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Summary of main observation and conclusion  A visible light driven Cu(I)-catalyzed intermolecular oxyamination of electron-deficient olefins has been 
achieved by using O-benzoylhydroxylamines as donors both for amine and oxygen. The transformation properties afford mild conditions and a wide 
substrate scope, providing access to ester derivatives of β-amino alcohols with good yields and high regioselectivity. 

Background and Originality Content 
Ester derivatives of β-amino alcohols[1] are not only present in 

natural compounds and bioactive molecules but also have been 
utilized in modern organic synthesis as ligands or auxiliaries. 
Therefore, considerably more efforts have been made for the 
pursiut of new synthetic methods for the construction of β-amino 
alcohols derivatives. Electrophilic difunctionalization of olefins[2-5] 
has proven to be a useful integrated strategy toward synthesis of 
polyfunctionalized compounds. Particularly, the straightforward 
conversion of alkenes via an oxyamination process are efficient 
approaches to access β-amino alcohols derivatives with 
concomitant formation of C-O and C-N bonds. In 2002, Gottlich’s 
group developed a Cu-catalyzed intramolecular oxyamination of 
alkenes, providing pyrrolidine and piperidine in a 3:1 
regioselectivity (Scheme 1, I).[6] In 2007, Yoon and co-workers 
reported an impressive work on copper(II)-catalyzed 
regioselective addition of N-sulfonyl oxaziridine to styrenes and 
electron-rich olefins.[7] In 2016, Loh and co-workers disclosed a 
copper/bipy-catalyzed intermolecular oxyamination of 
electron-deficient olefins by using N-acyloxyamines as donors for 
amine and oxygen (Scheme 1, II)[8]. Although these available 
synthetic methods were shown as efficient and powerful 
strategies to introduce amino groups and hydroxyl groups in the 
same time, the methods often require high reaction temperature 
and suffer a significant challenge of controlling the regioselectivity. 
Therefore, the development of an atom-economical and 
environment-beneficial method for intermolecular alkene 
oxyamination would be important from either an academic or 
industrial development perspective. 

Visible light driven photocatalysis is a powerful tool that can 
be integrated to solve useful organic transformations under 
economical and environmental benefits methods.[9] Through the 
tireless efforts of chemists, a good number of significant reactions, 
notably visible-light-driven difunctionalization of alkenes have 
been developed.[10] Nevertheless, significant progress has been 
made in the metal-catalyzed amination using 
O-benzoylhydroxylamines as an electrophilic amination 

reagent,[11] the initial electrophilic activation of alkenes with 
O-benzoylhydroxylamines in visible-light photoredox catalysis 
reaction has not been achieved. In addition, the application of 
O-benzoylhydroxylamines in a single transformation as well as 
amine and oxygen donors has been much less explored.[8, 11,12] 
Herein, we wish to exploit the visible light driven regioselective 
oxyamination of electron-deficient olefins with 
O-benzoylhydroxylamines (Scheme 1, III). 

Scheme 1. Difunctionalization of alkenes for the synthesis of valuable ester 
derivatives of β-amino alcohols 
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Results and Discussion 
Our study began with the visible light-promoted 
copper(I)-catalyzed difunctionalization reaction of unsaturated 
ketone 1a and O-benzoylhydroxylamine 2a (Table 1). In DCM at 
25 oC under an Ar atmosphere, a catalytic amount of CuI (10 
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mol%) and fac-Ir(ppy)3 (2 mol%) as the cooperative catalysts 
delivered the desired product 3aa in 64% yield under 40 h 
irradiated by a 3 W blue LED lamp (Table 1, entry 1). Further 
investigation of copper catalysts indicated that only copper 
halides such as CuCl, CuCl2, CuBr, and CuBr2 (Table 1, entry 2-5) 
showed catalytic activity for this reaction and the order in which 
the yield increased Cl < Br < I, indicating that halide counter ions 
significant effect this process.[13] To further confirmed the role of 
halides, numbers of coppers such as Cu(CH3CN)4PF6, 
Cu(CH3CN)4BF4, CuOAc, Cu(OAc)2, and Cu(OTf)2 were used as 
catalysts. Regretfully, all of them failed to give any product (Table 
1, entries 6-10). Ir(ppy)2(dtbbpy)PF6 and Ru(bpy)3(PF6)2 as the 
commonly photocatalysts were also tested (Table 1, entries 
11-12). To our delight, the desired product 3aa was obtained in 
85% yield (Table 1, entry 12), while Ru(bpy)3(PF6)2 was) was used 
as photocatalyst. The use of other solvents, such as DCE, 
1,4-dioxane, Et2O and THF, didn’t give the best yields of 3aa 
(Table 1, entries 13-16). In the absence of photocatalyst, copper 
catalysts or visible light could not give the product at room 
temperature (Table 1, entries 17-19). It was demonstrated that 
the cooperative catalysts and irradiation were the things of 
indispensability in this transformation.  

Table 1. Optimization of reaction conditionsa 
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Entry Photo-catalyst Cu catalyst Solven Yield (%)b 

1 I CuI DCM 64 

2 I CuCl DCM trace 

3 I CuBr DCM 42 

4 I CuCl2 DCM trace 

5 I CuBr2 DCM 55 

6 I Cu(CH3CN)4PF6 DCM NR 

7 I Cu(CH3CN)4BF4 DCM NR 

8 I CuOAc DCM NR 

9 I Cu(OAc)2 DCM NR 

10 I Cu(OTf)2 DCM NR 

11 II CuI DCM 44 

12 III CuI DCM 85 

13 III CuI DCM 62 

14 III CuI Et2O NR 

15 III CuI 1,4-dioxane trace 

16 III CuI THF NR 

17 III -- DCM NR 

18 -- CuI DCM NR 

19 III CuI DCM NR 
a Unless otherwise noted, reaction conditions are as follows: 1a (0.1 
mmol), 2a (0.11 mmol), photocatalyst (0.002 mmol), Cu catalyst (0.01 
mmol), solvent (1.5 mL), 3 W blue LED, 25 oC under an Ar atmosphere. b 
Isolated yield. c Reaction carried out in the dark  

With the optimal conditions, we first tested the feasibility of 
substrate α,β-unsaturated ketones 1a-t (Scheme 2). Generally, 
the difunctionalization reaction proceeded smoothly with 
α,β-unsaturated ketones 1a-j bearing either electron donor or 
electron hogging aryl group (R1) at the ketone position. Only 
α,β-unsaturated ketone 1k with an ortho-position olefin 
substituent on the aryl ring R1 gave the corresponding 3ka in a 
lower yield. When 1-(naphthalen-1-yl)prop-2-en-1-one 1l was 
employed, the desired product 3la was afforded in 72% yield. 
Furthermore, the reaction was also compatible with alkyl groups 
R1 such as Me, Et, C5H11, and the corresponding ester derivatives 
product 3ma-3oa  

Scheme 2. Scope of α,β-unsaturated ketones in visible light driven 
copper(I)-catalyzed oxyamination reactiona 
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were obtained in 50-77% yield. The sterically bulkier substrates 
was also assessed in oxyamination process. For example, when 
α,α-disubstituted enone 1p (R2=Ph) was used, the corresponding 
product 3pa gave in 54% yield. Unexpectedly, α,α-disubstituted 
enone 1q (R2 = Me) was used, only the amination product 4qa was 
delivered in 52% yield. Additionally, we found the substrates of 
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α,β-substituted enone had good adaptability and easily provided 
the difunctionalized products 3ra-3ua in 50-60% yield with 
2.5:1-4:1 dr. It is worth mentioning that despite our efforts, the 
difunctionalization of 1,2-allenic ketones, acrylates or alkynone 
failed under the optimal conditions (see the ESI for details). 

Scheme 3. Scope of O-benzoylhydroxylamine in visible light driven 
copper(I)-catalyzed oxyamination reaction a 
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Next, the reaction generality and limitation of the 
O-benzoylhydroxylamine reagents were investigated. Primarily, 
we synthesized a series of O-benzoylhydroxylamine, then all of 
them were tested and the results are as follows (Scheme 3). 
Six-membered cyclic O-benzoylhydroxylamines such as 2b, 2c, 2d 
and 2e participated well in the amino oxygenation reaction, 
affording the desired 3ab-3ae in 72-82% yield. Meanwhile, bigger 
cyclic O-benzoylhydroxylamines 2f and 2g also worked well, giving 
the corresponding ester derivatives 3af-3ag in good yields. Five 
membered O-benzoylhydroxylpyrrolidine 3h was also applied to 
this transformation, providing the difunctionalized product 3ah in 
68% yield. Moreover, N,N-diethylamine and N,N-dibenzylamine 
were both investigated as a contrast, derived from acyclic 
hydroxylamines constructed of 3ai and 3aj in 62% and 73% yield, 
respectively. In the case of N,N-dibenzylamine 2j, 10 mol% of 
1,1'-binaphthyl-2,2'-diyl hydrogenphosphate was needed to 
promote the reaction. 

Scheme 4. Control experiment with radical trapping reagent 
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To learn more about the mechanism of this reaction, the 

possible formation of radical species was investigated. When 2.0 
equivalents of TEMPO or p-benzoquinone respectively added to 
the system under the standard reaction conditions (Scheme 4), 
the reaction was completely inhibited, albeit no trapped 
intermediate detected. These results implied that the reaction 
forms a radical intermediate and is a radical process. Based on the 
present observations, we proposed a plausible mechanism for this 
visible light-driven Cu(I)-catalyzed direct intermolecular 
oxyamination reaction (Scheme 5). Firstly, under the irradiation of 
the 3W blue LED, the photocatalyst (PC) reached to its excited  

Scheme 5  Proposed Mechanism 
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state (PC*) and oxidized by complex 2 to generate the BzO- 
species A and nitrogen-centered radical species B. Addition of the 
radical B and CuI forms an aminocopper intermediate C.[8] 
Afterwords, intermediate C undergoes a series of alkene 
complexation and migratory insertion to form alkyl-Cu(II) species 
D.[8,14] The key intermediate D further undergoes reaction with 
BzO- species A and reduction, completing the photocatalytic cycle 
by affording the alkyl-Cu(III) species E. Finally, this key 
intermediate E further undergoes a selective reductive elimination 
and the desired product 3 was produced. 

Conclusions 
In summary, we have first developed a visible light-driven 

Cu(I)-catalyzed intermolecular oxyamination of electron-deficient 
olefins by using O-benzoylhydroxylamines as donors both for 
amine and oxygen along with two new bonds C-O and C-N were 
constructed. The reaction properties provide mild conditions and 
a wide substrate scope. Furthermore, a series of ester derivatives 
of β-amino alcohols were accessed under the mild reaction 
condition. 

Experimental 
General Procedure for the Preparation of 3. 

In a 10 mL Schlenk flask were placed Ir(ppy)2(dtbbpy)PF6 (1.7 
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mg, 2 mol%), CuI (1.9 mg, 10 mol%), α,β-unsaturated ketone (1, 
0.1 mmol, 1 equiv), O‑benzoylhydroxylamine (2, 0.11 mmol, 1.1 
equiv), and DCM (1.5 mL). At agon atmosphere, irradiation by a 3 
W blue LED (λ = 450–455 nm) at 25 oC for 40 hours. After 
completion of the reaction, the reaction mixture was directly 
purified by silica gel chromatography using petroleum 
ether/EtOAc as the eluent to afford 3 

3-Morpholino-1-oxo-1-phenylpropan-2-yl benzoate (3aa) was 
obtained in 85% isolated yield (28.8 mg) as colorless solid. 1H 
NMR (500 MHz, CDCl3) δ 8.12–8.05 (m, 2H), 8.04–7.98 (m, 2H), 
7.64–7.55 (m, 2H), 7.53–7.41 (m, 4H), 6.32 (dd, J = 6.8, 4.1 Hz, 1H), 
3.66–3.52 (m, 4H), 3.01 (qd, J = 13.9, 5.5 Hz, 2H), 2.70–2.60 (m, 
2H), 2.57–2.46 (m, 2H); 13C NMR δ 195.5, 165.8, 135.3, 133.4, 
133.3, 129.8, 129.4, 128.7, 128.4, 128.3, 74.1, 66.9, 59.0, 53.8. 
HRMS (ESI): Calcd. for C20H22NO4 (M+H)+ 340.1543, found 
340.1551. 

3-Morpholino-1-oxo-1-(p- tolyl)propan-2-yl benzoate (3ba) 
was obtained in 88% isolated yield (31.1 mg) as colorless solid. 1H 
NMR (500 MHz, CDCl3) δ 8.08 (dt, J = 8.4, 1.5 Hz, 2H), 8.00–7.88 
(m, 2H), 7.63–7.52 (m, 1H), 7.48–7.39 (m, 2H), 7.29 (d, J = 7.9 Hz, 
2H), 6.30 (dd, J = 6.9, 4.0 Hz, 1H), 3.68–3.51 (m, 4H), 3.00 (qd, J = 
13.9, 5.5 Hz, 2H), 2.64 (dt, J = 9.3, 4.6 Hz, 2H), 2.58–2.50 (m, 2H), 
2.42 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 194.9, 165.8, 144.4, 
133.3, 132.6, 129.8, 129.5, 129.4, 128.5, 128.4, 74.0, 66.9, 59.0, 
53.8, 21.7. HRMS (ESI): Calcd. for C21H24NO4 (M+H)+ 354.1700, 
found 354.1707. 

1-(4-Methoxyphenyl)-3-morpholino-1-oxopropan-2-yl benzo- 
ate (3ca) was obtained in 85% isolated yield (31.5 mg) as colorless 
solid. 1H NMR (500 MHz, CDCl3) δ 8.08 (dd, J = 8.3, 1.2 Hz, 2H), 
8.05–7.98 (m, 2H), 7.62–7.54 (m, 1H), 7.45 (dd, J = 10.9, 4.7 Hz, 
2H), 7.02–6.93 (m, 2H), 6.29 (dd, J = 6.8, 4.2 Hz, 1H), 3.87 (s, 3H), 
3.67–3.56 (m, 4H), 3.06–2.94 (m, 2H), 2.64 (dt, J = 9.2, 4.5 Hz, 2H), 
2.58–2.51 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 193.7, 165.8, 
163.8, 133.3, 130.8, 129.8, 129.5, 128.4, 128.0, 114.0, 73.7, 66.9, 
59.2, 55.5, 53.8. HRMS (ESI): Calcd. for C21H24NO5 (M+H)+ 
370.1649, found 370.1655. 

3-Morpholino-1-oxo-1-(4-(trifluoromethyl)phenyl)propan-2-yl 
benzoate (3da) was obtained in 63% isolated yield (25.6 mg) as 
colorless solid. 1H NMR (500 MHz, CDCl3) δ 8.12 (d, J = 8.1 Hz, 2H), 
8.07 (d, J = 8.2 Hz, 2H), 7.76 (d, J = 8.1 Hz, 2H), 7.60 (td, J = 7.7, 1.1 
Hz, 1H), 7.47 (t, J = 7.5 Hz, 2H), 6.33–6.20 (m, 1H), 3.66–3.51 (m, 
4H), 3.10–2.90 (m, 2H), 2.63 (dd, J = 10.6, 4.1 Hz, 2H), 2.57–2.46 
(m, 2H); 13C NMR (126 MHz, CDCl3) δ 195.2 (s), 165.9 (s), 138.5 (s), 
134.6 (q, J = 32.7 Hz), 133.6 (s), 129.8 (s), 129.1 (s), 128.6 (d, J = 
13.7 Hz), 125.8 ((d, J = 3.7 Hz), 124. 6 (s), 122.4 (s), 74.2 (s), 66.8 
(s), 58.8 (s), 53.8 (s). HRMS (ESI): Calcd. for C21H21F3NO4 (M+H)+ 
408.1417, found 408.1425. 

1-(4-Cyanophenyl)-3-morpholino-1-oxopropan-2-yl benzoate 
(3ea) was obtained in 58% isolated yield (21.0 mg) as colorless 
solid. 1H NMR (500 MHz, CDCl3) δ 8.14–8.07 (m, 2H), 8.07–8.02 (m, 
2H), 7.85–7.77 (m, 2H), 7.65–7.57 (m, 1H), 7.47 (dt, J = 7.5, 3.2 Hz, 
2H), 6.19 (dd, J = 6.4, 4.7 Hz, 1H), 3.61–3.50 (m, 4H), 3.02 (qd, J = 
13.8, 5.5 Hz, 2H), 2.65–2.57 (m, 2H), 2.53–2.46 (m, 2H); 13C NMR 
(126 MHz, CDCl3) δ 195.1, 165.8, 139.0, 133.7, 132.5, 129.8, 128.9, 
128.7, 128.6, 117.8, 116.5, 74.1, 66.8, 58.8, 53.8. HRMS (ESI): 
Calcd. for C21H21N2O4 (M+H)+ 365.1496, found 365.1503. 

1-(4-Fluorophenyl)-3-morpholino-1-oxopropan-2-yl benzoate 

(3fa) was obtained in 74% isolated yield (26.6 mg) as colorless 
solid. 1H NMR (500 MHz, CDCl3) δ 8.14–8.00 (m, 4H), 7.63–7.54 (m, 
1H), 7.50–7.41 (m, 2H), 7.23–7.11 (m, 2H), 6.24 (dd, J = 6.7, 4.3 Hz, 
1H), 3.66–3.52 (m, 4H), 3.00 (qd, J = 13.9, 5.5 Hz, 2H), 2.69–2.59 
(m, 2H), 2.58–2.45 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 194.1 (s), 
165.9 (t, J = 127.8 Hz), 133.4 (s), 131.8 (d, J = 3.1 Hz), 131.1 (d, J = 
9.3 Hz), 129.8 (s), 129.2 (s), 128.5 (s), 116.0 (s), 115.8 (s), 73.9 (s), 
66.9 (s), 59.0 (s), 53.8 (s). HRMS (ESI): Calcd. for C20H21FNO4 
(M+H)+ 358.1449, found 358.1458. 

1-(4-Chlorophenyl)-3-morpholino-1-oxopropan-2-yl benzoate 
(3ga) was obtained in 64% isolated yield (23.8 mg) as colorless 
solid. 1H NMR (500 MHz, CDCl3) δ 8.14–8.03 (m, 2H), 8.00–7.91 (m, 
2H), 7.63–7.55 (m, 1H), 7.50–7.39 (m, 4H), 6.22 (dd, J = 6.7, 4.3 Hz, 
1H), 3.67–3.48 (m, 4H), 3.00 (qd, J = 13.9, 5.5 Hz, 2H), 2.66–2.57 
(m, 2H), 2.50 (dt, J = 56.3, 28.4 Hz, 2H); 13C NMR (126 MHz, CDCl3) 
δ 194.6, 165.8, 139.9, 133.7, 133.5, 129.8, 129.8, 129.2, 129.1, 
128.5, 74.0, 66.8, 58.9, 53.8. HRMS (ESI): Calcd. for C20H21ClNO4 
(M+H)+ 374.1154, found 374.1163. 

1-(4-Bromophenyl)-3-morpholino-1-oxopropan-2-yl benzoate 
(3ha) was obtained in 69% isolated yield (28.7 mg) as colorless 
solid. 1H NMR (500 MHz, CDCl3) δ 8.11–8.02 (m, 2H), 7.94–7.84 (m, 
2H), 7.65–7.61 (m, 2H), 7.61–7.57 (m, 1H), 7.46 (t, J = 7.8 Hz, 2H), 
6.21 (dd, J = 6.6, 4.3 Hz, 1H), 3.68–3.51 (m, 4H), 3.00 (qd, J = 13.9, 
5.5 Hz, 2H), 2.67–2.58 (m, 2H), 2.54–2.48 (m, 2H); 13C NMR (126 
MHz, CDCl3) δ 194.8, 165.8, 134.1, 133.5, 132.0, 129.8, 129.8, 
129.2, 128.6, 128.5, 74.0, 66.8, 58.9, 53.8. HRMS (ESI): Calcd. for 
C20H21BrNO4 (M+H)+ 418.0648, found 418.0660. 

1-(4-Iodophenyl)-3-morpholino-1-oxopropan-2-yl benzoate 
(3ia) was obtained in 82% isolated yield (38.1 mg) as colorless 
solid. 1H NMR (500 MHz, CDCl3) δ 8.13–8.01 (m, 2H), 7.89–7.79 (m, 
2H), 7.77–7.68 (m, 2H), 7.65–7.53 (m, 1H), 7.45 (dd, J = 10.8, 4.8 
Hz, 2H), 6.21 (dd, J = 6.7, 4.3 Hz, 1H), 3.75–3.48 (m, 4H), 2.99 (qd, 
J = 13.9, 5.5 Hz, 2H), 2.66–2.57 (m, 2H), 2.56–2.46 (m, 2H); 13C 
NMR (126 MHz, CDCl3) δ 195.0, 165.8, 138.0, 134.7, 133.5, 129.8, 
129.7, 129.2, 128.5, 101.4, 74.0, 66.8, 58.9, 53.8. HRMS (ESI): 
Calcd. for C20H21INO4 (M+H)+ 466.0510, found 466.0518. 

1-(3,4-dichlorophenyl)-3-morpholino-1-oxopropan-2-yl benzo- 
ate (3ja) was obtained in 68% isolated yield (27.6 mg) as colorless 
solid. 1H NMR (500 MHz, CDCl3) δ 8.15 (d, J = 2.0 Hz, 1H), 
8.12–8.03 (m, 2H), 7.85 (dd, J = 8.4, 2.0 Hz, 1H), 7.65–7.55 (m, 2H), 
7.56–7.44 (m, 2H), 6.14 (dd, J = 6.3, 4.6 Hz, 1H), 3.68–3.55 (m, 4H), 
3.02 (qd, J = 13.9, 5.5 Hz, 2H), 2.71–2.59 (m, 2H), 2.59–2.50 (m, 
2H); 13C NMR (126 MHz, CDCl3) δ 193.9, 165.8, 138.0, 135.1, 133.6, 
133.4, 130.8, 130.5, 129.8, 129.0, 128.5, 127.3, 74.1, 66.8, 58.9, 
53.9. HRMS (ESI): Calcd. for C20H20Cl2NO4 (M+H)+ 408.0764, found 
408.0775. 

3-Morpholino-1-oxo-1-(2-vinylphenyl)propan-2-yl benzoate 
(3ka) was obtained in 35% isolated yield (12.8 mg) as colorless 
solid. 1H NMR (500 MHz, CDCl3) δ 8.07 (d, J = 7.3 Hz, 2H), 7.81 (d, J 
= 7.4 Hz, 1H), 7.65 (d, J = 7.6 Hz, 1H), 7.59 (t, J = 6.9 Hz, 1H), 7.47 
(d, J = 5.5 Hz, 3H), 7.36 (t, J = 7.2 Hz, 1H), 7.19 (dd, J = 17.3, 11.1 
Hz, 1H), 6.18 (s, 1H), 5.73 (d, J = 17.5 Hz, 1H), 5.36 (d, J = 10.9 Hz, 
1H), 3.55 (s, 4H), 3.10–2.85 (m, 2H), 2.62 (s, 2H), 2.36 (s, 2H); 13C 
NMR (126 MHz, CDCl3) δ 199.3, 165.9, 137.4, 136.2, 134.9, 133.4, 
131.4, 129.8, 129.4, 128.5, 127.8, 127.3, 126.7, 116.6, 76.4, 66.7, 
58.6, 53.9. HRMS (ESI): Calcd. for C22H24NO4 (M+H)+ 366.1700, 
found 366.1709. 
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3-Morpholino-1-(naphthalen-1-yl)-1-oxopropan-2-yl benzoate 
(3la) was obtained in 72% isolated yield (28.0 mg) as colorless 
solid. 1H NMR (500 MHz, CDCl3) δ 8.48 (d, J = 8.4 Hz, 1H), 8.12 (d, J 
= 7.4 Hz, 2H), 8.09 (d, J = 7.2 Hz, 1H), 8.00 (d, J = 8.3 Hz, 1H), 7.88 
(d, J = 7.5 Hz, 1H), 7.64–7.52 (m, 4H), 7.49 (t, J = 7.8 Hz, 2H), 6.33 
(dd, J = 6.1, 4.1 Hz, 1H), 3.50–3.41 (m, 2H), 3.39 (d, J = 4.8 Hz, 2H), 
3.04 (dd, J = 13.8, 6.2 Hz, 1H), 2.96 (dd, J = 13.7, 4.0 Hz, 1H), 2.61 
(s, 2H), 2.37–2.27 (m, 2H); 13C NMR (126 MHz, CDCl3) δ 199.0, 
166.0, 134.9, 133.8, 133.4, 132.4, 130.2, 129.8, 129.4, 128.5, 
128.3, 127.6, 126.8, 126.6, 125.9, 124.3, 76.6, 66.6, 58.8, 53.8. 
HRMS (ESI): Calcd. for C24H24NO4 (M+H)+ 390.1700, found 
390.1707. 

Morpholino-3-oxobutan-2-yl benzoate (3ma) was obtained in 
50% isolated yield (13.8 mg) as colorless oil. 1H NMR (500 MHz, 
CDCl3) δ 8.14–7.99 (m, 2H), 7.68–7.55 (m, 1H), 7.53–7.40 (m, 2H), 
5.43 (dd, J = 6.5, 3.8 Hz, 1H), 3.77–3.52 (m, 4H), 2.99 (dd, J = 13.9, 
6.5 Hz, 1H), 2.88 (dd, J = 13.9, 3.8 Hz, 1H), 2.66 (dt, J = 9.4, 4.5 Hz, 
2H), 2.57–2.49 (m, 2H), 2.28 (s, 3H); 13C NMR (126 MHz, CDCl3) δ 
204.2, 165.8, 133.5, 129.8, 129.3, 128.6, 77.7, 66.9, 58.6, 54.0, 
27.1. HRMS (ESI): Calcd. for C15H20NO4 (M+H)+ 278.1387, found 
278.1392. 

Morpholino-3-oxopentan-2-yl benzoate (3na) was obtained in 
72% isolated yield (22.4 mg) as colorless oil. 1H NMR (500 MHz, 
CDCl3) δ 8.11–8.00 (m, 2H), 7.68–7.55 (m, 1H), 7.52–7.39 (m, 2H), 
5.45 (dd, J = 6.6, 3.9 Hz, 1H), 3.74–3.56 (m, 4H), 2.97 (dd, J = 13.8, 
6.7 Hz, 1H), 2.86 (dd, J = 13.8, 3.9 Hz, 1H), 2.69–2.53 (m, 4H), 
2.53–2.47 (m, 2H), 1.09 (t, J = 7.2 Hz, 3H); 13C NMR (126 MHz, 
CDCl3) δ 207.0, 165.8, 133.4, 129.7, 129.4, 128.5, 67.0, 58.8, 54.0, 
32.9, 7.2. HRMS (ESI): Calcd. for C16H22NO4 (M+H)+ 292.1543, 
found 292.1552. 

Morpholino-3-oxooctan-2-yl benzoate (3oa) was obtained in 
63% isolated yield (20.9 mg) as colorless oil. 1H NMR (500 MHz, 
CDCl3) δ 8.18–7.98 (m, 2H), 7.65–7.55 (m, 1H), 7.52–7.39 (m, 2H), 
5.44 (dd, J = 6.6, 3.8 Hz, 1H), 3.74–3.55 (m, 4H), 2.98 (dd, J = 13.8, 
6.6 Hz, 1H), 2.86 (dd, J = 13.8, 3.8 Hz, 1H), 2.69–2.62 (m, 2H), 
2.61–2.48 (m, 4H), 1.68–1.59 (m, 2H), 1.35–1.27 (m, 4H) 
0.98–0.82 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 206.3, 165.78, 
133.4, 129.7, 129.4, 128.5, 77.3, 66.9, 58.7, 54.0, 39.5, 31.3, 22.7, 
22.4, 13. 9. HRMS (ESI): Calcd. for C19H28NO4 (M+H)+ 334.2013, 
found 334.2019. 

3-Morpholino-1-oxo-1,2-diphenylpropan-2-yl benzoate (3pa) 
was obtained in 54% isolated yield (22.3 mg) as colorless solid. 1H 
NMR (500 MHz, CDCl3) δ 8.08 (dd, J = 8.2, 1.2 Hz, 2H), 7.79 (dd, J = 
8.4, 1.1 Hz, 2H), 7.73 (d, J = 7.4 Hz, 2H), 7.63–7.57 (m, 1H), 7.46 
(dt, J = 17.1, 8.0 Hz, 4H), 7.38–7.33 (m, 1H), 7.32–7.27 (m, 1H), 
7.18 (dd, J = 10.8, 4.8 Hz, 2H), 3.83 (d, J = 14.5 Hz, 1H), 3.34 (dd, J 
= 9.3, 4.6 Hz, 4H), 2.32–2.24 (m, 2H), 2.21–2.14 (m, 2H); 13C NMR 
(126 MHz, CDCl3) δ 196.8, 165.0, 138.2, 135.1, 133.4, 132.2, 130.1, 
129.6, 129.0, 128.7, 128.6, 128.1, 128.0, 125.1, 88.1, 67.1, 63.5, 
54.5. HRMS (ESI): Calcd. for C26H26NO4 (M+H)+ 416.1856, found 
416.1869. 

2-methyl-3-morpholino-1-phenylpropan-1-one (4qa) was 
obtained in 52% isolated yield (12.2 mg) as colorless oli. 1H NMR 
(400 MHz, CDCl3) δ 7.95 (dd, J = 5.2, 3.4 Hz, 1H), 7.63 – 7.36 (m, 
3H), 3.84 – 3.67 (m, 2H), 3.61 (dd, J = 6.6, 2.6 Hz, 4H), 2.86 (dd, J = 
12.5, 7.8 Hz, 1H), 2.51 – 2.40 (m, 4H), 1.20 (d, J = 7.0 Hz, 2H). 13C 
NMR (101 MHz, CDCl3) δ 203.7, 132.9, 128.6, 128.2, 127.1, 66.9, 

61.9, 53.9, 38.4, 16.5. 
4-Morpholino-2-oxoheptan-3-yl benzoate (3ra) was obtained 

in 55% isolated yield, 3:1 dr (17.6 mg) as colorless oil. 1H NMR 
(500 MHz, CDCl3) δ 8.09–8.03 (m, 2H), 7.65–7.58 (m, 1H), 
7.54–7.45 (m, 2H), 5.45 (m, 4.1 Hz, 1H), 3.74–3.54 (m, 4H), 3.20 
(m, 4.5 Hz, 1H), 2.99–2.69 (m, 2H), 2.65–2.49 (m, 2H), 2.23 (d, J = 
4.7 Hz, 3H), 1.97–1.79 (m, 1H), 1.74–1.61 (m, 1H), 1.59–1.48 (m, 
1H), 1.48–1.34 (m, 2H), 0.94 (dt, J = 10.4, 7.3 Hz, 3H); 13C NMR 
(126 MHz, CDCl3) δ 205.7, 165.9, 133.6, 129.8, 129.4, 128.6, 81.3, 
67.4, 64.7, 49.6, 28.9, 27.2, 20.2, 14.0. HRMS (ESI): Calcd. for 
C18H26NO4 (M+H)+ 320.1856, found 320.1849. 

4-Morpholino-2-oxooctan-3-yl benzoate (3sa) was obtained in 
50% isolated yield, 4:1 dr (16.7 mg) as colorless oil. 1H NMR (500 
MHz, CDCl3) δ 8.05 (m, 1.2 Hz, 2H), 7.61 (m, 1.3 Hz, 1H), 7.48 (m, 
3.0 Hz, 2H), 5.44 (dd, J = 13.1, 4.2 Hz, 1H), 3.72–3.56 (m, 4H), 3.18 
(m, 4.4 Hz, 1H), 2.97–2.71 (m, 2H), 2.60–2.51 (m, 2H), 2.23 (d, J = 
6.7 Hz, 3H), 1.93–1.82 (m, 1H), 1.71–1.60 (m, 1H), 1.53–1.39 (m, 
2H), 1.39–1.24 (m, 4H), 0.96–0.83 (m, 3H); 13C NMR (126 MHz, 
CDCl3) δ 205.7, 165.7, 133.6, 129.8, 129.4, 128.6, 78.1, 67.4, 65.0, 
49.6, 29.3, 27.3, 26.7, 22.7, 13.9. HRMS (ESI): Calcd. for C19H28NO4 
(M+H)+ 334.2013, found 334.2021. 

4-Morpholino-2-oxononan-3-yl benzoate (3ta) was obtained in 
60% isolated yield, 2.5:1 dr. (20.7 mg) as colorless oil. 1H NMR 
(500 MHz, CDCl3) δ 8.10–8.01 (m, 2H), 7.64–7.57 (m, 1H), 
7.53–7.45 (m, 2H), 5.44 (dd, J = 12.4, 4.2 Hz, 1H), 3.70–3.56 (m, 
4H), 3.18 (m, 4.5 Hz, 1H), 2.98–2.70 (m, 2H), 2.61–2.50 (m, 2H), 
2.23 (d, J = 6.1 Hz, 3H), 1.93–1.81 (m, 1H), 1.64 (m, 6.2 Hz, 1H), 
1.58–1.48 (m, 1H), 1.48–1.35 (m, 2H), 1.35–1.24 (m, 5H), 0.87 (dt, 
J = 12.0, 6.7 Hz, 3H); 13C NMR (126 MHz, CDCl3) δ 205.7, 165.7, 
133.5, 129.7, 129.4, 128.6, 78.2, 67.4, 65.0, 49.6, 31.8, 27.3, 26.8, 
23.5, 22.6, 14.0. HRMS (ESI): Calcd. for C20H30NO4 (M+H)+ 
348.2169, found 348.2178. 

4-Morpholino-2-oxodecan-3-yl benzoate (3ua) was obtained 
in 52% isolated yield, 2.5:1 dr (18.9 mg) as colorless oil. 1H NMR 
(500 MHz, CDCl3) δ 8.05 (m, 2H), 7.61 (m, 1H), 7.49 (m, 2H), 5.44 
(dd, J = 11.5, 4.2 Hz, 1H), 3.69–3.56 (m, 4H), 3.29–3.07 (m, 1H), 
2.97–2.70 (m, 2H), 2.62–2.51 (m, 2H), 2.23 (d, J = 6.5 Hz, 3H), 1.88 
(m, 1H), 1.73–1.60 (m, 1H), 1.46 (m, 1H), 1.39–1.22 (m, 6H), 
0.95–0.79 (m, 3H); 13C NMR (126 MHz, CDCl3) δ 205.7, 165.7, 
133.5, 129.8, 129.4, 128.6, 78.1, 67.4, 65.0, 49.6, 31.7, 29.7, 27.3, 
26.8, 23.5, 22.6, 14.0. HRMS (ESI): Calcd. for C21H32NO4 (M+H)+ 
362.2326, found 362.2333. 

1-Oxo-1-phenyl-3-(piperidin-1-yl)propan-2-yl benzoate (3ab) 
was obtained in 82% isolated yield (27.8 mg) as colorless solid. 1H 
NMR (400 MHz, CDCl3) δ 8.10 (d, J = 8.0 Hz, 2H), 8.04 (d, J = 7.9 Hz, 
2H), 7.58 (td, J = 7.1, 0.9 Hz, 2H), 7.53–7.43 (m, 4H), 6.33–6.26 (m, 
1H), 3.09–2.93 (m, 2H), 2.62–2.44 (m, 4H), 1.54–1.43 (m, 4H), 
1.41–1.33 (m, 2H); 13C NMR (101 MHz, CDCl3) δ 196.0, 166.0, 
135.3, 133.3, 133.2, 129.8, 129.5, 128.6, 128.4, 128.4, 74.4, 59.3, 
54.7, 25.9, 23.9. HRMS (ESI): Calcd. for C21H23NNaO3 (M+Na)+ 
360.1570, found 360.1572. 

3-(4-Methylpiperidin-1-yl)-1-oxo-1-phenylpropan-2-yl 
benzoate (3ac) was obtained in 74% isolated yield (26.0 mg) as 
colorless solid. 1H NMR (400 MHz, CDCl3) δ 8.10 (d, J = 7.6 Hz, 2H), 
8.03 (d, J = 7.7 Hz, 2H), 7.59 (dd, J = 7.8, 5.8 Hz, 2H), 7.47 (dt, J = 
15.2, 7.7 Hz, 4H), 6.29 (dd, J = 6.2, 4.7 Hz, 1H), 3.07–3.00 (m, 2H), 
2.96 (d, J = 12.2 Hz, 1H), 2.89 (d, J = 11.0 Hz, 1H), 2.19 (td, J = 11.3, 
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2.2 Hz, 2H), 1.55 (d, J = 12.8 Hz, 2H), 1.39–1.23 (m, 2H), 1.21–1.02 
(m, 2H), 0.87 (d, J = 6.5 Hz, 3H); 13C NMR (101 MHz, CDCl3) δ 196.0, 
166.0, 135.3, 133.3, 133.2, 129.9, 129.5, 128.7, 128.5, 128.4, 74.6, 
59.0, 54.1, 34.3, 30.4, 21.8. HRMS (ESI): Calcd. for C22H26NO3 
(M+H)+ 352.1907, found 352.1909. 

Ethyl 1-(2-(benzoyloxy)-3-oxo-3-phenylpropyl)piperidine-4- 
carboxylate (3ad) was obtained in 75% isolated yield (30.8 mg) as 
colorless solid. 1H NMR (400 MHz, CDCl3) δ 8.10 (d, J = 7.6 Hz, 2H), 
8.04 (d, J = 7.6 Hz, 2H), 7.61 (dd, J = 7.8, 6.2 Hz, 2H), 7.49 (dt, J = 
15.2, 7.7 Hz, 4H), 6.37–6.25 (m, 1H), 4.12 (q, J = 7.1 Hz, 2H), 
3.11–2.97 (m, 3H), 2.90 (d, J = 11.2 Hz, 1H), 2.35–2.19 (m, 3H), 
1.89–1.80 (m, 2H), 1.73 – 1.56 (m, 2H), 1.25 (t, J = 7.1 Hz, 3H); 13C 
NMR (101 MHz, CDCl3) δ 195.8, 175.0, 165.9, 135.3, 133.4, 133.3, 
129.8, 129.4, 128.7, 128.4, 128.4, 74.3, 60.3, 58.8, 53.2, 53.1, 40.7, 
28.2, 28.1, 14.2. HRMS (ESI): Calcd. for C24H28NO5 (M+H)+ 
410.1962, found 410.1974. 

1-Oxo-1-phenyl-3-(1,4-dioxa-8-azaspiro[4.5]decan-8-yl)propan
-2-yl benzoate (3ae) was obtained in 72% isolated yield (28.4 mg) 
as colorless solid. 1H NMR (500 MHz, CDCl3) δ 8.12–8.05 (m, 2H), 
8.05–7.99 (m, 2H), 7.61–7.55 (m, 2H), 7.52–7.41 (m, 4H), 
6.37–6.18 (m, 1H), 3.92 (d, J = 3.9 Hz, 4H), 3.13–2.97 (m, 2H), 
2.77–2.59 (m, 4H), 1.63 (d, J = 3.6 Hz, 4H); 13C NMR (126 MHz, 
CDCl3) δ 195.9, 165.9, 135.4, 133.4, 133.3, 129.9, 129.5, 128.7, 
128.4, 128.4, 106.8, 74.4, 64.2, 58.2, 51.6, 34.8. HRMS (ESI): Calcd. 
for C23H26NO5 (M+H)+ 396.1805, found 396.1814. 

tert-Butyl 4-(2-(benzoyloxy)-3-oxo-3-phenylpropyl)-1,4-diaze- 
pane-1-carboxylate (3af) was obtained in 72% isolated yield 

(32.8 mg) as colorless solid. 1H NMR (400 MHz, CDCl3) δ 8.08 (d, J 
= 7.7 Hz, 2H), 8.01 (d, J = 7.8 Hz, 2H), 7.59 (t, J = 6.7 Hz, 2H), 7.47 
(dt, J = 15.2, 7.7 Hz, 4H), 6.26 (dd, J = 8.1, 5.4 Hz, 1H), 3.42–3.25 
(m, 4H), 3.19 (d, J = 5.5 Hz, 2H), 2.89–2.65 (m, 4H), 1.78–1.62 (m, 
2H), 1.42 (d, J = 4.3 Hz, 9H); 13C NMR (101 MHz, CDCl3) δ 196.0, 
165.9, 155.5, 155.3, 135.5, 133.4, 133.3, 129.8, 129.4, 128.8, 
128.4 128.3, 79.3, 74.8, 74.6, 58.1, 57.9, 56.5, 56.2, 55.2, 55.0, 
47.0, 46.6, 45.9, 45.0, 28.4, 27.7, 27.6. HRMS (ESI): Calcd. for 
C26H33N2O5 (M+H)+ 453.2384, found 453.2387. 

3-(Azepan-1-yl)-1-oxo-1-phenylpropan-2-yl benzoate (3ag) 
was obtained in 63% isolated yield (20.8 mg) as colorless solid. 1H 
NMR (400 MHz, CDCl3) δ 8.12–8.08 (m, 2H), 8.06–8.02 (m, 2H), 
7.62–7.55 (m, 2H), 7.47 (dt, J = 15.3, 7.7 Hz, 4H), 6.27 (t, J = 5.6 Hz, 
1H), 3.26–3.15 (m, 2H), 2.88–2.68 (m, 4H), 1.60–1.45 (m, 8H); 13C 
NMR (101 MHz, CDCl3) δ 196.3, 166.0, 135.6, 133.3, 133.2, 129.9, 
129.6, 128.7, 128.4, 128.4, 75.1, 58.7, 55.7, 28.4, 27.0. HRMS (ESI): 
Calcd. for C22H26NO3 (M+H)+ 352.1907, found 352.1907. 

1-Oxo-1-phenyl-3-(pyrrolidin-1-yl)propan-2-yl benzoate (3ah) 
was obtained in 68% isolated yield (22.0 mg) as colorless solid. 1H 
NMR (500 MHz, CDCl3) δ 8.10 (dt, J = 8.4, 1.5 Hz, 2H), 8.02 (dt, J = 
8.5, 1.6 Hz, 2H), 7.60–7.54 (m, 2H), 7.50–7.42 (m, 4H), 6.28 (dd, J 
= 6.7, 3.9 Hz, 1H), 3.19–3.03 (m, 2H), 2.73–2.54 (m, 4H), 1.82–1.64 
(m, 4H); 13C NMR (126 MHz, CDCl3) δ 195.4, 166.0, 135.0, 133.4 
133.2, 129.9, 129.5, 128.7, 128.4, 128.4, 76.0, 56.2, 54.7, 23.7. 
HRMS (ESI): Calcd. for C20H22NO3 (M+H)+ 324.1594, found 
324.1594. 

3-(Diethylamino)-1-oxo-1-phenylpropan-2-yl benzoate (3ai) 
was obtained in 62% isolated yield (20.1 mg) as colorless oli. 1H 
NMR (400 MHz, CDCl3) δ 8.09 (d, J = 7.7 Hz, 2H), 8.04 (d, J = 7.7 Hz, 
2H), 7.58 (dd, J = 12.6, 7.1 Hz, 2H), 7.47 (dt, J = 15.4, 7.7 Hz, 4H), 

6.26 (dd, J = 6.8, 4.5 Hz, 1H), 3.15–3.02 (m, 2H), 2.65 (q, J = 7.1 Hz, 
4H), 0.99 (t, J = 7.1 Hz, 6H); 13C NMR (101 MHz, CDCl3) δ 196.2, 
166.0, 135.4, 133.4, 133.2, 129.9, 129.5, 128.7, 128.5, 128.4, 74.9, 
53.4, 47.5, 11.8. HRMS (ESI): Calcd. for C20H24NO3 (M+H)+ 
326.1751, found 326.1755. 

3-(Dibenzylamino)-1-oxo-1-phenylpropan-2-yl benzoate (3aj) 
was obtained in 73% isolated yield (32.7 mg) as colorless solid. 1H 
NMR (400 MHz, CDCl3) δ 8.09 (d, J = 7.8 Hz, 2H), 7.71 (d, J = 7.9 Hz, 
2H), 7.58 (t, J = 7.3 Hz, 1H), 7.52 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 7.7 
Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.29 – 7.21 (m, 10H), 6.29 (dd, J = 
8.1, 3.1 Hz, 1H), 3.81 (d, J = 13.5 Hz, 2H), 3.68 (d, J = 13.5 Hz, 2H), 
3.25–3.07 (m, 2H); 13C NMR (101 MHz, CDCl3) δ 195.1, 166.0, 
138.8, 134.7, 133.4, 133.3, 129.9, 129.4, 128.9, 128.7, 128.4, 
128.3, 128.3, 127.1, 75.3, 59.0, 54.0. HRMS (ESI): Calcd. for 
C30H28NO3 (M+H)+ 450.2064, found 450.2059. 
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