

Total Syntheses of Disorazoles A_1 and B_1 and Full Structural Elucidation of Disorazole B_1

K. C. Nicolaou,*[©] Gabriel Bellavance,[©] Marek Buchman, and Kiran Kumar Pulukuri

Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States

Supporting Information

ABSTRACT: Described herein are the first total syntheses of naturally occurring antitumor agents disorazoles A_1 and B_1 and the full structural assignment of the latter. The syntheses were achieved through convergent strategies employing enantioselective constructions of the required building blocks, including a novel Sharpless epoxidation/enzymatic kinetic resolution of stannane-containing substrates that led selectively to both enantiomeric forms of an epoxy vinyl stannane, and a series of coupling reactions, including a Wittig reaction, a Suzuki coupling, a Stille coupling, a Yamaguchi esterification and a Yamaguchi macrolactonization.

T he disorazoles¹ are a distinguished class of tubulin binding antitumor agents due to their unique mode of action and high potencies against a broad range of cancer cell lines.² Although too cytotoxic to be used as anticancer drugs, these natural products may become powerful payloads for antibody– drug conjugates (ADCs),³ a hotly pursued paradigm for targeted personalized cancer therapies. Elegant total syntheses⁴ of disorazole C₁¹ and related synthetic studies⁵ have been reported. From the members of this family of compounds, disorazole A₁ (1, Figure 1) stands as the flagship, not only because it is the most studied, but also due to its single digit picomolar potencies and synthetically challenging structure.^{1,6} Indeed, a total synthesis of

Figure 1. Structures of disorazole $A_1(1)$ and $B_1(2)$ and 6,8,23,25-tetraepi-disorazole $B_1(3)$. disorazole A_1 has not been reported, despite several studies directed toward this goal.^{5c,7} Disorazole B_1 ,¹ whose structure has only been partially assigned as 2 (C_2 symmetric) or 3 (6,8,23,25tetra-*epi*-disorazole B_1 , Figure 1) presents another challenging calling to both structural elucidation and total synthesis. In this Communication, we report: (a) total synthesis of disorazole A_1 (1); (b) total synthesis of disorazole B_1 (2) and 6,8,23,25-tetra*epi*-disorazole B_1 (3); and (c) full assignment of disorazole B_1 as structure 2.

Figure 2 summarizes the retrosynthetic analysis of disorazoles A_1 (1) and B_1 (2). Thus, disorazole A_1 was traced to key building

Figure 2. Retrosynthetic analyses of disorazoles $A_1(1)$ and $B_1(2)$.

blocks 4–7 and (–)-8 through the strategic bond disconnections indicated on structure 1 (Wittig reaction, Stille coupling, Suzuki coupling, Yamaguchi esterification and Yamaguchi macrolactonization). By virtue of its symmetrical nature, disorazole B_1 (2) required only building blocks 5, 7⁸ and (–)-8, revealed through a simpler disconnection pattern requiring two identical Wittig and Stille couplings, a Yamaguchi esterification, and a Yamaguchi macrolactonization as shown in structure 2 (Figure 2).

Received: September 14, 2017

Scheme 1 depicts the asymmetric synthesis of intermediates 4 and 5 starting with building blocks 9⁹ and 10. Thus, reaction of 9

Scheme 1. Synthesis of Vinyl Boronic Acid 4 and Iodide 5^{a}

^aReagents and conditions: (a) **10** (1.0 equiv), TiCl₄ (1.5 equiv), CH₂Cl₂, 0 °C, 5 min; then -78 °C, *i*-Pr₂NEt (1.1 equiv), 30 min; then -50 °C, 2 h; then -78 °C, 9⁹ (1.0 equiv), 1 h, 89%, 12:1 dr; (b) 2,6-lutidine (3.0 equiv), TMSOTf (2.0 equiv), CH₂Cl₂, 0 °C, 25 min; (c) DIBAL-H (2.5 equiv), Et₂O, -78 °C, 2 h, 80% from **11**; (d) **14** (1.5 equiv), NaHMDS (1.5 equiv), THF, 0 to 23 °C, 5 min; then -78 °C, 20 MPU (7.5 equiv), **13** (1.0 equiv), *n*-BuLi (1.15 equiv), -78 °C, 30 min; then TBAF (1.4 equiv), 23 °C, 48 h, 77%; (f) DIBAL-H (5.0 equiv), Et₂O, -78 to 23 °C, 2 h, 71% from **11**; (g) imidazole (1.5 equiv), I₂ (1.35 equiv), PPh₃ (1.2 equiv), 23 °C, 1 h, 77%. TMSOTf = trimethylsilyl trifluoromethanesulfonate, DIBAL-H = diisobutylaluminum hydride, NaHMDS = sodium bis(trimethylsilyl)amide, DMPU = 1,3-dimethyl-3,4,5,6-tetrahydro-2(1*H*)-pyrimidinone, TBAF = tetra-*n*-butylammonium fluoride.

with Nagao auxiliary 10^{10} (TiCl₄; then *i*-Pr₂NEt) led stereoselectively to alcohol 11 (89% yield, ca. 12:1 *dr*). Protection of the latter (TMSOTf, 2,6-lut.) gave TMS ether 12, whose reduction with 2.5 equiv of DIBAL-H afforded aldehyde 13 in 80% yield from 11. Reaction of 13 with the ylide generated from iodophosphonium iodide 14 (NaHMDS; then DMPU) gave selectively (*Z*)-vinyl iodide 15 in 73% yield. Conversion of 15 to the desired boronic acid (4) required sequential treatment with *n*-BuLi, B(O*i*-Pr)₃, and TBAF (77% yield). Iodide 5 was obtained from common intermediate 12 (Scheme 1) through a two-step sequence involving reduction of the latter to the corresponding primary alcohol (5.0 equiv of DIBAL-H, 71% yield from 11) followed by an Appel reaction¹¹ [I₂, PPh₃, imidazole (77% yield)].

Intermediate 6 was synthesized asymmetrically from TIPSacetylene (17) (Scheme 2). Thus, 17 was converted to iodide 18 (NIS, AgNO₃, 98% yield) and then to (*Z*)-vinyl iodide 20 through the action of hydrazine 19 (53% yield). Coupling of 20 with acetylene 21 [Pd(PhCN)₂Cl₂, PPh₃, CuI, *i*-Pr₂NH, 90% yield] furnished enyne diethoxy ketal 22, whose sequential treatment with TFA and Red-Al led to hydroxy TIPS diene 23 in quantitative yield. Oxidation (DMP) of the latter, followed by exposure of the resulting aldehyde to CH(OMe)₃ and *p*-TsOH (cat.) furnished dimethyl acetal 24 in 99% overall yield. Sequential treatment of 24 with Nagao auxiliary 10¹⁰ and TiCl₄, *i*-Pr₂NEt and BF₃-Et₂O afforded intermediate 25¹²

Scheme 2. Synthesis of Vinyl Bromide 6⁴

^aReagents and conditions: (a) AgNO₃ (0.1 equiv), NIS (1.2 equiv), acetone, 23 °C, 10 min, 98%; (b) 19 (0.9 equiv), 5:2 THF:i-PrOH, 23 °C, 16 h, 53%; (c) Pd(PhCN)₂Cl₂ (0.05 equiv), PPh₃ (0.1 equiv), CuI (0.07 equiv), 21 (1.5 equiv), i-Pr₂NH, 23 °C, 1 h, 90%; (d) 50% aq. TFA (10 equiv), 23 °C, 30 min; (e) Red-Al (2.05 equiv), 0 to 23 °C, 0.5 h, Et₂O, quant. from 22; (f) DMP (2.0 equiv), CH₂Cl₂, 0 to 23 °C, 2 h; (g) CH(OMe)₃ (1.0 equiv), p-TsOH (0.01 equiv), CH₂Cl₂, 23 °C, 1 h, 99% from 23; (h) 10 (1.0 equiv), TiCl₄ (1.1 equiv), CH₂Cl₂, 0 °C, 5 min; then -78 °C, *i*-Pr₂NEt (1.1 equiv), 30 min; then -50 °C, 2 h; then -78 °C, BF₃·Et₂O (1.0 equiv), **24** (1.0 equiv), 1 h, 67%, ca. 3:1 dr; (i) 26 (1.5 equiv), i-Pr₂NEt (2.0 equiv), THF, 23 °C, 10 min; then 25 (1.0 equiv), imidazole (3.0 equiv), 23 °C, 16 h, 92%; (j) Deoxo-Fluor (1.2 equiv), CH_2Cl_2 , -20 °C, 30 min; (k) BrCCl₃ (4.0 equiv), DBU (4.0 equiv), CH₂Cl₂, 0 to 23 °C, 16 h, 91% from 27; (1) Ag₂CO₃ (1.0 equiv), NBS (1.25 equiv), HFIP, 0 °C, 2 h, 91%. NBSH = 2nitrobenzenesulfonylhydrazide, Red-Al = sodium bis(2-methoxyethoxy)aluminum, p-TsOH = p-toluenesulfonic acid, HFIP = hexafluoro-2-propanol.

(chromatographically separated), whose reaction with ammonium salt **26** in the presence of *i*-Pr₂NEt and imidazole afforded hydroxy amide **27** in 92% yield.¹³ Conversion of **27** to oxazole intermediate **28** was achieved through sequential exposure of the latter to Deoxo-Fluor and BrCCl₃/DBU (91% overall yield).¹⁴ Finally, the targeted intermediate **6** was generated from **28** through the action of NBS in the presence of Ag₂CO₃ (91% yield).

The asymmetric synthesis of advanced intermediate 37 started from propargyl alcohol (29) and proceeded as shown in Scheme 3. Thus, AIBN facilitated addition of n-Bu₃SnH to 29, followed by buffered DMP oxidation of the resulting alcohol, led to the formation of vinyl tin aldehyde 30 in 42% overall yield. Still-Gennari reaction of the latter with the anion generated from phosphonate ester 31 (KHMDS, 18-crown-6) followed by DIBAL-H reduction of the resulting methyl ester furnished alcohol 32 in 85% overall yield. Sharpless asymmetric epoxidation of 32 [t-BuOOH, Ti(Oi-Pr)₄, (-)-DET] gave epoxide 33 (61% yield), albeit in low enantiomeric excess (43% ee). This result was remedied through kinetic resolution of 33. Thus, acetylation of hydroxy epoxide 33 with vinyl acetate in the presence of Amano lipase PS¹⁵ furnished enantiomerically enriched hydroxy epoxide (+)-33 (71% yield, >95% ee) and enantiomerically enriched acetoxy epoxide (-)-34 (25% yield, >95% ee). The absolute configuration assignments of (+)-33 and (-)-34 were made tentatively based on the use of (-)-DET that was expected to afford (+)-33 as the major enantiomer. These

^aReagents and conditions: (a) n-Bu₃SnH (1.3 equiv), AIBN (0.08 equiv), 80 °C, 2.5 h, 49%; (b) DMP (1.2 equiv), NaHCO₃ (1.2 equiv), CH₂Cl₂, 23 °C, 1 h, 86%; (c) 18-crown-6 (4.0 equiv), 31 (1.3 equiv), KHMDS (1.2 equiv), THF, -78 °C, 0.5 h, 92%; (d) DIBAL-H (2.5 equiv), Et₂O, -78 °C, 1 h, 92%; (e) Ti(O*i*-Pr)₄ (1.0 equiv), (-)-DET (1.4 equiv), t-BuOOH (3.0 equiv), CH₂Cl₂, -20 °C, 16 h, 61%, 43% ee; (f) Amano lipase PS from Burkholderia cepacia (100%, w/w), vinyl acetate (2.0 equiv), CH₂Cl₂, 23 °C, 48 h, 71%, >95% ee for (+)-33, 25%, >95% ee for (-)-34; (g) DMP (1.3 equiv), NaHCO₃ (1.3 equiv), CH₂Cl₂, 23 °C, 1 h, 81%; (h) 5 (1.05 equiv), PPh₃ (1.75 equiv), i- Pr_2NEt (7.0 equiv), 90 °C, 16 h; then -78 °C, LiHMDS (1.05 equiv), DMPU (0.6 equiv), (-)-8 (1.0 equiv), THF, 15 min; then 23 °C, 1 h, 76%; (i) 7 (1.0 equiv), CuTC (1.5 equiv), NMP, 23 °C, 1 h, 74%; (j) Et₃N·3HF (3.0 equiv), THF, 23 °C, 1 h, 76%. AIBN = 2,2'-azobis(2methylpropionitrile), DMP = Dess-Martin periodinane, KHMDS = potassium bis(trimethylsilyl)amide, LiHMDS = lithium bis-(trimethylsilyl)amide, CuTC = copper(I) thiophene-2-carboxylate.

assignments were confirmed by successful synthesis of disorazole A_1 (1), whose absolute configuration was known.¹⁶ This resolution presented us with the opportunity to synthesize enantioselectively disorazole A_1 (1) and the two diastereoisomers (2 and 3, Figure 1) of disorazole B_1 (whose relative configuration and absolute structure were not known).^{1,16} Based on biosynthetic considerations, we reasoned the likelihood of both disorazoles featuring the same configuration at their epoxide sites was higher than being antipodal. We, therefore, opted to pursue first the synthesis of disorazole B_1 (2), rather than its diastereoisomer (3). To this end, hydroxy epoxide (+)-33 was oxidized to aldehyde (-)-8 (DMP, 81% yield), and then reacted with the ylide generated from iodide 5 (PPh₃, *i*-Pr₂NEt; LiHMDS, DMPU) to afford selectively (Z)-olefin vinyl tin triene epoxide 35 in 76% yield. Coupling of vinyl stannane 35 with bromide 7^8 under palladium-free conditions (thus evading potential side reactions caused by the multiple olefinic bonds present in the two substrates)¹⁷ then led to key intermediate 36 (74% yield), whose desilvlation (Et₃N·3HF) furnished key fragment 37 (76% yield).

Scheme 4 summarizes the completion of the total synthesis of disorazole A_1 . Thus, Suzuki coupling of boronic acid 4 with vinyl bromide 6 [Pd(dppf)Cl₂ cat., Tl₂CO₃] furnished conjugated hydroxy triene 38 (84% yield), which was reacted with carboxylic acid 39 (obtained from methyl ester 36 through the action of

Scheme 4. Total Synthesis of Disorazole $A_1(1)^a$

^aReagents and conditions: (a) 4 (1.4 equiv), Tl_2CO_3 (5.0 equiv), Pd(dppf)Cl₂ (10 mol %), THF:H₂O 3:1, 23 °C, 16 h, 84%; (b) Me₃SnOH (10 equiv), DCE, 80 °C, 3 h; (c) **39** (2.0 equiv), **38** (1.0 equiv), Et₃N (6.0 equiv), DMAP (8.0 equiv), TCBC (3.0 equiv), toluene, 23 °C, 1.5 h, 99%; (d) Et₃N·3HF (3.0 equiv), THF, 23 °C, 1 h, 99%; (e) Me₃SnOH (10 equiv), DCE, 80 °C, 1.5 h; (f) TCBC (10 equiv), Et₃N (11 equiv), toluene, 23 °C, 1 h; then DMAP (4.0 equiv), 23 to 40 °C, 29 h, 48% from **41**; (g) TASF (12 equiv), H₂O, DMF, 41 °C, 72 h, 17%. DCE = dichloroethane, TCBC = 2,4,6-trichlorobenzoyl chloride.

Me₃SnOH,¹⁸ Scheme 4) under Yamaguchi conditions to afford diester 40 in 99% overall yield from 38. The more labile TMS silyl ether was cleaved from 40 (Et₃N·3HF) leading to hydroxy methyl ester 41 (99% yield). The methyl ester of the latter was selectively hydrolyzed using Me₃SnOH,¹⁸ and the resulting hydroxy acid was cyclized under Yamaguchi conditions to afford macrolactone 42 in 48% overall yield. Finally, the TBS groups were cleaved from 42 by treatment with TASF¹⁹ (17% yield), furnishing disorazole A₁ (1). Synthetic disorazole A₁ exhibited identical ¹H- and ¹³C NMR spectroscopic data and comparable specific rotation {[α]_D²⁵ = -85 (c = 0.08, MeOH); Lit.¹ [α]_D²² = -77 (c = 0.75, MeOH)} with the natural product. Further improvements in this challenging and rather puzzling step are in progress.

Disorazole B₁ (2) was synthesized as summarized in Scheme 5. Thus, esterification of hydroxy compound 37 (see Scheme 3) with carboxylic acid 39 (see Scheme 4) under Yamaguchi conditions led to ester 43 in 98% yield (based on 36). Selective desilylation of the latter with Et₃N·3HF (-TMS group) furnished hydroxy methyl ester 44, whose exposure to Me₃SnOH¹⁸ afforded the corresponding hydroxy acid. Yamaguchi macrolactonization of the so-obtained crude seco acid led to precursor 45 (48% overall yield), from which disorazole B₁ (2) was liberated through TASF-mediated desilylation (64% yield). Synthetic disorazole B₁ exhibited identical ¹H- and ¹³C NMR spectral data and comparable specific rotation value { $[\alpha]_D^{25} = -59$ (c = 0.61, MeOH:CH₂Cl₂ 1:1, v/v); Lit.¹ $[\alpha]_D^{22} = -65^{20}$ (c = 0.5, MeOH:CH₂Cl₂ 1:1, v/v)} to those of the natural product.

Starting with acetoxy epoxide (-)-34 (Scheme 3) and following a similar sequence, we synthesized disorazole B₁ diastereoisomer 3, whose spectral data were in agreement with

Scheme 5. Total Synthesis of Disorazole $B_1(2)^a$

^aReagents and conditions: (a) 37 (1.0 equiv), 39 (2.0 equiv), Et₃N (6.0 equiv), DMAP (8.0 equiv), TCBC (3.0 equiv), toluene, 23 °C, 1 h, 98% (for 2 steps); (b) Et₃N·3HF (3.0 equiv), THF, 23 °C, 1 h, 91%; (c) Me₃SnOH (10 equiv), DCE, 80 °C, 1.5 h; (d) TCBC (10 equiv), Et₃N (11 equiv), toluene, 23 °C, 1 h; then DMAP (4.0 equiv), 23 to 40 °C, 29 h, 48% (for 2 steps); (e) TASF (11.5 equiv), H₂O, DMF, 40 to 45 °C, 72 h, 64%.

its structure but differed from those of disorazole B_1 (2) (see Supporting Information).

Representing the first total syntheses of disorazoles $A_1(1)$ and $B_1(2)$, and revealing the full structural assignment of disorazole B_1 , the described chemistry could lead to wide scope explorations of structure–activity relationships (SARs) through analogue design, synthesis and biological evaluation within the disorazole family of compounds, from which highly potent cytotoxic agents may emerge as potential payloads for antibody–drug conjugates (ADCs).

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.7b09843.

Experimental procedures and characterization data (PDF)

AUTHOR INFORMATION

Corresponding Author

*kcn@rice.edu

ORCID ®

K. C. Nicolaou: 0000-0001-5332-2511 Gabriel Bellavance: 0000-0002-4229-1155

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Drs. Lawrence B. Alemany and Quinn Kleerekoper (Rice University) for NMR-spectroscopic assistance, Drs. Christopher L. Pennington (Rice University) and Ian Riddington (University of Texas at Austin) for mass-spectrometric assistance, and Dr. Rolf Jansen for ¹H- and ¹³C NMR spectra of disorazoles A_1 and B_1 . This work was supported by the Cancer Prevention Research Institute of Texas (CPRIT) and The Welch Foundation (grant C-1819). G. B. gratefully acknowledges the Natural Sciences and Engineering Research Council of Canada (NSERC) for a postdoctoral fellowship.

REFERENCES

(1) Jansen, R.; Irschik, H.; Reichenbach, H.; Wray, V.; Höfle, G. *Liebigs Ann. Chem.* **1994**, 1994, 759–773.

(2) (a) Irschik, H.; Jansen, R.; Gerth, K.; Höfle, G.; Reichenbach, H. J. Antibiot. 1995, 48, 31–35. (b) Carvalho, R.; Reid, R.; Viswanathan, N.; Gramajo, H.; Julien, B. Gene 2005, 359, 91–98. (c) Wipf, P.; Graham, T. H.; Vogt, A.; Sikorski, R. P.; Ducruet, A. P.; Lazo, J. S. Chem. Biol. Drug Des. 2006, 67, 66–73. (d) Tierno, M. B.; Kitchens, C. A.; Petrik, B.; Graham, T. H.; Wipf, P.; Xu, F. L.; Saunders, W. S.; Raccor, B. S.; Balachandran, R.; Day, B. W.; Stout, J. R.; Walczak, C. E.; Ducruet, A. P.; Reese, C. E.; Lazo, J. S. J. Pharmacol. Exp. Ther. 2009, 328, 715–722. (3) (a) Sievers, E. L.; Senter, P. D. Annu. Rev. Med. 2013, 64, 15–29.

(3) (a) Sievers, E. L.; Senter, P. D. Annu. Rev. Med. 2013, 64, 15-29.
(b) Perez, H. L.; Cardarelli, P. M.; Deshpande, S.; Gangwar, S.; Schroeder, G. M.; Vite, G. D.; Borzilleri, R. M. Drug Discovery Today 2014, 19, 869-881. (c) Chari, R. V. J.; Miller, M. L.; Widdison, W. C. Angew. Chem., Int. Ed. 2014, 53, 3796-3827.

(4) (a) Wipf, P.; Graham, T. H. J. Am. Chem. Soc. 2004, 126, 15346– 15347. (b) Speed, A. W. H.; Mann, T. J.; O'Brien, R. V.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2014, 136, 16136–16139. (c) Ralston, K. J.; Ramstadius, H. C.; Brewster, R. C.; Niblock, H. S.; Hulme, A. N. Angew. Chem., Int. Ed. 2015, 54, 7086–7090.

(5) (a) Hillier, M. C.; Park, D. H.; Price, A. T.; Ng, R.; Meyers, A. I. *Tetrahedron Lett.* **2000**, *41*, 2821–2824. (b) Hillier, M. C.; Price, A. T.; Meyers, A. I. J. Org. Chem. **2001**, *66*, 6037–6045. (c) Hartung, I. V.; Niess, B.; Haustedt, L. O.; Hoffmann, H. M. R. Org. Lett. **2002**, *4*, 3239– 3242. (d) Niess, B.; Hartung, I. V.; Haustedt, L. O.; Hoffmann, H. M. R. *Eur. J. Org. Chem.* **2006**, 2006, 1132–1143. (e) Hopkins, C. D.; Schmitz, J. C.; Chu, E.; Wipf, P. Org. Lett. **2011**, *13*, 4088–4091.

(6) (a) Wipf, P.; Graham, T. H.; Xiao, J. Pure Appl. Chem. 2007, 79, 753.
(b) Hopkins, C. D.; Wipf, P. Nat. Prod. Rep. 2009, 26, 585–601.

- (7) (a) Hartung, I. V.; Eggert, U.; Haustedt, L. O.; Niess, B.; Schäfer, P.
- M.; Hoffmann, H. M. R. *Synthesis* **2003**, 2003, 1844–1850. (b) Haustedt, L. O.; Panicker, S. B.; Kleinert, M.; Hartung, I. V.; Eggert, U.; Niess, B.;
- Hoffmann, H. M. R. *Tetrahedron* **2003**, *59*, 6967–6977. (8) Wipf, P.; Graham, T. H. *Org. Biomol. Chem.* **2005**, *3*, 31–35.

 (9) Vi pi, P.; Graham, P. H. Org, District Chem. 2000, 9, 91–93.
 (9) Schäckel, R.; Hinkelmann, B.; Sasse, F.; Kalesse, M. Angew. Chem., Int. Ed. 2010, 49, 1619–1622.

(10) Nagao, Y.; Hagiwara, Y.; Kumagai, T.; Ochiai, M.; Inoue, T.; Hashimoto, K.; Fujita, E. J. Org. Chem. **1986**, *51*, 2391–2393.

(11) (a) Appel, R. Angew. Chem., Int. Ed. Engl. 1975, 14, 801–811.
(b) Wang, Z. In Comprehensive Organic Name Reactions and Reagents;

John Wiley & Sons, Inc.: Hoboken, NJ, 2010; pp 95–99. (12) Cosp, A.; Romea, P.; Urpí, F.; Vilarrasa, J. *Tetrahedron Lett.* 2001,

42, 4629–4631.

(13) Pulukuri, K. K.; Chakraborty, T. K. Org. Lett. 2014, 16, 2284–2287.

(14) Phillips, A. J.; Uto, Y.; Wipf, P.; Reno, M. J.; Williams, D. R. Org. Lett. 2000, 2, 1165–1168.

(15) Ghanem, A.; Aboul-Enein, H. Y. Chirality 2005, 17, 1-15.

(16) Höfle, G. In *Wissenschaftlicher Ergebnisbericht*; Gesellschaft für Biotechnologische Forschung mbH; Döring Druck Druckerei und Verlag GmbH: Braunschweig-Stöckheim, Germany, 1999/2000; pp 101–104.

(17) (a) Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. **1996**, 118, 2748–2749. (b) Wang, M.; Lin, Z. Organometallics **2010**, 29, 3077–3084.

(18) Nicolaou, K. C.; Estrada, A. A.; Zak, M.; Lee, S. H.; Safina, B. S. Angew. Chem., Int. Ed. **2005**, *44*, 1378–1382.

(19) Scheidt, K. A.; Chen, H.; Follows, B. C.; Chemler, S. R.; Coffey, D. S.; Roush, W. R. J. Org. Chem. **1998**, 63, 6436–6437.

(20) It should be noted the sign for the specific rotation was inadvertently reported erroneously as positive in the original isolation paper (ref 1). We are grateful to Dr. Rolf Jansen for this clarification and for providing us with a scan of the lab book entry of the initial isolation indicating the true sign for the specific rotation as negative.