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Three-Dimensional Heterocycles by Iron-Catalyzed Ring-Closing 
Sulfoxide Imidation 
Hao Yu, Zhen Li, and Carsten Bolm*  

Abstract: A general and atom-economical method for the synthesis 
of cyclic sulfoximines by intramolecular imidations of azido-
containing sulfoxides using a commercially available FeII 
phthalocyanine (FeIIPc) as catalyst has been developed. The 
method conveys a broad functional group tolerance and the resulting 
three-dimensional heterocycles can be modified by cross-coupling 
reactions. 

Three-dimensional heterocycles are important molecular 
scaffolds in medicinal and crop protection chemistry.[1] A high 
degree of saturation and the presence of stereogenic centers 
are also relevant factors for successful transitions of newly 
identified hits through clinical trials to drugs.[2,3] Aiming at 
expanding the rather limited chemical space of heterocyles,[4] we 
began studying synthetic opportunities leading to rather under-
represented sulfur-based three-dimensional ring systems such 
as benzothiazines,[5] benzo[c]isothiazole 2-oxides[6] and related 
structures.[7] In most protocols preformed sulfoximines were 
used as starting materials. Here, we introduce an alternative 
strategy. It starts from azido-substituted sulfoxides (1 and 3) and 
applies readily available FeII phthalocyanine (FeIIPc) as catalyst 
for ring-closing sulfur imidations providing products 2 and 4, 
respectively (Scheme 1). 
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Scheme 1. Iron-catalyzed intramolecular imidation of sulfoxides.  

 

 

In recent years, iron has been recognized as important metal 
for homogeneous catalysis.[8] Its use in catalyzed nitrene 
transfer reactions has led to convenient methods for C–H bond 
aminations.[9] In many cases, organoazides have been applied 
as nitrene precursors, which is attractive because molecular 
nitrogen is the only byproduct being released during substrate 
activation.[10-13] We[14] and others[12b,15] used combinations of iron 
catalysis and organoazides in sulfur imidations.[16] As a result, 
sulfilimines and sulfoximines were obtained, which proved 
interesting for asymmetric synthesis[17] and applications in crop 
protection and medicinal chemistry.[18] We now wondered if such 
approach could also be utilized in the synthesis of sulfur-based 
three-dimensional heterocycles. The results of a proof-of-
concept study are summarized here. 

In our previous work on intermolecular imidations of 
sulfoxides with hydroxylamine triflic acid salts, an 
FeSO4/phenanthroline combination or FeIIPc was used as 
catalyst.[14g] Those systems were applied here, attempting to 
cyclize [(3-azidopropyl)sulfinyl]benzene (1a) to 4,5-dihydro-3H-
isothiazole 1-oxide 2a by intramolecular imidation. The first one, 
however, did not give any of the desired product (in benzene at 
60 °C or 100 °C for 24 h; Table 1, entries 1 and 2). With FeIIPc 
as catalyst, only traces of 2a were observed when the reaction 
was performed at 60 °C (Table 1, entry 3). To our delight, the 
yield of 2a increased to 80% at 100 °C (Table 1, entry 4).  
 
Table 1. Evaluation of reaction conditions.[a] 

S
O N

S
O

N3

Fe cat. (20 mol %)
ligand (40 mol %)

solvent, T, 24 h, Ar
1a 2a  

Entry Fe cat. Ligand[b] Solvent T  
[°C] 

Yield 
[%][c] 

1 FeSO4 1,10-phen benzene 60 n.r. 

2 FeSO4 1,10-phen benzene 100 n.r. 

3 FeⅡPc - benzene 60 trace 

4 FeⅡPc - benzene 100 80 

5 FeⅡPc - toluene 100 95 

6 FeⅡPc - toluene 80 58 

7 FeⅡPc - PhCl 100 92 

8 FeⅡPc - CH3CN 100 42 

9 FeⅡPc - DCE 100 66 

10 FeⅡPc - dioxane 100 90 

11[d] FeⅡPc - toluene 100 95 

12[e] FeⅡPc - toluene 100 93 

13 - - toluene 100 n.r. 

[a] Reaction conditions: 1a (0.20 mmol), Fe catalyst (0.04 mmol, 20 mol %), 
ligand (0.08 mmol, 40 mol %), solvent (0.2 M), under argon, 24 h. [b] 1,10-
phen = 1,10-phenanthroline. [c] n.r. = no reaction. [d] Fe catalyst (0.02 mmol, 
10 mol %). [e] Fe catalyst (0.01 mmol, 5 mol %). 

To further optimize the reaction conditions, various solvents 
were screened (Table 1, entries 5-10). Toluene was identified as 
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optimal medium leading to 2a in 95% yield (Table 1, entry 5). 
Decreasing the reaction temperature from 100 °C to 80 °C 
lowered the yield of 2a (Table 1, entry 5 versus entry 6). 
Noteworthy, the catalyst loading could be reduced from 20 
mol % to 5 mol % without significantly affecting the product yield 
(Table 1, entry 5 versus entries 11 and 12). In the absence of 
the iron catalyst, no cyclization occurred (Table 1, entry 13). 

Under the optimized conditions using 5 mol % of FeIIPc as 
catalyst, various 3-azidoalkyl sulfoxides (1a-r) were subjected to 
the intramolecular imidation conditions next. As a result, the 
corresponding cyclized products 2 were obtained in yields up to 
98% (Scheme 2). 
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Scheme 2. Iron-catalyzed intramolecular imidations of 3-azidosulfoxides 2 (0.2 
mmol scale). [a] Use of 20 mol % of FeIIPc at 140 °C. [b] d.r. = 1 : 1. [c] Use of 
20 mol % of FeIIPc.  
 

In the series of 1-phenyl 4,5-dihydro-3H-isothiazole 1-
oxides 2a-k a wide range of substituents (including various alkyl 
and halo groups) were tolerated, and generally, high yields were 
achieved for products having para- and meta-substituted arenes 
(2a-h). Ortho-substituents on arenes appeared to hamper the 
cyclization leading to products 2i-k in only moderate yields (34-
61%). 2-Naphthyl and 2-thiophenyl 3-azidopropyl sulfoxides (1l 
and 1m) were very viable substrates providing the 
corresponding 4,5-dihydro-3H-isothiazole 1-oxides 2l and 2m in 
98% and 95% yield, respectively. To our surprise, cyclizations of 
sulfoxides with methyl-substituted azidoalkyl chains (1n and 1o) 
proved difficult and starting materials remained. However, 
raising the temperature from the common 100 °C to 140 °C and 
applying 20 mol % of the catalyst (instead of the normally used 5 
mol %) allowed to isolate products 2n and 2o (with a d.r. of 1:1) 
in 94% and 90% yield, respectively.[19] Non-aromatic products 2p 
and 2q were obtained in yields of 63% and 68%. Even with a 
catalyst loading 20 mol %, the yields of products 2r and 2s 
remained moderate. Presumaby due to subsequent reactions at 
the rather sensitive benzylic position, product 2r was isolated in 
39% yield. Although 3,4,5,6-tetrahydro-1,2-thiazine 1-oxide 2s 
was formed in only 14% yield, the reaction was relevant as it 
indicated that also 4-azidobutyl sulfoxides could be applied as 
substrates.[20] 

Starting from aryl sulfoxides with benzylic azido groups 3, 
3H-1λ4-arylo[d]isothiazole 1-oxides 4 could be prepared 
(Scheme 3).[21] In the series of products with an 1-ethyl 
substituent and a benzo[d]isothiazole core (4a-h), the 
unsubstituted aryl derivative 4a gave the highest yield (98%). 
Otherwise, neither electronic nor steric effects induced by 
substituents appeared to play a major role leading to yields 
ranging for 77% (4f) to 93% (4b and 4e) for such compounds. 1-
Ethyl-3H-1λ4-thieno[d]isothiazole 1-oxides 4i was obtained in 
80% yield. Also starting from aryl sulfoxides with cyclohexyl, 
phenyl and 2-thienyl groups was possible, and the 
corresponding products (4j: 92%, 4k: 81%, and 4l: 76%) were 
formed in good to high yields. 
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Scheme 3. Iron-catalyzed intramolecular imidations providing 3H-1λ4-
arylo[d]isothiazole 1-oxides 4 (0.2 mmol scale).  

 
As demonstrated for the cyclization of (S)-1a, the intra-

molecular sulfur imidation is stereospecific (Scheme 4, top).[22]  
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Scheme 4. Stereospecific imidation (top) and cross couplings with 2f and 4h 
(middle and bottom).  
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With the goal to demonstrate the synthetic applicability of 
the products, 4,5-dihydro-3H-isothiazole 1-oxide 2f and 3H-1λ4-
arylo[d]isothiazole 1-oxide 4h were subjected to metal-catalyzed 
cross coupling conditions. Using 2f in a Suzuki-type arylation  
reaction with phenylboronic acid in the presence of cesium 
hydroxide under catalysis with palladium/XPhos afforded cross 
coupling product 5 in 93% yield (Scheme 4, middle). Next, 
treating 4h with bis(pinacolato)diboron (B2Pin2), PdCl2(dppf) and 
potassium acetate in DMSO at 50 °C led to pinacol boronic acid 
ester 6 in 38% yield (Scheme 4, bottom). We consider product 6 
as useful building block for further functionalizations as recently 
demonstrated for related sulfoximine derivatives.[6b,23] 

In summary, we developed an intramolecular imidation of 
sulfoxides using alkyl azides as nitrene precursors.[24] Employing 
commercially available FeIIphthalocyanine (FeIIPc) as catalyst, 
various cyclic sulfoximine derivatives can be accessed in up to 
98% yield. The substrate scope is broad, leading to products, 
which can further be derivatized by metal-catalyzed cross-
couplings. 
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developed. The reactions furnish cyclic sulfoximines in high yields and exhibit a 
broad substrate scope. The products can further be functionalized 
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