

A Journal of the Gesellschaft Deutscher Chemiker A Deutscher Chemiker GDCh International Edition www.angewandte.org

Accepted Article

Title: Three-Dimensional Heterocycles by Iron-Catalyzed Ring-Closing Sulfoxide Imidation

Authors: Hao Yu, Zhen Li, and Carsten Bolm

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201804284 Angew. Chem. 10.1002/ange.201804284

Link to VoR: http://dx.doi.org/10.1002/anie.201804284 http://dx.doi.org/10.1002/ange.201804284

WILEY-VCH

WILEY-VCH

Three-Dimensional Heterocycles by Iron-Catalyzed Ring-Closing Sulfoxide Imidation

Hao Yu, Zhen Li, and Carsten Bolm*

Abstract: A general and atom-economical method for the synthesis of cyclic sulfoximines by intramolecular imidations of azido-containing sulfoxides using a commercially available Fe^{II} phthalocyanine ($Fe^{II}Pc$) as catalyst has been developed. The method conveys a broad functional group tolerance and the resulting three-dimensional heterocycles can be modified by cross-coupling reactions.

Three-dimensional heterocycles are important molecular scaffolds in medicinal and crop protection chemistry.^[1] A high degree of saturation and the presence of stereogenic centers are also relevant factors for successful transitions of newly identified hits through clinical trials to drugs.^[2,3] Aiming at expanding the rather limited chemical space of heterocyles,^[4] we began studying synthetic opportunities leading to rather under-represented sulfur-based three-dimensional ring systems such as benzothiazines,^[5] benzo[c]isothiazole 2-oxides^[6] and related structures.^[7] In most protocols preformed sulfoximines were used as starting materials. Here, we introduce an alternative strategy. It starts from azido-substituted sulfoxides (1 and 3) and applies readily available Fe^{II} phthalocyanine (Fe^{II}Pc) as catalyst for ring-closing sulfur imidations providing products 2 and 4, respectively (Scheme 1).

Scheme 1. Iron-catalyzed intramolecular imidation of sulfoxides.

[*] H. Yu, Dr. Z. Li, Prof. Dr. C. Bolm Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1, 52074 Aachen (Germany) E-mail: carsten.bolm@oc.rwth-aachen.de Homepage: http://bolm.oc.rwth-aachen.de/

Supporting information for this article is given via a link at the end of the documen.

In recent years, iron has been recognized as important metal for homogeneous catalysis.^[8] Its use in catalyzed nitrene transfer reactions has led to convenient methods for C–H bond aminations.^[9] In many cases, organoazides have been applied as nitrene precursors, which is attractive because molecular nitrogen is the only byproduct being released during substrate activation.^[10-13] We^[14] and others^[12b,15] used combinations of iron catalysis and organoazides in sulfur imidations.^[16] As a result, sulfilimines and sulfoximines were obtained, which proved interesting for asymmetric synthesis^[17] and applications in crop protection and medicinal chemistry.^[18] We now wondered if such approach could also be utilized in the synthesis of sulfur-based three-dimensional heterocycles. The results of a proof-ofconcept study are summarized here.

In our previous work on intermolecular imidations of hydroxylamine triflic acid sulfoxides with salts. an FeSO₄/phenanthroline combination or Fe^{II}Pc was used as catalyst.^[14g] Those systems were applied here, attempting to cyclize [(3-azidopropyl)sulfinyl]benzene (1a) to 4,5-dihydro-3Hisothiazole 1-oxide 2a by intramolecular imidation. The first one, however, did not give any of the desired product (in benzene at 60 °C or 100 °C for 24 h; Table 1, entries 1 and 2). With Fe^{II}Pc as catalyst, only traces of 2a were observed when the reaction was performed at 60 °C (Table 1, entry 3). To our delight, the yield of 2a increased to 80% at 100 °C (Table 1, entry 4).

> Fe cat. ligand

Table 1. Evaluation of reaction conditions.[a]

S. ^[a]	
(20 mol %) (40 mol %)	O N Š
, <i>T</i> , 24 h, Ar	2a

Entry	Fe cat.	Ligand ^[b]	Solvent	Т	Yield	
				[°C]	[%] ^[c]	
1	FeSO₄	1,10-phen	benzene	60	n.r.	
2	FeSO ₄	1,10-phen	benzene	100	n.r.	
3	Fe ^{^{II}Pc}	-	benzene	60	trace	
4	Fe ^{II} Pc	-	benzene	100	80	
5	Fe [∥] Pc	-	toluene	100	95	
6	Fe ^{II} Pc	-	toluene	80	58	
7	Fe ^{II} Pc	-	PhCl	100	92	
8	Fe [∥] Pc	-	CH₃CN	100	42	
9	Fe [∥] Pc	-	DCE	100	66	
10	Fe [∥] Pc	-	dioxane	100	90	
11 ^[d]	Fe ["] Pc	-	toluene	100	95	
12 ^[e]	Fe ^{II} Pc	-	toluene	100	93	
13	-	-	toluene	100	n.r.	

[a] Reaction conditions: **1a** (0.20 mmol), Fe catalyst (0.04 mmol, 20 mol %), ligand (0.08 mmol, 40 mol %), solvent (0.2 M), under argon, 24 h. [b] 1,10-phen = 1,10-phenanthroline. [c] n.r. = no reaction. [d] Fe catalyst (0.02 mmol, 10 mol %). [e] Fe catalyst (0.01 mmol, 5 mol %).

To further optimize the reaction conditions, various solvents were screened (Table 1, entries 5-10). Toluene was identified as

10.1002/anie.201804284

WILEY-VCH

optimal medium leading to **2a** in 95% yield (Table 1, entry 5). Decreasing the reaction temperature from 100 °C to 80 °C lowered the yield of **2a** (Table 1, entry 5 versus entry 6). Noteworthy, the catalyst loading could be reduced from 20 mol % to 5 mol % without significantly affecting the product yield (Table 1, entry 5 versus entries 11 and 12). In the absence of the iron catalyst, no cyclization occurred (Table 1, entry 13).

Under the optimized conditions using 5 mol % of $Fe^{II}Pc$ as catalyst, various 3-azidoalkyl sulfoxides (**1a-r**) were subjected to the intramolecular imidation conditions next. As a result, the corresponding cyclized products **2** were obtained in yields up to 98% (Scheme 2).

Scheme 2. Iron-catalyzed intramolecular imidations of 3-azidosulfoxides **2** (0.2 mmol scale). [a] Use of 20 mol % of Fe^{II}Pc at 140 °C. [b] d.r. = 1 : 1. [c] Use of 20 mol % of Fe^{II}Pc.

In the series of 1-phenyl 4,5-dihydro-3H-isothiazole 1oxides 2a-k a wide range of substituents (including various alkyl and halo groups) were tolerated, and generally, high yields were achieved for products having para- and meta-substituted arenes (2a-h). Ortho-substituents on arenes appeared to hamper the cyclization leading to products 2i-k in only moderate yields (34-61%). 2-Naphthyl and 2-thiophenyl 3-azidopropyl sulfoxides (11 and 1m) were very viable substrates providing the corresponding 4,5-dihydro-3H-isothiazole 1-oxides 2I and 2m in 98% and 95% yield, respectively. To our surprise, cyclizations of sulfoxides with methyl-substituted azidoalkyl chains (1n and 1o) proved difficult and starting materials remained. However, raising the temperature from the common 100 °C to 140 °C and applying 20 mol % of the catalyst (instead of the normally used 5 mol %) allowed to isolate products 2n and 2o (with a d.r. of 1:1) in 94% and 90% yield, respectively.^[19] Non-aromatic products 2p and 2q were obtained in yields of 63% and 68%. Even with a catalyst loading 20 mol %, the yields of products 2r and 2s remained moderate. Presumaby due to subsequent reactions at the rather sensitive benzylic position, product 2r was isolated in 39% yield. Although 3,4,5,6-tetrahydro-1,2-thiazine 1-oxide 2s was formed in only 14% yield, the reaction was relevant as it indicated that also 4-azidobutyl sulfoxides could be applied as substrates.[20]

Starting from aryl sulfoxides with benzylic azido groups **3**, $3H-1\lambda^4$ -arylo[*d*]isothiazole 1-oxides **4** could be prepared (Scheme 3).^[21] In the series of products with an 1-ethyl substituent and a benzo[*d*]isothiazole core (**4a-h**), the unsubstituted aryl derivative **4a** gave the highest yield (98%). Otherwise, neither electronic nor steric effects induced by substituents appeared to play a major role leading to yields ranging for 77% (**4f**) to 93% (**4b** and **4e**) for such compounds. 1-Ethyl-3*H*-1 λ^4 -thieno[*d*]isothiazole 1-oxides **4i** was obtained in 80% yield. Also starting from aryl sulfoxides with cyclohexyl, phenyl and 2-thienyl groups was possible, and the corresponding products (**4j**: 92%, **4k**: 81%, and **4l**: 76%) were formed in good to high yields.

Scheme 3. Iron-catalyzed intramolecular imidations providing $3H-1\lambda^4$ -arylo[d]isothiazole 1-oxides **4** (0.2 mmol scale).

As demonstrated for the cyclization of (*S*)-**1a**, the intramolecular sulfur imidation is stereospecific (Scheme 4, top).^[22]

 $\ensuremath{\textit{Scheme}}$ 4. Stereospecific imidation (top) and cross couplings with 2f and 4h (middle and bottom).

With the goal to demonstrate the synthetic applicability of the products, 4,5-dihydro-3*H*-isothiazole 1-oxide **2f** and 3*H*-1 λ^4 -arylo[*d*]isothiazole 1-oxide **4h** were subjected to metal-catalyzed cross coupling conditions. Using **2f** in a Suzuki-type arylation reaction with phenylboronic acid in the presence of cesium hydroxide under catalysis with palladium/XPhos afforded cross coupling product **5** in 93% yield (Scheme 4, middle). Next, treating **4h** with bis(pinacolato)diboron (B₂Pin₂), PdCl₂(dppf) and potassium acetate in DMSO at 50 °C led to pinacol boronic acid ester **6** in 38% yield (Scheme 4, bottom). We consider product **6** as useful building block for further functionalizations as recently demonstrated for related sulfoximine derivatives.^[6b,23]

In summary, we developed an intramolecular imidation of sulfoxides using alkyl azides as nitrene precursors.^[24] Employing commercially available Fe^{II}phthalocyanine (Fe^{II}Pc) as catalyst, various cyclic sulfoximine derivatives can be accessed in up to 98% yield. The substrate scope is broad, leading to products, which can further be derivatized by metal-catalyzed cross-couplings.

Acknowledgements

H.Y. thanks the China Scholarship Council for a predoctoral stipend. Furthermore, we are grateful to Plamena Staleva (RWTH Aachen University) for HPLC analyses and Dr. José G. Hernández (RWTH Aachen University) for polishing the manuscript.

Keywords: azide • cyclic sulfoximine • intramolecular imidation • iron • nitrene transfer

- a) F. Lovering, J. Bikker, C. Humblet, J. Med. Chem. 2009, 52, 6752– 6756; b) F. Lovering, MedChemComm 2013, 4, 515–519.
- a) S. D. Roughley, A. M. Jordan, *J. Med. Chem.* 2011, *54*, 3451–3479;
 b) W. P. Walters, J. Green, J. R. Weiss, M. A. Murcko, *J. Med. Chem.* 2011, *54*, 6405–6416.
- For a review on molecular building blocks for medicinal chemistry, see:
 F. W. Goldberg, J. G. Kettle, T. Kogej, M. W. D. Perry, N. P. Tomkinson, Drug Discovery Today 2015, 20, 11–17.
- [4] For an interesting computational analysis involving a "virtual exploratory heterocyclic library", see: W. R. Pitt, D. M. Parry, B. G. Perry, C. R. Groom, J. Med. Chem. 2009, 52, 2952–2963.
- a) W. Dong, L. Wang, K. Parthasarathy, F. Pan, C. Bolm, Angew. [5] Chem. 2013, 125, 11787-11790; Angew. Chem. Int. Ed. 2013, 52, 11573-11576; b) Y. Cheng, C. Bolm, Angew. Chem. 2015, 127, 12526-12529; Angew. Chem. Int. Ed. 2015, 54, 12349-12352; c) J. Wen, D. P. Tiwari, C. Bolm, Org. Lett. 2017, 19, 1706-1709. For examples reported by others, see: d) M. Harmata, K. Rayanil, M. G. Gomes, P. Zheng, N. L. Calkins, S. Y. Kim, Y. Fan, V. Bumbu, D. R. Lee, S. Wacharasindhu, X. Hong, Org. Lett. 2005, 7, 143-145; e) M. Harmata, Y. Chen, C. L. Barnes, Org. Lett. 2007, 9, 5251-5253; f) A. Garimallaprabhakaran, X. Hong, M. Harmata, ARKIVOC 2012, 119-128; g) D. G. Yu, F. de Azambuja, F. Glorius, Angew. Chem. 2014, 126, 2792-2796; Angew. Chem. Int. Ed. 2014, 53, 2754-2758; h) R. K. Chinnagolla, A. Vijeta, M. Jeganmohan, Chem. Commun. 2015, 51, 12992-12995; i) W. H. Jeon, J. Y. Son, J. E. Kim, P. H. Lee, Org. Lett. 2016, 18, 3498-3501; j) S. R. K. Battula, G. V. Subbareddy, I. E. Chakravarthyd, V. Saravanan, RSC Adv. 2016, 6, 55710-55714; k) G. H. Ko, J. Y. Son, H. Kim, C. Y. Maeng, Y. Baek, B. Seo, K. Um, P. H.

Lee, *Adv. Synth. Catal.* **2017**, *359*, 3362–3370; I) G. Zheng, M. Tian, Y. Xu, X. Chen, X. Li, *Org. Chem. Front.* **2018**, *5*, 998–1002.

- a) P. Lamers, L. Buglioni, S. Koschmieder, N. Chatain, C. Bolm, Adv. Synth. Catal. 2016, 358, 3649–3653; b) P. Lamers, C. Bolm, Org. Lett. 2018, 20, 116–118. For examples reported by others including early work on related compounds, see: c) P. K. Claus, P. Hofbauer, W. Rieder, Tetrahedron Lett. 1974, 15, 3319–3322; d) P. Stoss, G. Satzinger, Chem. Ber. 1972, 105, 2575–2583; e) P. Stoss, G. Satzinger, Chem. Ber. 1975, 108, 3855–3863; f) J. R. Beck, J. A. Yahner, J. Org. Chem. 1978, 43, 2052–2055; g) E. A. Serebryakov, S. G. Zlotin, Russ. Chem. Bull. 2002, 51, 1549–1555.
- [7] a) H. Wang, M. Frings, C. Bolm, Org. Lett. 2016, 18, 2431–2434; b) R.
 A. Bohmann, Y. Unoh, M. Miura, C. Bolm, Chem. Eur. J. 2016, 22, 6783–6786; c) Y. Cheng, W. Dong, H. Wang, C. Bolm, Chem. Eur. J. 2016, 22, 10821–10824; d) Y. Cheng, W. Dong, K. Parthasarathy, C. Bolm, Org. Lett. 2017, 19, 726–729; e) J. Wen, H. Cheng, G. Raabe, C. Bolm, Org. Lett. 2017, 19, 6020–6023; f) D. Zhang, H. Wang, H. Cheng, J. G. Hernández, C. Bolm, Adv. Synth. Catal. 2017, 359, 4274–4277.
- [8] For selected reviews, see: a) C. Bolm, J. Legros, J. Le Paih, L. Zani, *Chem. Rev.* 2004, *104*, 6217–6254; b) B. D. Sherry, A. Fürstner, *Acc. Chem. Res.* 2008, *41*, 1500–1511; c) C. Bolm, *Nat. Chem.* 2009, *1*, 420; d) R. Jana, T. P. Pathak, M. S. Sigman, *Chem. Rev.* 2011, *111*, 1417–1492; e) I. Bauer, H. J. Knölker, *Chem. Rev.* 2015, *115*, 3170–3387; f) R. B. Bedford, *Acc. Chem. Res.* 2015, *48*, 1485–1493; g) C. Cassani, G. Bergonzini, C. J. Wallentin, *ACS Catal.* 2016, *6*, 1640–1648; h) A. Guérinot, J. Cossy, *Top. Curr. Chem.* 2016, *374*, 49–74; i) A. Fürstner, *ACS Cent. Sci.* 2016, *2*, 778–789; j) R. Shang, L. Ilies, E. Nakamura, *Chem. Rev.* 2017, *117*, 9086–9139.
- [9] For selected examples, see: a) S. M. Paradine, M. C. White, J. Am. Chem. Soc. 2012, 134, 2036–2039; b) Q. Nguyen, T. Nguyen, T. G. Driver, J. Am. Chem. Soc. 2013, 135, 620–623; c) Y. Liu, X. Guan, E. L. M. Wong, P. Liu, J. S. Huang, C. M. Che, J. Am. Chem. Soc. 2013, 135, 7194–7204.
- For reviews, see: a) T. Katsuki, *Chem. Lett.* 2005, *34*, 1304–1309; b) K.
 Shin, H. Kim, S. Chang, *Acc. Chem. Res.* 2015, *48*, 1040–1052; c) Y.
 Park, Y. Kim, S. Chang, *Chem. Rev.* 2017, *117*, 9247–9301.
- [11] Large-scale reactions with organic azides raise serious safety concerns. For recent industrial reports describing carefully devised protocols for a safer handling of organoazides (and HN₃), see: a) F. González-Bobes, N. Kopp, L. Li, J. Deerberg, P. Sharma, S. Leung, M. Davies, J. Bush, J. Hamm, M. Hrytsak, *Org. Process Res. Dev.* 2012, *16*, 2051–2057; b) D. S. Treitler, S. Leung, M. Lindrud, *Org. Process Res. Dev.* 2017, *21*, 460–467; c) A. Steven, P. Hopes, *Org. Process Res. Dev.* 2018, *22*, 77–81.
- [12] Continuous flow synthesis has elegantly been used for scaling-up reactions with organoazides (and HN₃). For examples related to the chemistry reported here, see: a) B. Gutmann, P. Elsner, A. O'Kearney-McMullan, W. Goundry, D. M. Roberge, C. O. Kappe, *Org. Process Res. Dev.* 2015, *19*, 1062–1067; b) H. Lebel, H. Piras, M. Borduy, *ACS Catal.* 2016, 6, 1109–1112; for a related extension, see: c) L. Degennaro, A. Tota, S. De Angelis, M. Andresini, C. Cardellicchio, M. A. Capozzi, G. Romanazzi, R. Luisi, *Eur. J Org. Chem.* 2017, 6486–6490.
- [13] For examples of Fe-catalyzed cyclization reactions forming heterocycles starting from organoazides, see: a) J. Bonnamour, C. Bolm, Org. Lett. 2011, 13, 2012–2014; b) E. T. Hennessy, T. A. Betley, Science 2013, 340, 591–595; c) D. A. Iovan, M. J. T. Wilding, Y. Baek, E. T. Hennessy, T. A. Betley, Angew. Chem. 2017, 129, 15805–15808; Angew. Chem. Int. Ed. 2017, 56, 15599–15602; d) N. C. Thacker, Z. Lin, T. Zhang, J. C. Gilhula, C. W. Abney, W. Lin, J. Am. Chem. Soc. 2016, 138, 3501–3509; e) Z, Lin, N. C. Thacker, T. Sawano, T. Drake, P. Ji, G. Lan, L. Cao, S. Liu, C. Wang, W. Lin, Chem. Sci. 2018, 9, 143–151; f) B. Bagh, D. L. J. Broere, V. Sinha, P. F. Kuijpers, N. P. van Leest, B. de Bruin, S. Demeshko, M. A. Siegler, J. I. van der Vlugt, J. Am. Chem. Soc. 2017, 139, 5117–5124.
- a) O. García Mancheño, C. Bolm, Org. Lett. 2006, 8, 2349–2352; b) O. García Mancheño, C. Bolm, Chem. Eur. J. 2007, 13, 6674–6681; c) O.

WILEY-VCH

García Mancheño, J. Dallimore, A. Plant, C. Bolm, Org. Lett. 2009, 11, 2429–2432; d) O. García Mancheño, J. Dallimore, A. Plant, C. Bolm,

Adv. Synth. Catal. 2010, 352, 309–316; e) J. Wang, M. Frings, C. Bolm, Angew. Chem. 2013, 125, 8823–8827; Angew. Chem. Int. Ed. 2013, 52, 8661–8665. f) J. Wang, M. Frings, C. Bolm, Chem. Eur. J. 2014, 20, 966–969; g) H. Yu, Z. Li, C. Bolm, Angew. Chem. 2018, 130, 330–333. Angew. Chem. Int. Ed. 2018, 57, 324–327.

- [15] a) T. Bach, C. Körber, *Tetrahedron Lett.* **1998**, *39*, 5015–5016; b) T. Bach, C. Körber, *Eur. J. Org. Chem.* **1999**, 1033–1039.
- [16] For a theoretical investigation of an azo iron complexe related to P450, see: Y. Moreau, H. Chen, E. Derat, H. Hirao, C. Bolm, S. Shaik, J. Phys. Chem. B 2007, 111, 10288–10299.
- [17] For reviews on preparative aspects and applications of sulfoximines, see: a) C. R. Johnson, *Acc. Chem. Res.* **1973**, 6, 341–347; b) C. R. Johnson, *Aldrichimica Acta* **1985**, *18*, 3–10; c) M. Reggelin, C. Zur, *Synthesis* **2000**, 1–64; d) M. Harmata, *Chemtracts* **2003**, *16*, 660–666; e) H. Okamura, C. Bolm, *Chem. Lett.* **2004**, *33*, 482–487; f) H. J. Gais, *Heteroat. Chem.* **2007**, *18*, 472–481; g) C. Worch, A. C. Mayer, C. Bolm, In Organosulfur Chemistry in Asymmetric Synthesis (Eds.: T. Toru, C. Bolm), Wiley-VCH, Weinheim, **2008**, pp. 209–229; h) V. Bizet, R. Kowalczyk, C. Bolm, *Chem. Soc. Rev.* **2014**, *43*, 2426–2438; i) X. Shen, J. Hu, *Eur. J. Org. Chem.* **2014**, 4437–4451; j) V. Bizet, C. M. M. Hendriks, C. Bolm, *Chem. Soc. Rev.* **2015**, *44*, 3378–3390; k) J. A. Bull, L. Degennaro, R. Luisi, *Synlett* **2017**, *28*, 2525–2538.
- [18] Crop protection: a) T. C. Sparks, M. R. Loso, J. M. Babcock, V. J. Kramer, Y. Zhu, B. M. Nugent, J. D. Thomas, in: *Modern Crop Protection Compounds* (Eds: W. Kraemer, U. Schirmer, P. Jeschke, M. Witschel), Wiley-VCH, Weinheim, **2012**, pp. 1226–1251; b) K. E. Arndt, D. C. Bland, N. M. Irvine, S. L. Powers, T. P. Martin, J. R. McConnell, D. E. Podhorez, J. M. Renga, R. Ross, G. A. Roth, B. D. Scherzer, T. W. Toyzan, *Org. Process Res. Dev.* **2015**, *19*, 454–462. Medicinal chemistry: c) U. Lücking, *Angew. Chem.* **2013**, *125*, 9570–9580; *Angew. Chem. Int. Ed.* **2013**, *52*, 9399–9408; d) M. Frings, C. Bolm, A. Blum, C. Gnamm, *Eur. J. Med. Chem.* **2017**, *126*, 225–245; e) J. A. Sirvent, U. Lücking, *ChemMedChem* **2017**, *12*, 487–501; f) G. Karpel-Massler, R. E. Kast, M. D. Siegelin, A. Dwucet, E. Schneider, M. A. Westhoff, C. R. Wirtz, X. Y. Chen, M. E. Halatsch, C. Bolm, *Neurochem. Res.* **2017**, *42*, 3382–3389.
- [19] Compound 2n has a *gem*-dimethyl group, which might be of relevance for applications in medical chemistry. For a recent Perspective, see: T. T. Talele, *J. Med. Chem.* 2018, *61*, 2166–2210.
- [20] For further examples of 6-membered products, see the Supporting Information.
- [21] Recently, we reported on a very different route towards structurally analogous, but isomeric benzo[c]isothiazole oxides. For details, see ref. 6.
- [22] Both (S)-1a and 2a had an e.r. of 76:24. Based on previous work (refs. 12b, 14a, and 14c) we assume that the imidation occurred with retention of configuration at sulfur.
- [23] a) A. D. Steinkamp, S. Wiezorek, F. Brosge, C. Bolm, *Org. Lett.* 2016, 18, 5348–5351; b) A. K. Bachon, A.D. Steinkamp, C. Bolm, *Adv. Synth. Catal.* 2018, 360, 1088–1093.
- [24] To the best of our knowledge, this is the first use of alkyl azides in such iron-catalyzed sulfoxide imidations. The previous conversions (ref. 14 and 15) involved azides with acyl, tosyl, or related electron-withdrawing substitutents.

This article is protected by copyright. All rights reserved.

WILEY-VCH

COMMUNICATION

An iron-catalyzed intramolecular imidation of azido-substituted sulfoxides was developed. The reactions furnish cyclic sulfoximines in high yields and exhibit a broad substrate scope. The products can further be functionalized

Hao Yu, Zhen Li, and Carsten Bolm*

Page No. – Page No.

Three-Dimensional Heterocycles by Iron-Catalyzed Ring-Closing Sulfoxide Imidation