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ABSTRACT
The synthesis of 2,3-dihydroquinazolin-4(1H)-ones by cyclocondensa-
tion of anthranilamide with ketones in aqueous media using Hb zeo-
lite is reported. The scope of the reaction was explored by various
ketones such as aromatic, aliphatic and cyclic ketones. Based on the
preliminary mechanistic results, a tentative mechanism for the forma-
tion of 2,3-dihydroquinazolin-4(1H)-ones using zeolite catalyst (Hb) is
predicted. The reusability study, large-scale experiment and water as
solvent showed significant benefits of this catalytic protocol in com-
paring to earlier methods.
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Introduction

The synthesis of nitrogen-containing heterocycles has gained much attention for its
chemical, biological, and technical significance.[1–5] Among the various well-known
heterocyclic compounds, 2,3-dihydroquinazolin-4(1H)-ones are an important class of
heterocycles, which show a broad spectrum of biological and pharmaceutical activities
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(Fig. 1).[6–14] Moreover, 2,3-dihydroquinazolinones are key synthetic intermediates for
the preparation of biologically active 4(3H)-quinazolinones by oxidation, which exhibit
many central nervous system effects, cardiovascular and anti-inflammatory activity and
act as psychotropic, hypnotic, cardiotonic, and antihistamine agents.[15] Owing to their
diverse pharmacological activities and synthetic utility, development of a modest and
clean process for the production of 2, 3-dihydroquinazolin-4(1H)-ones is still in
demand. Numerous strategies for their synthesis have been reported using several cata-
lysts such as Ga(OTf)3,

[16] thiamine hydrochloride (VB1),
[17] ionic liquid,[18]

KAI(SO4)2�12H2O,
[19] ethylenediamine diacetate,[20] b-Cyclodextrin (b-CD),[21] nano-

In2O3,
[22] CuO nanoparticles,[23] microwave (MW) irradiation,[24] ZrCl4,

[25] amberlyst-
15,[26] propylphosphonic anhydride,[27] 2-morpholinoethanesulfonic acid,[28] magnetic
nanoparticles,[29] b-Cyclodextrin-SO3H,[30] lactic acid,[31] and dodecylbenzenesulfonic
acid.[32] Despite formidable advances, most of the methods suffer from one or more
shortcomings, such as using hazardous organic solvents, moisture sensitive catalysts,
strongly acidic conditions, high reaction temperatures, and tedious work-up procedures.
Moreover, most of the methods limited to aldehydes, ketones have been less investi-
gated. Owing to their diverse pharmacological activities and synthetic utility, the devel-
opment of a general, green and environmentally benign synthetic protocol for the
synthesis of 2,3-dihydroquinazolinones from ketones is highly desirable.
Lately, the development of novel methods that decrease pollution in the chemical

industry has established an important consideration because of increasing environmen-
tal concerns. In this context, heterogeneous catalysis has seemed like an appropriate
tool to reduce the waste production, lower contamination of the products, and recycling
of the catalysts.[33–36] Also, pursuing organic reactions in aqueous media under mild
conditions is of great importance in modern synthetic chemistry and paves the way to
design green, safe, and economically viable processes.
Zeolite materials have a wide range of applications in petroleum and fine chemical

industries,[37–40] this is mostly because zeolites have uniform channel size, unique
molecular shape selectivity, firm acidity, and thermal/hydrothermal stability. The
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Figure 1. Illustrative examples of drugs possessing quinazolinone skeleton.
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accessible substantial micropore volume, large-pore channel system and the presence of
active sites in different concentrations make the BEA-type of zeolite (zeolite beta) as an
alternative and promising candidate for an extensive array of diverse chemical reac-
tions.[41–45] As part of our ongoing research interest to develop eco-friendly synthetic
protocols using zeolites and modified zeolites,[46–53] herein we report a simple, green
and environmentally benign approach for the synthesis of 2,3-dihydroquinazolinones
from anthranilamide and ketones over Hb zeolite in aqueous media (Scheme 1).

Results and discussion

The reaction between acetophenone (1a) (1mmol) and anthranilamide (2a) (1mmol)
was chosen as a model system to govern the optimal conditions for the synthesis of 2-
methyl-2-phenyl-2,3-dihydroquinazolin-4(1H)-one (3a). The reaction was carried out
over zeolites, MCM-41, montmorillonite K10, SiO2 and SiO2-Al2O3 to find out the best
catalyst for this transformation (Table 1, entries 1–9). Among the catalysts examined,
Hb zeolite exhibited the higher catalytic activity and gave the corresponding product
(3a) in 75% yield that attributed strong acidic sites and unique three-dimensional large

Scheme 1. The synthesis of 2,3-dihydroquinazolinones from anthranilamide and ketones.

Table 1. Optimization for the synthesis of 2-methyl-2-phenyl-2,3-dihydroquinazolin-4(1H)-one
from acetophenone and anthranilamidea

Entry Catalyst Yield 3a (%)b

1 Hb 75
2 NaY 20
3 HZSM-5 (150) 34
4 H-Mordenite 35
5 HY 41
6 Montmorillonite K10 23
7 HMCM-41 29
8 Silica 1
9 Silica-alumina 3
10 Absence of catalyst 00
11 Hb 77c

12 Hb 98d

aReaction conditions: 1a (1mmol), 2a (1mmol), H2O (1mL), catalyst (50mg), 80 �C, 2 h, sealed
tube; bIsolated yields; c100 �C, Hb (50mg). dHb (100mg).

SYNTHETIC COMMUNICATIONSVR 3



size porous structure of Hb zeolite catalyst (Table 1, entry 1). The reaction did not pro-
ceed in the absence of a catalyst, thus supporting the role of catalyst in the reaction
(Table 1, entry 10). Increase in reaction temperature could not help to improve the
yield of 3a (Table 1, entry 11), whereas increasing the amount of Hb zeolite catalyst
(50–100mg) leads to a higher yield of 3a (Table 1, entry 12). From Table 1, 100mg of
Hb was ideal to get the maximum yield of the desired product in H2O (1mL) at 80 �C
(Table 1, entry 12).
We then motivated our attention on evaluating the scope of the Hb zeolite-catalyzed

strategy by testing the reaction of anthranilamide with various ketones such as aralkyl,
acyclic, and cyclic ketones under optimized reaction conditions (Tables 2 and 3). As
showed in Tables 2 and 3, all the ketones reacted well with anthranilamide (2a) to
afford moderate to excellent yields of the corresponding 2,3-dihydro-4(1H)-

Table 2. The scope of the condensation reaction of anthranilamide with various ketones over Hb zeolitea.

aReaction conditions: 1 (1mmol), 2 (1mmol), H2O (1mL), Hb zeolite (100mg), 80 �C, Isolated yields.
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quinazolinone products. To find out the effect of substitution on the aromatic ring of
acetophenone on the reaction path with this catalytic system, considered the condensa-
tion reaction with different substitutions. Activating groups present on the aromatic
ring of acetophenone were efficiently transformed into the respective 2,3-dihydro-
4(1H)-quinazolinone derivatives in 53–99% yields (Table 2, 3b–3h). However, the bulky
alkyl group-substituted acetophenone exhibited lower activity and presented the corre-
sponding product in 53% yield (Table 2, 3g). A highly deactivating group bearing aceto-
phenones and halo-substituted acetophenones also participated well in this reaction to
provide the desired products in 55–99% yields (Table 2, 3i-3p). It is noteworthy that
acetophenone having the same substituent at different positions on the phenyl ring had
an influence on the reaction yield (Table 2, 3e, 3f, 3i, 3j, 3k, 3m, 3n, 3o, and 3p). Next,
performing the reaction with acyclic ketones and furnished the respective products in
93% and 94% yields, respectively (Table 2, 3q and 3r).
Finally, we investigated the effectiveness of this present catalytic system with cyclic

ketones such as cyclopentanone, cyclohexanone, cycloheptanone, and cyclooctanone
(Table 3). The outcome indicates that cyclic ketones efficiently underwent the reaction
with anthranilamide and the corresponding 2,3-dihydro-4(1H)-quinazolinones products
were obtained in excellent yields (Table 3, 3aa-3ad).
To illustrate the practical usefulness of this catalytic protocol, we have performed the

reaction at gram scale process under the optimized conditions and the corresponding
2,3-dihydro-4(1H)-quinazolinone product 3a was isolated in 70% yield (Scheme 2). It
shows that there was a deviation in the yield of the respective product when compared
to the small-scale reaction. However, a higher yield (92%) of 3a was obtained with 1 g
(or 1.5 g) of catalyst in 4 h.
To prove the potential recycling ability of Hb by performing the cyclocondensation

reaction with acetophenone (1a) and anthranilamide (2a) under similar reaction condi-
tions. After the reaction, the catalyst (Hb) was easily separated from the reaction mix-
ture by filtration, and the recovered catalyst was calcined at 450 �C to use in the next
cycle. A similar protocol was maintained for other cycles, and no noticeable loss of cata-
lytic activity was detected even after five cycles (Fig. S1, See in ESI). The XRD analysis
suggests that catalyst was crystalline before and after the reaction (Fig. S2, See in ESI).

Table 3. The scope of the condensation reaction of cyclic ketones with anthranilamide over Hb zeolitea.

aReaction conditions: 1 (1mmol), 2 (1mmol), H2O (1mL), Hb zeolite (100mg), 80 �C, 2 h, Isolated yields.
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There was no leaching of aluminum or silicon from zeolite (Hb) was observed by elem-
ental analysis.
It is a well-known fact that apart from Bronsted acidity, there could be Lewis acidity

exists in Hb zeolite. It is known that 2,6-lutidine selectively interacts with Br�nsted
acid sites instead of Lewis acid sites due to the steric hindrance caused by its methyl
groups.[54] The model reaction was performed under optimized condition by the add-
ition of various amounts of 2,6-lutidine to elucidate the nature of the active sites for the
cyclocondensation reaction. As can be seen in Figure 2, the yield of 3a was gradually
reduced by 2,6-lutidine and no yield of 3a was observed over the 12 mmolg�1 addition
of 2,6-lutidine to the reaction mixture. This observation revealed that the condensation
reaction is mainly promoted by the Br�nsted acid sites of the Hb catalyst.
Based on the above observation study, a tentative reaction mechanism for the forma-

tion of 2,3-dihydroquinazolin-4(1H)-ones from anthranilamide and ketones over Hb is
outlined in Scheme 3. It is hypothesized that the reaction is initiated by adsorption of
ketone on the acid sites of Hb zeolite (Bronsted acid sites activates the carbonyl group
of the ketone, and weak conjugate base [framework oxygen] activates the amine group
of the anthranilamide), which subsequently reacts with anthranilamide (2a) to provide
the intermediate (A) after loss of a water molecule. Then, an intramolecular

Scheme 2. Large-scale experiment for the synthesis of 2-methyl-2-phenyl-2,3-dihydroquinazolin-4(1H)-
one from anthranilamide and acetophenone.

Figure 2. The dependence of the reaction yield of 3a on the amount of 2,6-lutidine added to the
Hb-catalyzed cyclocondensation reaction between 1a and 2a. Reaction conditions: 1a (1mmol), 2a
(1mmol), H2O (1mL), Hb (100mg), 80 �C, 2 h, 2,6-Lutidine (X mmol g�1), sealed tube. aIsolated yields.
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nucleophilic attack of intermediate (A), followed by 1,5-hydrogen shift yields the 2,3-
dihydroquinazolin-4(1H)-ones (3).

Experimental section

General information

All chemicals were obtained and used as received from Sigma–Aldrich. The Hb zeolite
(Si/Al¼ 12.5) was acquired from Alfa Aesar, England. 1HNMR spectra were recorded at
300, 400, or 500MHz and 13CNMR spectra at 100 or 125MHz in CDCl3. The chemical
shifts (d) are described in ppm units relative to TMS as an internal standard for
1HNMR and CDCl3 for 13CNMR spectra. Coupling constants (J) are reported in hertz
(Hz) and multiplicities are indicated as follows: s (singlet), br s (broad singlet), d (doub-
let), dd (doublet of doublet), t (triplet), m (multiplet). The mass spectrometric analysis
was performed by using high-resolution Q-TOF Mass Spectrometer. The GC analysis
was carried out using GC Shimadzu (GC-2014) gas chromatograph equipped with FID
detector and capillary column (EB-5, length 30m, inner diameter 0.25mm, film
0.25mm). TLC inspections were carried out on Silica gel 60 F254 plates. Column chro-
matography was performed on silica gel (100–200 mesh) using n-hexane-EtOAc as elu-
ent. The XRD patterns of the zeolites were obtained on a Regaku miniflex X-ray
Diffractometer using Ni-filtered CuKa radiation at 2h¼ 2–80� with a scanning rate of
2� min�1 and the beam voltage and currents of 30 kV and 15mA, respectively. ESI-
HRMS were performed on Exactive orbitrap (Thermo scientific), mass accur-
acy <1 ppm.

General procedure

Hb zeolite (100mg) was added to the well-stirred solution of anthranilamide (1mmol),
ketone (1mmol), and water (1mL) in a 15mL sealed tube and the reaction mixture was
allowed to stir at 80 �C. After the disappearance of the anthranilamide (monitored by
TLC) or after an appropriate time, the reaction mixture was cooled to room

Scheme 3. The plausible reaction mechanism for the formation of 2,3-dihydroquinazolin-4(1H)-ones
over Hb zeolite.
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temperature and diluted with ethyl acetate (3� 10mL). Simple filtration separated the
catalyst (Hb zeolite), and the removal of solvent in vacuo yielded crude. The crude was
purified by column chromatography using silica gel (100–200 mesh) to afford pure
products and these identified based on 1H, 13C NMR, and mass spectral data.

Conclusions

In summary, a green and straightforward method for the synthesis of 2,3-dihydroquina-
zolin-4(1H)-ones involving the condensation of anthranilamide with ketones over Hb
zeolite in aqueous media was successfully developed. Broad substrate scope, water as a
solvent, use of non-hazardous and reusable catalysts, higher yields of the desired prod-
ucts, and simple workup procedures are prominent advantages of this catalytic strategy.
These findings highlight the potential of this protocol as an inexpensive and environ-
mentally benign method.
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