.97 (C), 151.25 (C), 154.93 (C), 157.29 (C); API-ES calcd for C₂₀H₁₅Cl₃N₄O 433.7, found 433.6 and anal. calcd: C, 55.38; H, 3.49; Cl, 24.52; N, 12.92. Found: C, 55.60; H, 3.32; Cl, 24.39; N, 12.87.

General procedure II: synthesis of carboxylic acids

To a mixture of ester 4 (1.0 equiv, 5 mmol) in methanol (25 mL) was added a solution of potassium hydroxide (2.0 equiv) in methanol (18 mL). The resulting mixture was heated under reflux overnight. The mixture was allowed to cool to room temperature and then poured into water and acidified with 1N hydrochloric acid. The precipitate was filtered, washed with water and air-dried to yield the analytically pure acid.

6-Chloro-1-(2¹,4^I-dichlorophenyl)-1,4-dihydroindeno[1,2*c*]**pyrazole-3-carboxylic acid 5a.** General procedure II was used to convert **4a** into the title product **5a** (1.84 g, 97%) as a bright yellow solid. R_f = 0.60 (CHCl₃/MeOH 6:4); mp 263/265 °C; IR 1590, 1710, 3440; ¹H NMR (CDCl₃/DMSO) δ 3.43 (br s, 1H, OH exch. with D₂O), 3.86 (s, 2H), 6.94 (d, 1H), 7.24 (d, 1H), 7.47 (dd, 1H), 7.55 (s, 1H), 7.59 (s, 1H), 7.64 (dd, 1H). Anal. calcd for C₁₇H₉Cl₃N₂O₂: C, 53.79; H, 2.39; Cl, 28.02; N,7.38. Found: C, 53.65; H, 2.59; Cl, 28.33; N,7.22.

1-(2¹,4¹-Dichlorophenyl)-6-fluoro-1,4-dihydroindeno[1,2c]pyrazole-3-carboxylic acid 5b. General procedure II was used to convert **4b** into the title product **5b** (1.78 g, 98%) as a colourless solid. R_f =0.25 (petroleum ether/ EtOAc 6:4); mp 274/275 °C; IR 1600, 1700, 3435; ¹H NMR (CDCl₃/DMSO) δ 2.68 (br s, 1H, OH exch. with D₂O), 3.86 (s, 2H), 6.95 (d, 1H), 7.27 (d, 1H), 7.47 (d, 1H), 7.56 (s, 1H), 7.64 (m, 2H). Anal. calcd for C₁₇H₉Cl₂FN₂O₂: C, 56.22; H, 2.50; Cl, 19.52F, 5.23; N, 7.71. Found: C, 56.10; H, 2.32; Cl, 19.72; F, 5. 32; N, 7.66.

6-Bromo-1-(2¹,4^I-dichlorophenyl)-1,4-dihydroindeno[1,2*c*]pyrazole-3-carboxylic acid 5c. General procedure II was used to convert 4c into the title product 5c (1.80 g, 96%) as a lighter brown solid. R_f =0.49 (CHCl₃/MeOH, 9:1); mp 253/254 °C; IR 1590, 1720, 3400; ¹H NMR (DMSO/TFA) δ 3.58 (br s, 1H, OH exch. with D₂O), 3.85 (s, 2H), 6.90 (d, 1H), 7.25 (s, 1H), 7.43 (dd, 1H), 7.62 (dd, 1H), 7.70–7.87 (m, 2H). Anal. calcd for C₁₇H₉BrCl₂N₂O₂: C, 48.15; H, 2.14; Br, 18.84; Cl, 16.72 N, 6.61. Found: C, 48.33; H, 2.21; Br, 18.77; Cl, 16.70 N, 6.43.

1-(2^I,4^I-Dichlorophenyl)-6-iodo-1,4-dihydroindeno[1,2c]pyrazole-3-carboxylic acid 5d. General procedure II was used to convert 4d into the title product. Because of the low solubility of **4d** in methanol, a mixture of tetrahydrofuran/dioxane/ethanol (28/28/18.5 mL) was used. Compound **5d** (2.17 g, 92%) was isolated as a yellow solid. R_f =0.38 (petroleum ether/EtOAc, 1:1); mp 292 °C; IR 1590, 1710, 3380; ¹H NMR (DMSO) δ 3.67 (br s, 1H, OH exch. with D₂O), 3.83 (s, 2H), 6.77 (d, 1H), 7.60–7.94 (m, 4H), 8.03 (d, 1H). Anal. calcd for C₁₇H₉Cl₂IN₂O₂: C, 43.34; H, 1.93; Cl, 15.05; I, 26.94, 16.72 N, 5.95. Found: C, 43.38; H, 1.76; Cl, 15.35; I, 27.03, N, 5.75.

5-Chloro-1-(2¹,4¹-dichlorophenyl)-1,4-dihydroindeno[1,2*c***]pyrazole-3-carboxylic acid 5e.** General procedure II was used to convert **4e** into the title product **5e** (1.83 g, 96%) as a cream solid. R_f =0.61 (CHCl₃/MeOH, 9:1); mp 247/249 °C; IR 1610, 1720, 3420; ¹H NMR (CDCl₃/DMSO) δ 3.87 (s, 2H), 4.25 (br s, 1H, OH exch. with D₂O), 6.93 (d, 1H), 7.18–7.34 (m, 2H), 7.49 (s, 1H), 7,57–7.72 (m, 2H). Anal. calcd for C₁₇H₉Cl₃N₂O₂: C, 53.79; H, 2.39; Cl, 28.02; N,7.38. Found: C, 53.68; H, 2.52; Cl, 28.35; N,7.20.

7-Chloro-1-(2¹,4^I-dichlorophenyl)-1,4-dihydroindeno[1,2*c*]pyrazole-3-carboxylic acid 5f. General procedure II was used to convert 4f into the title product 5f (1.74 g, 92%) as a cream solid. R_f =0.38 (CHCl₃/MeOH, 9:1); mp > 300 °C dec.; IR 1610, 1700, 3410; ¹H NMR (CDCl₃/DMSO) δ 3.68 (br s, 1H, OH exch. with D₂O), 3.83 (s, 2H), 6.93 (d, 1H), 7.27 (dd, 1H), 7.46–7.73 (m, 4H). Anal. calcd for C₁₇H₉Cl₃N₂O₂: C, 53.79; H, 2.39; Cl, 28.02; N,7.38. Found: C, 53.78; H, 2.33; Cl, 28.25; N,7.22.

1-(2¹,4¹ - Dichlorophenyl) - 1,4- dihydroindeno[1,2-c]pyrazole-3-carboxylic acid 5g. General procedure II was used to convert **4g** into the title product **5g** (1.32 g, 75%) as a cream solid. R_f =0.48 (CHCl₃/MeOH, 8/2); mp 271–272 °C; IR 1705, 3350; ¹H NMR (CDCl₃/ DMSO) δ 3.49(br s, 1H, OH exch. with D₂O), 3.82 (s, 2H), 6.99 (d, 1H), 7.20–7.39 (m, 3H), 7.58 (d, 1H), 7.66 (s, 1H), 7.73 (d, 1H). Anal. calcd for C₁₇H₁₀Cl₂N₂O₂: C, 59.15; H, 2.92; Cl, 20.54; N, 8.12. Found: C, 59.33; H, 2.81; Cl, 20.42; N, 8.23.

1-(2¹,4¹-Dichlorophenyl)-6-methyl-1,4-dihydroindeno[1,2c]pyrazole-3-carboxylic acid 5h. General procedure II was used to convert **4h** into the title product **5h** (1.78 g, 98%) as a cream solid. R_f =0.49 (CHCl₃/MeOH, 9/1); mp 267 °C; IR 1710, 3440; ¹H NMR (CDCl₃/DMSO) δ 2.40 (s, 3H), 2.74 (br s, 1H, OH exch. with D₂O), 3.81 (s, 2H), 6.91 (d, 1H), 7.07 (d, 1H), 7.38 (s, 1H), 7.45 (dd, 1H), 7.58 (s, 1H), 7.63 (d, 1H). Anal. calcd for C₁₈H₁₂Cl₂N₂O₂: C, 60.19; H, 3.37; Cl, 19.74; N, 7.80. Found: C, 60.02; H, 3.17; Cl, 19.60; N, 7.96.

1-(2¹,4¹-Dichlorophenyl)-6-methoxy-1,4-dihydroindeno[1,2c]pyrazole-3-carboxylic acid 5i. General procedure II was used to convert 4i into the title product 5i (1.61 g, 86%) as a white solid. R_f =0.45 (CHCl₃/MeOH, 9/1); mp 274–275 °C; IR 1710, 3400; ¹H NMR (CDCl₃/ DMSO) δ 3.00 (br s, 1H, OH exch. with D₂O), 3.82 (s, 2H), 3.85 (s, 3H), 6.79 (dd, 1H), 6.92 (d, 1H), 7.12 (s, 1H), 7.45 (dd, 1H), 7.59 (s, 1H), 7.64 (d, 1H). Anal. calcd for $C_{18}H_{12}Cl_2N_2O_3$: C, 57.62; H, 3.22; Cl, 18.90; N, 7.47. Found: C, 57.53; H, 3.17; Cl, 18.80; N, 7.66.

6-Chloro-1-(4¹-chlorophenyl)-1,4-dihydroindeno[1,2-c]pyr-azole-3-carboxylic acid 5j. General procedure II was used to convert **4j** into the title product **5j** (1.69 g, 98%) as a white solid. R_f =0.76 (CHCl₃/MeOH, 8.5/1.5); mp 258 °C; IR 1720, 3440; ¹H NMR (CDCl₃/DMSO) δ 3.83 (s, 2H), 3.99 (br s, 1H, OH exch. with D₂O), 7.23–7.44 (m, 3H), 7.52–7.66 (m, 3H), 7.71 (d,1H). Anal. calcd for C₁₇H₁₀Cl₂N₂O₂: C, 59.15; H, 2.92; Cl, 20.54; N, 8.12. Found: C, 59.39; H, 3.04; Cl, 20.33; N, 8.26.

6-Chloro-1-phenyl-1,4-dihydroindeno[1,2-*c***]pyrazole-3carboxylic acid 5k.** General procedure II was used to convert **4k** into the title product **5k** (1.50 g, 97%) as a colourless solid. R_f =0.73 (CHCl₃/MeOH, 8.5/1.5); mp 247–248 °C; IR 1720, 3400; ¹H NMR (CDCl₃/DMSO) δ 3.84 (s, 2H), 7.21–7.47 (m, 2H), 7.48–7.63 (m, 6H, OH exch. with D₂O), 7.75 (d, 1H). Anal. calcd for C₁₇H₁₁ClN₂O₂: C, 65.71; H, 3.57; Cl, 11.41; N, 9.02. Found: C, 65.80; H, 3.41; Cl, 11.27; N, 9.22.

6-Chloro-1-(4^I-methoxyphenyl)-1,4-dihydroindeno[1,2*c*]pyrazole-3-carboxylic acid **5**I. General procedure II was used to convert **4**I into the title product. Because of the low solubility of **4**I in methanol, a mixture of methanol/tetrahydrofuran (45/12 mL) was used. Compound **5**I (1.56 g, 92%) was isolated as a yellow solid. R_f =0.52 (CHCl₃/MeOH, 8.5/1.5); mp 245–247 °C; IR 1710, 3410; ¹H NMR (CDCl₃/DMSO) δ 3.82 (s, 2H), 3.91 (s, 3H), 6.51 (br s, 1H, OH exch. with D₂O), 7.07 (d, 2H), 7.22–7.40 (m, 2H), 7.53 (s, 1H), 7.63 (d, 2H). Anal. calcd for C₁₈H₁₃ClN₂O₂: 63.44; H, 3.85; Cl, 10.40; N, 8.22. Found: 63.54; H, 3.66; Cl, 10.61; N, 8.11.

General procedure III: synthesis of tricyclic esters

To a stirred mixture of diketoester 3 (1.0 equiv, 4 mmol) and the requisite phenyl hydrazine hydrochloride (1.15 equiv) in EtOH (28 mL) was heated under reflux for 2–5 h. The reaction was allowed to cool to room temperature and the insoluble material was collected by filtration and washed with a small volume of ice-cool ethanol. Purification by flash chromatography afforded the analytically pure product.

Ethyl 6-chloro-1-(2^I,4^I-dichlorophenyl)-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxylate 4a. General procedure III was used to convert 3a and 2,4-dichlorophenylhydrazine hydrochloride into the title product. The mixture was heated at reflux for 5 h. Purification by flash chromatography (petroleum ether/EtOAc, 8.5/1.5) afforded 4a (1.12 g, 80%) as a off-white solid. $R_f = 0.54$ (petroleum ether/EtOAc, 8:2); mp 210–212°C (triturated with petroleum ether); IR 1710; ¹H NMR (CDCl₃) δ 1.45 (t, 3H), 3.85 (s, 2H), 4.41-4.54 (q, 2H), 6.92 (d, 1H), 7.24 (d, 1H), 7.46 (dd, 1H), 7.55 (s, 1H), 7.57 (s, 1H), 7.63 (dd, 1H). Anal. calcd for C₁₉H₁₃Cl₃N₂O₂: C, 55.98; H, 3.21; Cl, 26.09; N, 6.87. Found: C, 55.77; H, 3.20; Cl, 26.39; N, 6.55.

Ethyl 1-(2^I,4^I-dichlorophenyl)-6-fluoro-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxylate 4b. General proceconvert dure III was used to 3b and 2,4-dichlorophenylhydrazine hydrochloride into the title product. The mixture was heated at reflux for 3 h. Purification by flash chromatography (petroleum ether/ EtOAc, 8/2) afforded 4b (1.15 g, 85%) as a colourless solid. $R_f = 0.59$ (petroleum ether/EtOAc, 8/2); mp 197 °C (triturated with petroleum ether); IR 1725; ¹H NMR (CDCl₃) δ 1.45 (t, 3H), 3.86 (s, 2H), 4.40–4.55 (q, 2H), 6.95 (d, 1H), 7.28 (d, 1H), 7.45 (dd, 1H), 7.57 (s, 1H), 7.61 (s, 1H), 7.64 (dd, 1H). Anal. calcd for C₁₉H₁₃FCl₂N₂O₂: C, 58.33; H, 3.35; Cl, 18.12; F, 4.86; N, 7.16. Found: C, 58.61; H, 3.25; Cl, 18.15; F, 4.77; N, 7.38.

Ethyl 6-bromo-1-(2¹,4^I-dichlorophenyl)-1,4-dihydroindeno[1,2-*c***]pyrazole-3-carboxylate 4c.** General procedure III was used to convert **3c** and 2,4-dichlorophenylhydrazine hydrochloride into the title product. The mixture was heated at reflux for 5 h. Purification by flash chromatography (petroleum ether/EtOAc, 8.5/1.5) afforded **4c** (1.27 g, 80%) as a yellow solid. R_f =0.54 (petroleum ether/EtOAc, 8/2); mp 208–209 °C (triturated with petroleum ether); IR 1715; ¹H NMR (CDCl₃) δ 1.45 (t, 3H), 3.85 (s, 2H), 4.41–4.55 (q, 2H), 6.86 (d, 1H), 7.39 (dd, 1H), 7.49 (dd, 1H), 7.56 (s, 1H), 7.61 (s, 1H), 7.67 (dd, 1H). Anal. calcd for C₁₉H₁₃BrCl₂N₂O₂ C, 50.47; H, 2.90; Br, 17.67; Cl, 15.68; N, 6.20. Found C, 50.57; H, 3.03; Br, 17.55; Cl, 15.49; N,6.55.

Ethyl 1 - (2^I,4^I - dichlorophenyl) - 6 - iodo - 1,4 - dihydroindeno[1,2-c]pyrazole-3-carboxylate 4d. General procedure III was used to convert 3d and 2,4-dichlorophenylhydrazine hydrochloride into the title product. The mixture was heated at reflux for 4 h. Purification by flash chromatography (petroleum ether/ EtOAc, 8/2) afforded 4d (1.44 g, 81%) as a yellow solid. $R_f = 0.42$ (petroleum ether/EtOAc, 8/2); mp 236–238 °C (triturated with ethanol); IR 1720; ¹H NMR (CDCl₃) δ 1.45 (t, 3H), 3.83 (s, 2H), 4.38–4.53 (q, 2H), 6.75 (d, 1H), 7.25 (s, 1H), 7.45 (dd, 1H), 7.56 (s, 1H), 7,62 (dd, 1H), 7.92 (s, 1H). Anal. calcd for C₁₉H₁₃Cl₂IN₂O₂: C, 45.72; H, 2.63; Cl, 14.21; I, 25.43; N, 5.61. Found: C, 45.59; H, 2.50; Cl, 14.28; I, 25.31; N, 5.79.

Ethyl 5-chloro-1-(2^{I} , 4^{I} -dichlorophenyl)-1,4-dihydroindeno[1,2-*c*]pyrazole-3-carboxylate 4e. General procedure III was used to convert 3e and 2,4-dichlorophenylhydrazine hydrochloride into the title product. The mixture was heated at reflux for 2 h. Purification by flash chromatography (petroleum ether/EtOAc, 9/1) afforded 4e (0.93 g, 63%) as a off-white solid. R_f =0.63 (petroleum ether/EtOAc, 8:2); mp 191–193 °C (triturated with petroleum ether); IR 1715; ¹H NMR (CDCl₃) δ 1.46 (t, 3H), 3.88 (s, 2H), 4.43–4.56 (q, 2H), 6.92 (d, 1H), 7.17–7.34 (m, 2H), 7.46 (d, 1H), 7.59 (d, 1H), 7.65 (d, 1H). Anal. calcd for C₁₉H₁₃Cl₃N₂O₂: C, 55.98; H, 3.21; Cl, 26.09; N, 6.87. Found: C, 55.76; H, 3.42; Cl, 26.31; N, 6.85.

Ethyl 7-chloro- $1-(2^{I},4^{I}-dichlorophenyl)-1,4-dihydroin$ deno[1,2-c]pyrazole-3-carboxylate 4f. General procedureIII was used to convert 3f and 2,4-dichlorophenylhydrazine hydrochloride into the title product. The mixture was heated at reflux for 3 h. Purification by flash chromatography (petroleum ether/EtOAc, 8.5/1.5) afforded **4f** (0.80 g, 58%) as a yellowish solid. R_f =0.40 (petroleum ether/EtOAc, 8/2); mp 193–195°C (triturated with petroleum ether); IR 1730; ¹H NMR (CDCl₃) δ 1.45 (t, 3H), 3.84 (s, 2H), 4.40–4.55 (q, 2H), 6.95 (d, 1H), 7.28 (dd, 1H), 7.43–7.54 (m, 2H), 7.58 (d, 1H), 7.67 (d, 1H). Anal. calcd for C₁₉H₁₃Cl₃N₂O₂: C, 55.98; H, 3.21; Cl, 26.09; N, 6.87. Found: C, 55.71; H, 3.22; Cl, 26.22; N, 6.74.

Ethyl 1 - (2^{I} , 4^{I} - dichlorophenyl) - 1,4 - dihydroindeno[1,2 - *c*]pyrazole-3-carboxylate 4g. General procedure III was used to convert 3g and 2,4-dichlorophenylhydrazine hydrochloride into the title product. The mixture was heated at reflux for 3 h. Purification by flash chromatography (petroleum ether/EtOAc, 8.5/1.5) afforded 4g (0.90 g, 70%) as a off-white solid. R_f =0.63 (petroleum ether/EtOAc, 8/2); mp 165 °C (triturated with petroleum ether); IR 1710; ¹H NMR (CDCl₃) δ 1.45 (t, 3H), 3.88 (s, 2H), 4.41–4.55 (q, 2H), 7.01 (d, 1H), 7.31 (m, 3H), 7.44 (dd, 1H), 7.56 (d, 1H), 7.62 (d, 1H). Anal. calcd for C₁₉H₁₄Cl₂N₂O₂: C, 61.14; H, 3.78; Cl, 19.00; N, 7.51. Found: C, 61.22; H, 3.68; Cl, 19.21; N, 7.45.

Ethyl 1-(2^I,4^I-dichlorophenyl)-6-methyl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxylate 4h. General procedure III was used to convert 3h and 2,4-dichlorophenylhydrazine hydrochloride into the title product. The mixture was heated at reflux for 3 h. Purification by flash chromatography (petroleum ether/ EtOAc, 9.5/0.5) afforded 4h (1.25 g, 93%) as a colourless solid. $R_f = 0.55$ (petroleum ether/EtOAc, 9/1); mp 199 °C (triturated with petroleum ether); IR 1715; ¹H NMR (CDCl₃) δ 1.45 (t, 3H), 2.41 (s, 3H), 3.82 (s, 2H), 4.40-4.54 (q, 2H), 6.90 (d, 1H), 7.06 (d, 1H), 7.39 (s, 1H), 7.44 (dd, 1H), 7,61 (s, 1H), 7.63 (d, 1H). Anal. calcd for C₂₀H₁₆Cl₂N₂O₂: C, 62.03; H, 4.16; Cl, 18.31; N, 7.23. Found: C, 62.00; H, 4.01; Cl, 18.20; N, 7.44.

Ethyl 1-(2¹,4^I-dichlorophenyl)-6-methoxy-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxylate 4i. General procedure III was used to convert 3i and 2,4-dichlorophenylhydrazine hydrochloride into the title product. The mixture was heated at reflux for 4 h. Purification by flash chromatography (petroleum ether/EtOAc, 9/1) afforded 4i (1.20 g, 85%) as a colourless solid. R_f =0.62 (petroleum ether/EtOAc, 8/2); mp 168–169 °C (triturated with petroleum ether); IR 1720; ¹H NMR (CDCl₃) δ 1.44 (t, 3H), 3.83 (s, 2H), 3.84 (s, 3H), 4.40–4.54 (q, 2H), 6.78 (dd, 1H), 6.91 (d, 1H), 7.12 (d, 1H), 7.44 (dd, 1H), 7,59 (d, 1H), 7.63 (d, 1H). Anal. calcd for C₂₀H₁₆Cl₂N₂O₃: C, 59.57; H, 4.00; Cl, 17.58; N, 6.95. Found: C, 59.38; H, 4.13; Cl, 17.29; N, 7.10.

Ethyl 6-chloro-1-(4^I-chlorophenyl)-1,4-dihydroindeno[1,2c]pyrazole-3-carboxylate 4j. General procedure III was used to convert 3a and 4-chlorophenylhydrazine hydrochloride into the title product. The mixture was heated at reflux for 2.5 h. Purification by flash chromatography (petroleum ether/EtOAc, 9.5/0.5) afforded 4j (1.20 g, 91%) as a yellow solid. R_f =0.78 (petroleum ether/EtOAc, 8.5/1.5); mp 197–198 °C (triturated with ethanol); IR 1590, 1730; ¹H NMR (CDCl₃) δ 1.45 (t, 3H), 3.82 (s, 2H), 4.40–4.55 (q, 2H), 7.22–7.38 (m, 3H), 7.50–7.63 (m, 3H), 7.68 (d, 1H). Anal. calcd for C₁₉H₁₄Cl₂N₂O₂: C, 61.14; H, 3.78; Cl, 19.00; N, 7.51. Found: C, 61.02; H, 3.58; Cl, 19.21; N, 7.44.

Ethyl 6-chloro-1-phenyl-1,4-dihydroindeno[1,2-*c*]pyrazole-3-carboxylate 4k. General procedure III was used to convert 3a and phenylhydrazine hydrochloride into the title product. The mixture was heated at reflux for 2.5 h. Purification by flash chromatography (petroleum ether/EtOAc, 9.5/0.5) afforded 4k (1.14 g, 97%) as a off-white solid. R_f =0.63 (petroleum ether/EtOAc, 8.5/1.5); mp 155–157 °C (triturated with petroleum ether); IR 1600, 1710; ¹H NMR (CDCl₃) δ 1.46 (t, 3H), 3.84 (s, 2H), 4.42–4.56 (q, 2H), 7.24 (s, 1H), 7.37 (d, 1H), 7.44–7.66 (m, 5H), 7.74 (d, 1H). Anal. calcd for C₁₉H₁₅ClN₂O₂: C, 67.36; H, 4.46; Cl, 10.46; N, 8.27. Found: C, 67.22; H, 4.55; Cl, 10.25; N, 8.32.

Ethyl 6 - chloro - 1 - (4^I - methoxyphenyl) - 1,4 - dihydroindeno[1,2-*c***]pyrazole-3-carboxylate 4I.** General procedure III was used to convert **3a** and 4-methoxyphenylhydrazine hydrochloride into the title product. The mixture was heated at reflux for 3 h. Purification by flash chromatography (petroleum ether/EtOAc, 8/2) afforded **4I** (1.08 g, 84%) as a yellow product. R_f =0.52 (petroleum ether/EtOAc, 8/2); mp 199–200 °C (triturated with petroleum ether); IR 1700; ¹H NMR (CDCl₃) δ 1.45 (t, 3H), 3.82 (s, 2H), 3.90 (s, 3H), 4.40–4.55 (q, 2H), 7.06 (d, 2H), 7.22–7.36 (m, 2H), 7.54 (s, 1H), 7.62 (d, 2H,). Anal. calcd for C₂₀H₁₇ClN₂O₃: C, 65.13; H, 4.65; Cl, 9.61; N, 7.60. Found: C, 65.19; H, 4.52; Cl, 9.55; N, 7.41.

General procedure IV: synthesis of α, γ -diketoesters

Sodium metal (2.0 equiv) was added in small portion to dry ethanol (5 mL) and stirred until all the sodium had reacted. Ethyl oxalate (1.0 equiv) was added, followed by dropwise addition of a solution of appropriate indanone starting material (1.0 equiv, 6 mmol) in dry ethanol (30 mL). The solution was stirred at room temperature for 2–8 h. The mixture was slowly poured over 2 N hydrochloride acid and the resulting precipitate was collected by filtration and washed with a small volume of ice-cold ethanol and water. The airdried residue afforded the analytically pure product.

Ethyl β-(5-chloro-1-oxo-2,3-dihydro-1*H*-inden-2-yl)-αoxo-acetate 3a. General procedure IV was used to convert 2a into the title product. The mixture was stirred for 5 h at room temperature. Compound 3a (1.36 g, 85%) was isolated as a yellowish solid. R_f =0.61 (petroleum ether/EtOAc, 8/2); mp 122–124 °C (triturated with petroleum ether); IR 1600, 1670, 1710, 3400; ¹H NMR (CDCl₃) δ 1.43 (t, 3H), 3.99 (s, 2H), 4.35–4.49 (q, 2H), 7.43 (d, 1H), 7.55 (s, 1H), 7.80 (s, 1H), 13.28 (br s, 1H, OH exch. with D₂O). Anal. calcd for C₁₃H₁₁ClO₄: C, 58.55; H, 4.16; Cl, 13.29. Found: C, 58.43; H, 4.23; Cl, 13.22.

Ethyl β -(5-Fluoro-1-oxo-2,3-dihydro-1*H*-inden-2-yl)- α -oxo-acetate 3b. General procedure IV was used to convert 2b into the title product. The mixture was stirred

for 2 h at room temperature. Compound **3b** (1.26g, 84%) was isolated as a off-white solid. R_f =0.51 (petroleum ether/EtOAc, 8/2); mp 107 °C (triturated with petroleum ether); IR 1590, 1680, 1720, 3430; ¹H NMR (CDCl₃) δ 1.44 (t, 3H), 3.99 (s, 2H), 4.35–4.52 (q, 2H), 7.08 (m, 2H), 7.87 (t, 1H), 13.18 (br s, 1H, OH exch. with D₂O). Anal. calcd for C₁₃H₁₁FO₄: C, 62.40; H, 4.43; F, 7.59. Found: C, 62.33; H, 4.41; F, 7.69.

Ethyl β-(5-bromo-1-oxo-2,3-dihydro-1*H*-inden-2-yl)-αoxo-acetate 3c. General procedure IV was used to convert 2c into the title product. The mixture was stirred for 8 h at room temperature. Compound 3c (1.69 g, 91%) was isolated as a yellowish solid. R_f =0.29 (petroleum ether/EtOAc, 8/2); mp 107 °C (triturated with petroleum ether); IR 1600, 1670, 1720, 3400; ¹H NMR (CDCl₃) δ 1.43 (t, 3H), 3.98 (s, 2H), 4.35–4.52 (q, 2H), 7.57 (d, 1H), 7.70–7.82 (m, 2H), 12.95 (br s, 1H, OH exch. with D₂O). Anal. calcd for C₁₃H₁₁BrO₄: C, 50.18; H, 3.56; Br, 25.68. Found: C, 50.43; H, 3.61; Br, 25.44.

Ethyl β-(5-iodo-1-oxo-2,3-dihydro-1*H*-inden-2-yl)-αoxo-acetate 3d. General procedure IV was used to convert 2d into the title product. The mixture was stirred for 6 h at room temperature. Compound 3d (2.0 g, 66%) was isolated as a yellow solid. R_f =0.40 (petroleum ether/EtOAc, 8/2); mp 117–118 °C (triturated with petroleum ether); IR 1595, 1670, 1720, 3400; ¹H NMR (CDCl₃) δ 1.43 (t, 3H), 3.97 (s, 2H), 4.36–4.51 (q, 2H), 7.58 (d, 1H), 7.81 (d, 1H), 7.97 (s, 1H), 14.22 (br s, 1H, OH exch. with D₂O). Anal. calcd for C₁₃H₁₁IO₄: C, 43.60; H, 3.10; I, 35.44. Found: C, 43.65; H, 3.22; I, 35.32.

Ethyl β-(4-Chloro-1-oxo-2,3-dihydro-1*H*-inden-2-yl)-α-oxo-acetate 3e. General procedure IV was used to convert 2e into the title product. The mixture was stirred for 2 h at room temperature. Compound 3e (1.1 g, 69%) was isolated as a green solid. R_f =0.21 (petroleum ether/EtOAc, 8/2); mp 86 °C (triturated with petroleum ether); IR 1590, 1610, 1670, 1720, 2540; ¹H NMR (CDCl₃) δ 1.45 (t, 3H), 4.00 (s, 2H), 4.39–4.56 (q, 2H), 7.43 (t, 1H), 7.64 (d, 1H), 7.78 (d, 1H), 9.19 (br s, 1H, OH exch. with D₂O). Anal. calcd for C₁₃H₁₁ClO₄: C, 58.55; H, 4.16; Cl, 13.29. Found: C, 58.30; H, 4.19; Cl, 13.25.

Ethyl β-(6-chloro-1-oxo-2,3-dihydro-1*H*-inden-2-yl)-αoxo-acetate 3f. General procedure IV was used to convert 2f into the title product. The mixture was stirred for 8 h at room temperature. Compound 3e (1.2 g, 75%) was isolated as a brownish solid. R_f =0.37 (petroleum ether/EtOAc, 8/2); mp 128 °C (triturated with petroleum ether); IR 1600, 1730, 3400; ¹H NMR (CDCl₃) δ 1.45 (t, 3H), 2.70 (br s, 1H, OH exch. with D₂O), 3.97 (s, 2H), 4.36–4.50 (q, 2H), 7.49 (d, 1H), 7.60 (dd, 1H), 7.83 (s, 1H). Anal. calcd for C₁₃H₁₁ClO₄: C, 58.55; H, 4.16; Cl, 13.29. Found: C, 58.50; H, 4.09; Cl, 13.33.

Ethyl β -(1-Oxo-2,3-dihydro-1*H*-inden-2-yl)- α -oxo-acetate 3g.²⁴ General procedure IV was used to convert 2g into the title product. The mixture was stirred for 5 h at room temperature. Compound 3f (1.5 g, 98%) was isolated as a yellow solid. R_f =0.30 (petroleum ether/ EtOAc, 9/1); mp 68–70 °C (triturated with petroleum ether) (lit.²⁴ 69–70 °C); IR 1610, 1670, 1730, 3420; ¹H NMR (CDCl₃) δ 1.44 (t, 3H), 4.00 (s, 2H), 4.36–4.52 (q, 2H), 7.41 (t, 1H), 7.56 (d, 1H), 7.66 (t, 1H), 7.88 (d, 1H), 13.68 (br s, 1H, OH exch. with D₂O). Anal. calcd for C₁₃H₁₂O₄: C, 67.23; H, 5.21. Found C, 67.13; H, 5.35.

Ethyl β-(5-methyl-1-oxo-2,3-dihydro-1*H*-inden-2-yl)-α-oxo-acetate 3h. General procedure IV was used to convert 2h into the title product. The mixture was stirred for 5 h at room temperature. Compound 3h (1.16 g, 78%) was isolated as a yellow solid. R_f =0.57 (petroleum ether/EtOAc, 9:1); mp 110–112 °C (triturated with petroleum ether); IR 1620, 1670, 1720, 3420; ¹H NMR (CDCl₃) δ 1.43 (t, 3H), 2.48 (s, 3H), 3.94 (s, 2H), 4.43 (q, 2H), 7.25 (d, 1H), 7.34 (s, 1H), 7.75 (d, 1H),13.70 (br s, 1H, OH exch. with D₂O). Anal. calcd for C₁₄H₁₄O₄: C, 68.28; H, 5.73. Found: C, 68.18; H, 5.52.

Ethyl β-(5-methoxy-1-oxo-2,3-dihydro-1*H*-inden-2-yl)α-oxo-acetate 3i. General procedure IV was used to convert 2i into the title product. The mixture was stirred for 5 h at room temperature. Compound 3i (1.37 g, 87%) was isolated as a yellow solid. R_f =0.47 (petroleum ether/EtOAc, 8/2); mp 110 °C (triturated with petroleum ether); IR 1610, 1660, 1720, 3420; ¹H NMR (CDCl₃) δ 1.43 (t, 3H), 3.92 (s, 3H), 3.94 (s, 2H), 4.34– 4.49 (q, 2H), 6.92–7.04 (m, 2H), 7.79 (d, 1H), 13.19 (br s, 1H, OH exch. with D₂O). Anal. calcd for C₁₄H₁₄O₅ C, 64.12; H, 5.38. Found: C, 64.02; H, 5.45.

General procedure V: synthesis of chloroindanones

A solution of NaNO₂ (1.2 equiv) in water (2.6 mL) was added dropwise to a stirred solution of the amino-indanone starting material (1 equiv, 7.27 mmol) in 15% HCl (12 mL) at 0 °C. The resulting solution was added to a stirred solution of CuCl (3.5 equiv) in concd HCl (20 mL) at 0 °C. When the addition was complete, the mixture was stirred at room temperature for 2 h, poured into water and extracted with EtOAc (15 × 3 mL). The combined layers were dried over Na₂SO₄ and concentrated under reduced pressure. Purification by flash chromatography afforded the analytically pure product.

4-Chloroindan-1-one 2e. General procedure V was used to convert 4-amino-indanone²⁵ into the title product. Purification by flash chromatography (petroleum ether/ EtOAc, 8.5/1.5) afforded **2e** (0.76 g, 63%) as a brown solid. R_f =0.72 (petroleum ether/EtOAc, 8:2); mp 94–96 °C (triturated with petroleum ether) (lit²⁶ mp 93–94 °C); IR, ¹H NMR, and ¹³C NMR were in agreement with previously reported spectra.²⁶ Anal. calcd for C₉H₇ClO: C, 64.88; H, 4.23; Cl, 21.28. Found: C, 64.59; H, 4.41; Cl, 21.19.

6-Chloroindan-1-one 2f. General procedure V was used to convert 6-amino-indanone²⁵ into the title product. Purification by flash chromatography (petroleum ether/ EtOAc, 8.5/1.5) afforded **2f** (0.98 g, 98%) as a brown solid. R_f =0.57 (petroleum ether/EtOAc, 8:2); mp 76–78 °C (triturated with petroleum ether) (lit²⁶ mp 77–80 °C); IR, ¹H NMR, and ¹³C NMR were in agreement

with previously reported spectra.²⁶ Anal. calcd for C_9H_7CIO : C, 64.88; H, 4.23; Cl, 21.28. Found: C, 64.65; H, 4.11; Cl, 21.12.

5-Iodoindan-1-one 2d. A solution of NaNO₂ (1.2 equiv) in water (1.1 mL) was added dropwise to a stirred solution of the 5-amino-indanone²⁷ starting material (1 equiv, 3.1 mmol) in 15% HCl (2.5 mL) at 0 °C. To the resulting solution was added a solution of potassium iodide (1.2 equiv) in water (2 mL) and the whole was stirred at room temperature for 1.5 h and then warmed at 60 °C until gas development ceased. The mixture was allowed to cool to room temperature and then extracted with ether. The combined organic layers were washed with 5% solution of sodium tiosulfate, dried over Na₂SO₄ and concentrated under reduced pressure to afforded a crude oil. Purification by flash chromatography (petroleum ether/EtOAc, 9/1) afforded 2d (0.75g, 55.5%) as a red oil. $R_f = 0.78$ (petroleum ether/ EtOAc, 8/2); IR 1590, 1700; ¹H NMR (CDCl₃) δ 2.67 (t, 2H), 3.13 (t, 2H), 7.47 (d, 1H), 7.73 (d, 1H), 7.91 (s, 1H). Anal. calcd for C₉H₇IO: C, 41.89; H, 2.73; I, 49.18. Found: C, 41.77; H, 2.57; I, 49.31.

Biology

General information. Male CD1 mice weighting 20–25 g, (Charles River, Calco, LC Italy) were housed in the animal care quarters maintained at 22 ± 2 °C on a 12 h light/dark cycle, and food and water were available ad libitum. All experimental protocols were accepted by the Ethical Committee at the University of Cagliari and performed in strict accordance with the E.C. regulation for care and use of experimental animals (EEC N°86/ 609).

[³H]-CP-55,940 (specific activity 180 Ci/mmol) was purchased from New England Nuclear (Boston, MA, USA). CP 55,940, was obtained from Tocris Cookson Ltd (Bristol UK). For biochemical experiments, drugs were dissolved in dimethyl-sulfoxide (DMSO). DMSO concentration in the different assays never exceeded 0.1% (v/v) and was without effect on radioligand binding.

Tissue preparation. Mice were killed by cervical dislocation and the brain (minus cerebellum) for CB₁ receptor and spleen for CB₂ receptor were rapidly removed and placed on an ice-cold plate. After thawing, tissues were homogenated in 20 vol (w/v) of ice-cold TME buffer (50 mM Tris–HCl, 1 mM EDTA and 3.0 mM MgCl₂, pH 7.4). The homogenates were centrifuged at $1086 \times g$ for 10 min at 4°C, and the resulting supernatants were centrifuged at 45,000 × g for 30 min in a Beckman SW41 swing-out rotor, at 4°C.

Binding study at CB₁ and CB₂ receptor. [³H]-CP-55,940 binding was performed by a modification of a method previously described.²⁸ Briefly, the membranes (30–80 μ g of protein) were incubated with 0.5–1 nM of [³H]-CP55940 for 1 h at 30 °C in a final volume of 0.5 mL of TME buffer containing 5 mg/mL of fatty acid-free bovine serum albumin (BSA). Non-specific binding was estimated in the presence of 10 μ M of CP55940. All

binding studies were performed in disposable glass tubes pre-treated with Sigma-Cote (Sigma Chemical Co. Ltd., Poole, UK), in order to reduce non-specific binding. The reaction was terminated by rapid filtration through Whatman GF/C filters presoaked in 0.5% polyethyleneimine (PEI) using a Brandell 96-sample harvester (Gaithersburg, MD, USA). Filters were washed five times with 4 mL aliquots of ice cold Tris-HCl buffer (pH 7.4) containing 1 mg/mL BSA The filter bound radioactivity was measured in a liquid scintillation counter (Tricarb 2100, Packard, Meridien, USA) with 4 mL of scintillation fluid (Ultima Gold MV, Packard). Protein determination was performed by means of Bradford²⁹ protein assay using BSA as a standard according to the protocol of the supplier (Bio-Rad, Milan, Italy).

Data Analysis

All experiments were performed in triplicate and results were confirmed in at least five independent experiments. Data from radioligand inhibition experiments were analyzed by nonlinear regression analysis of a Sigmoid Curve using Graph Pad Prism program. IC₅₀ values were derived from the calculated curves and converted to K_i values as described previously.³⁰

References and Notes

1. Matsuda, L. A.; Lolait, S. J.; Young, A. C.; Bonner, T. I. *Nature* **1990**, *346*, 561.

- 2. Munro, S.; Thomas, K. L.; Abu-Shaar, M. Nature 1993, 365, 61.
- 3. Dewane, W. A.; Hanus, L.; Breuer, A.; Pertwee, R. G.; Stevenson, L. A.; Griffin, G.; Gibson, D.; Mandelbaum, A.;
- Etinger, A.; Mechoulam, R. Science 1992, 268, 1946.
- 4. Sugiura, T.; Kondo, S.; Sukagawa, A.; Natane, S.; Shinoda, A.; Itoh, K.; Yamashita, A.; Waku, K. *Biochem. Biophys. Res. Commun.* **1995**, *215*, 89.
- 5. Di Marzo, V. Life Sci. 1999, 65, 645.
- 6. Bisogno, T.; Maurelli, S.; Melk, D.; De Petrocellis, S.; Di Marzo, V. J. Biol. Chem. **1997**, 272, 3315.
- 7. Beltramo, M.; Stella, M.; Calignano, A.; Lin, S. Y.; Makrivannis, A.; Piomelli, D. *Science* **1997**, 277, 1094.
- 8. Hillard, C. J.; Edgemond, W. S.; Jarranhian, A.; Campbell, W. B. J. Neurochem. **1997**, *69*, 631.
- 9. Maccarone, M.; Van der Stelt, M.; Rossi, A.; Veldink, G. A.; Vliegenthart, J. F.; Finazzi-Agrò, A. J. Biol. Chem. **1998**, 273, 32332.
- 10. (a) Calignano, A.; Giuffrida, A.; Piomelli, D. *Nature* **1998**, *394*, 277. (b) Wolker, J. M.; Hohmann, A. G.; Martin, W. J.; Strangman, M. N.; Huang, S. M.; Tsou, K. *Life Sci.* **1999**, *65*, 665. (c) Fernandez-Rui, J.; Berrendero, F.; Hernan-

dez, M. L.; Ramos, J. A. *Nature* **2001**, *410*, 558. (d) Hampson, R. E.; Deadwyler, S. A. *Life Sci.* **1999**, *65*, 715. (e) Di Marzo, V.; Goparaju, S. K.; Wang, L.; Liu, J.; BatKai, S.; Jarai, Z.; Fezza, F.; Miura, G. I.; Palmiter, R. D.; Sugiura, T.; Kunos, G. *Nature* **2001**, *410*, 822. (f) Giuffrida, A.; Piomelli, D. *Chem. Phys. Lipids* **2000**, *108*, 151. (g) De Petrocellis, S.; Melk, D.; Bisogno, T.; Di Marzo, V. *Chem. Phys. Lipids* **2000**, *108*, 191.

11. (a) Calignano, A.; Kàtona, I.; Désarnaud, F.; Giuffrida, A.; La Rana, G.; Mackie, K.; Freund, T. F.; Piomelli, D. *Nature* **2000**, 408, 96. (b) Baker, D.; Pryce, G.; Croxford, J. L.; Brown, P.; Pertwee, R. G.; Huffmann, J. W.; Laywards, L. *Nature* **2000**, 404, 84. (c) Galve-Roperh, I.; Sanchez, C.; Cortés, M. L.; Gòmes Del Pulgar, T.; Izquierdo, M.; Guzmàn, H. *Nat. Med.* **2000**, 6, 313. (d) Pertwee, R. G. *Curr. Med. Chem.* **1999**, 6, 635. (e) Salzet, M.; Breton, C.; Bisogno, T.; Di Marzo, V. *Eur. J. Biochem.* **2000**, 267, 4917.

- 12. Seltzman, H. H. Curr. Med. Chem. 1999, 6, 685.
- 13. Devane, W. A.; Dyzarzlll, F. A.; Johnson, M. R.; Melvin, L. S.; Howlett, A. C. *Mol. Pharmacol.* **1988**, *34*, 605.
- 14. Melvin, L. S.; Milne, G. M.; Johnson, M. R.; Wilken,
- G. H.; Howlett, A. C. Drug Des. Disc. 1995, 13, 155.
- 15. Huffman, J. W. Curr. Med. Chem. 1999, 6, 705.
- 16. Goutopoulos, A.; Fan, P.; Khanolkar, D. A.; Xie, X.-Q.;
- Lin, S.; Makriyannis, A. Bioorg. Med. Chem. 2001, 9, 1673.
- 17. Barth, F.; Rinaldi-Carmona, M. Curr. Med. Chem. 1999, 6, 745.
- (a) Pertwee, R. G.; Fernando, S. R. *Br. J. Pharmacol.* **1996**, *118*, 2199. (b) Piomelli, D.; Giuffrida, A.; Calignano, A.; Rodriguez de Fonseca, F. *TiPS* **2000**, *21*, 218.
- 19. Fichera, M.; Cruciani, G.; Bianchi, A.; Musumarra, G. *J. Med. Chem.* **2000**, *43*, 2300.
- 20. Cannon, G. J. In Analogue design, chapter nineteen; Wolff, M. E., Ed.; Burger's Medicinal Chemistry and drug discovery,volume1: principles and practice, 5th ed; A Wiley-Interscience publication: New York, 1995; pp 788–791.
- 21. (a) Silverman, R. R. *The Organic Chemistry of Drug Design and Drug Action;* Academic Press: San Diego, 1992. (b) Wermuth, C. G. *The Practice of Medicinal Chemistry;* Academic Press: San Diego 1996.
- 22. Rinaldi-Carmona, M.; Barth, F.; Millian, J.; Derocq, J. M.; Casellas, P.; Congy, C.; Oustruc, D.; Sarran, M.; Bouaboula, M.; Calandra, B.; Portier, M.; Shire, D.; Brelière,
- J. C.; Le Fur, G. J. Pharmacol. Exp. Ther. 1998, 284, 644.
- 23. Boykin, D. W.; Hertzler, R. L.; Delphone, J. K.; Eisenbraun, E. J. J. Org. Chem. **1989**, 54, 1418.
- 24. Hamilton, R. W. J. Heterocyclic Chem. 1976, 13, 545.
- 25. Exner, O.; Friedl, Z. Collect. Czech. Chem. Commun. 1978, 43, 3227.
- 26. Takeuchi, R.; Yasue, H. J. Org. Chem. 1993, 58, 5386.
- 27. Allinger, L. A.; Jones, E. S. J. Org. Chem. 1962, 27, 70.
- 28. Rinaldi-Carmona, M.; Barth, F.; Heaulme, M.; Shire, D.;
- Calandra, B.; Congy, C.; Martinez, S.; Maruani, J.; Neliat, G.; Caput, D.; Ferrara, P.; Soubriè, P.; Brelière, J. C.; Le Fur, G.
- *FEBS Lett.* **1994**, *350*, 240. 29. Bradford, M. M. Anal. Biochem. **1976**, *72*, 248.
- 30. Cheng, X.; Prusoff, W. H. *Biochem. Pharmacol.* **1973**, *22*, 3099.