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Abstract: Substituted nitrogen heterocycles are structural key units in many important
pharmaceuticals. A new synthetic approach towards heterocyclic compounds displaying antibacterial
activity against Staphylococcus aureus or cytotoxic activity has been developed. The selective synthesis
of a series of 64 new N-heterocycles from the three nitrobutadienes 2-nitroperchloro-1,3-butadiene,
4-bromotetrachloro-2-nitro-1,3-butadiene and (Z)-1,1,4-trichloro-2,4-dinitrobuta-1,3-diene proved
feasible. Their reactions with N-, O- and S-nucleophiles provide rapid access to push-pull substituted
benzoxazolines, benzimidazolines, imidazolidines, thiazolidinones, pyrazoles, pyrimidines,
pyridopyrimidines, benzoquinolines, isothiazoles, dihydroisoxazoles, and thiophenes with unique
substitution patterns. Antibacterial activities of 64 synthesized compounds were examined.
Additionally, seven compounds (thiazolidinone, nitropyrimidine, indole, pyridopyrimidine, and
thiophene derivatives) exhibited a significant cytotoxicity with IC50-values from 1.05 to 20.1 µM.
In conclusion, it was demonstrated that polyhalonitrobutadienes have an interesting potential as
structural backbones for a variety of highly functionalized, pharmaceutically active heterocycles.

Keywords: polyhalonitrobutadienes; nucleophilic substitution; heterocyclization; nitrogen
heterocycles; medicinal chemistry

1. Introduction

Halogenated nitrobutadienes are part of a relatively small group of selectively reactive
aliphatic nitro compounds [1]. Representatives with one or two nitro and three to five
halogen groups are easily accessible by introduction of an activating and directing nitro
group into polyhalo-1,3-butadienes [2]. These can be easily obtained in high purity and
multigram scale by radical dimerization of industrial solvents such as trichloroethene and
1,2-dichloroethene with subsequent dehydrohalogenation-halogenation, followed by nitration reactions.
2-Nitroperchlorobutadiene (1) has been synthesized in three steps from trichloroethene [3,4] (Scheme 1).
4-Bromotetrachloro-2-nitrobutadiene (2) could be obtained from trichloroethene in five steps [5].
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(Z)-1,1,4-Trichloro-2,4-dinitrobutadiene (3) was made accessible in four steps from a Z,E-mixture of
1,2-dichloroethene [6].Molecules 2019, 24, × FOR PEER REVIEW 2 of 40 
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Scheme 1. Synthesis of the polyhalonitrobutadienes 1–3. 

Due to their graded reactivity in SN reactions, nitro-substituted polyhalo-1,3-butadienes have 
proven to be valuable synthetic precursors for a variety of four- to six-membered, often 
pharmaceutically active heterocycles. They bear a unique substitution pattern that cannot be accessed 
easily on an alternative pathway. This structural overview for medicinal chemists demonstrates the 
broad synthetic potential of the nitrodienes 1, 2, and 3 as a backbone for specifically substituted 
heterocycles, owing to the additional potential for predictable successive molecular fine tuning. 

2. Results and Discussion 

2.1. Chemistry 

2.1.1. Benzoxazolines and Benzimidazolines 

Due to the high electrophilicity of its nitrodichlorovinyl group, 1 reacts readily with various 
amines which, according to Pearson’s scale, are hard nucleophiles [7]. Thus, reactions of 2-
aminophenol derivatives with 1 occur under mild conditions and lead to substitution of both Cl 
groups of the nitrodichlorovinyl unit with formation of the corresponding (E)-2,3-di-
hydrobenzoxazoles 4a,b in reasonable yields [8]. The substructure of a ß-nitro-substituted enamine 
within compounds 4a,b should enable a stabilization caused by a strong hydrogen bond between an 
oxygen atom of the nitro group and the proton at the oxazoline nitrogen atom. The downfield-shifted 
1H nmr signal for the NH-group between 11.8 ppm in CDCl3 and 13.6 ppm in DMSO-d6 points out 
that H-bonding (Scheme 2) must be important and azoles 4a,b are obtained hereby exclusively as E-
isomers. Under mild reaction conditions, benzoxazoline 4b reacts with activated pyridine 
derivatives, forming betaines 5a–c in 62–74% yield. Treatment of 4b with nicotine under the same 
reaction conditions furnishes azinate 5d in 53% yield. Synthesis of the novel and structurally 
interesting cross-conjugated inner salts 5a–d demonstrates the broad synthetic applicability of 2-
nitroperchlorobutadiene [9]. Benzoxazoline 6 was obtained in 73% yield as a 1:1 mixture of two 
isomers by the action of 2-amino-3-methylphenol on the bromonitrodiene 2 at −40 °C in methanol. 
The reaction of dinitrodiene 3 with 4-methylbenzene-1,2-diamine at −40 °C results almost 
quantitatively in the formation of benzimidazoline 7a. By treatment of 3 with 2-aminophenol 
derivatives, the corresponding benzoxazolines 7b,c were obtained in acceptable yields (Scheme 2). 
Similar benzoxazolines and benzimidazolines exhibit herbicidal activity and act as a model 
compound when exploring caseinolytic protease as target for herbicides or growth regulators [10]. 

Scheme 1. Synthesis of the polyhalonitrobutadienes 1–3.

Due to their graded reactivity in SN reactions, nitro-substituted polyhalo-1,3-butadienes have
proven to be valuable synthetic precursors for a variety of four- to six-membered, often pharmaceutically
active heterocycles. They bear a unique substitution pattern that cannot be accessed easily on an
alternative pathway. This structural overview for medicinal chemists demonstrates the broad synthetic
potential of the nitrodienes 1, 2, and 3 as a backbone for specifically substituted heterocycles, owing to
the additional potential for predictable successive molecular fine tuning.

2. Results and Discussion

2.1. Chemistry

2.1.1. Benzoxazolines and Benzimidazolines

Due to the high electrophilicity of its nitrodichlorovinyl group, 1 reacts readily with various
amines which, according to Pearson’s scale, are hard nucleophiles [7]. Thus, reactions of 2-aminophenol
derivatives with 1 occur under mild conditions and lead to substitution of both Cl groups of the
nitrodichlorovinyl unit with formation of the corresponding (E)-2,3-di-hydrobenzoxazoles 4a,b in
reasonable yields [8]. The substructure of a ß-nitro-substituted enamine within compounds 4a,b should
enable a stabilization caused by a strong hydrogen bond between an oxygen atom of the nitro group
and the proton at the oxazoline nitrogen atom. The downfield-shifted 1H nmr signal for the NH-group
between 11.8 ppm in CDCl3 and 13.6 ppm in DMSO-d6 points out that H-bonding (Scheme 2) must be
important and azoles 4a,b are obtained hereby exclusively as E-isomers. Under mild reaction conditions,
benzoxazoline 4b reacts with activated pyridine derivatives, forming betaines 5a–c in 62–74% yield.
Treatment of 4b with nicotine under the same reaction conditions furnishes azinate 5d in 53% yield.
Synthesis of the novel and structurally interesting cross-conjugated inner salts 5a–d demonstrates the
broad synthetic applicability of 2-nitroperchlorobutadiene [9]. Benzoxazoline 6 was obtained in 73%
yield as a 1:1 mixture of two isomers by the action of 2-amino-3-methylphenol on the bromonitrodiene
2 at −40 ◦C in methanol. The reaction of dinitrodiene 3 with 4-methylbenzene-1,2-diamine at
−40 ◦C results almost quantitatively in the formation of benzimidazoline 7a. By treatment of 3 with
2-aminophenol derivatives, the corresponding benzoxazolines 7b,c were obtained in acceptable yields
(Scheme 2). Similar benzoxazolines and benzimidazolines exhibit herbicidal activity and act as a model
compound when exploring caseinolytic protease as target for herbicides or growth regulators [10].
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1,2-diamine in methanol. Under optimized conditions, yields of the products 8 reached 86–93% 
(Scheme 3). Only compound 8a was previously prepared [11] and isolated in 25% yield by reaction 
of (1,3,4,4-tetrachloro-2-nitrobuta-1,3-dien-1-yl)(p-tolyl)sulfane with N1,N2-diphenylethane-1,2-di-
amine. Treatment of imidazolidine 8a with a fivefold excess of pyrrolidine in refluxing methanol led 
to the formation of a SNVin product, the 2-(3,3-dichloro-1-nitro-2-(pyrrolidin-1-yl)allylidene)-1,3-
diphenylimidazolidine (9) in 50% yield. 
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2.1.2. Imidazolidines

Imidazolidines 8 have been prepared by reaction of nitrodienes 1–3 with N1,
N2-diphenylethane-1,2-diamine in methanol. Under optimized conditions, yields of the products
8 reached 86–93% (Scheme 3). Only compound 8a was previously prepared [11] and
isolated in 25% yield by reaction of (1,3,4,4-tetrachloro-2-nitrobuta-1,3-dien-1-yl)(p-tolyl)sulfane
with N1,N2-diphenylethane-1,2-di-amine. Treatment of imidazolidine 8a with a fivefold
excess of pyrrolidine in refluxing methanol led to the formation of a SNVin product, the
2-(3,3-dichloro-1-nitro-2-(pyrrolidin-1-yl)allylidene)-1,3-diphenylimidazolidine (9) in 50% yield.

2.1.3. Imidacloprid Analogues

The imidazolidine Imidacloprid (N-{1-[(6-chloro-3-pyridyl)methyl]-4,5-dihydroimidazol-2-yl}
-nitramide) has been the most widely used systemic insecticide worldwide. A first synthesis of
ana-logues from nitropolychloroalkenes has been reported [12,13], new types of derivatives are
presented here. For instance, 11a and 11b were obtained from nitrodiene 1 and chloropyridines 10a
and 10b, respectively [13]. Reaction of imidazolidine 11a with a 2.5-fold excess of N-nucleophiles
such as ethyl piperidine-4-carboxylate and 1,2,3,4-tetrahydroisoquinoline in methanol at 35–50 ◦C
leads to compounds 12a and 12b in 60–85% yield, respectively. By using 2-mercaptoethan-1-ol as
S-nucleophile for the reaction with 11a in the presence of sodium ethanolate, the corresponding sulfane
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12c was obtained in 63% yield. Treatment of 11b with a fivefold excess of dimethylamine at rt led to the
formation of oxazolidine 12d (70%). By the reaction of bromonitrodiene 2 with an equimolar amount
of 4-fluorobenzenethiol in DCM at rt, sulfane 13 was obtained as mixture of two isomers in a total
yield of 74%. The subsequent vinylic substitution of the monothio compound 13 by means of 10a gave
imidazolidine 14 (44%) as well as ketene dithioacetal 15 (30% yield). Arylthiols are known to be both,
good nucleophiles as well as good leaving groups. Compound 14 was previously syn-thesized in 40%
yield directly from nitrodiene 2 and diamine 10a [12]. 1,1-Dithio compound 15 could be obtained in
83% yield from diene 2 and two equivalents of 4-fluorobenzenethiol using sodium methanolate as a
base. The reaction of diene 2 with diamine 16 [13] at optimized conditions furnished the imidazolidine
17 as a mixture of two isomers in a total yield of 89% (Scheme 4).Molecules 2019, 24, × FOR PEER REVIEW 4 of 40 
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2.1.4. Thiazolidinones

Thiazolidin-4-ones represent a class of compounds that has proven to exhibit distinctive bio-activity,
e.g. antifungal, antibacterial, antitubercular, and anticonvulsant properties [14–17]. Our research in this
area is presented through an efficient synthesis of functionalized (Z)-2-allylidene-thiazolidin-4-ones [18].
Nitrodiene 1 reacts with ethyl 2-mercaptoacetate to give the sulfane 18 as single E-isomer [19]. For
the subsequent reactions of sulfane 18, we used two aniline derivatives, an activated (ERG) and an
desactivated (EWG) one. In both cases, the expected thiazolidinones 19a,b were obtained in good
yields (73–76%). Treatment of 19a,b with a 5– to 8–fold excess of hydrazine led to pyrazoles 20a,b. The
assumed mechanism for this ring-opening and subsequent ring-closure transformation forming 20a,b
has been presented [18]. Heating of thiazolidinones 19a,b with five membered 2-formyl heterocycles
in acetic acid in the presence of trimethylamine furnished hetarylmethylidenethiazolidinones 21a,f
in good to excellent yields, as single diastereomers. The Z-configuration was assigned according to
literature data. The presence of only one signal for the methylidene proton at 7.72–8.15 ppm in the
1H nmr spectra of compounds 21a,f suggested the formation of a single isomer, which was assigned
to the Z-configuration according to the literature for similar compounds [20,21]. Interestingly, close
analogues of these structures, i.e., the 5-arylmethylidene rhodanines, possess photosynthesis-inhibiting
and antialgae properties [22], show anticancer activity [23,24], and are inhibitors of bacterial enzyme
synthetase MurD with E. coli [25].
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Other thiazolidinone derivatives can be obtained by treatment of 19a and 19b with
5-formyl-pyrazole 22, previously obtained from 1 in 48% yield, as already reported [26]. Under
standard reaction conditions, the corresponding pyrazolyl-thiazolidinones 23a,b were obtained as a
mixture of two isomers in relation of 86:14. Formation of a mixture of isomers can be explained in this
case by the bulky structure of pyrazole 22 compared with 2-formyl derivatives of furan, thiophene or
1-methylpyrrole (Scheme 5).

2.1.5. Benzazetines

Functionally substituted benzazetines have also been made accessible starting from 1 [27]. The
derived bis(benzotriazole) 24 was obtained in 76% yield according to the literature [28]. Single amine
exchange of azole 24 is feasible with aromatic, aliphatic, and heteroaromatic amines in methanol at mild
reactions conditions and led to 1-benzotriazolyl-1-(organylamino)-2-nitro-3,4,4-trichloro-1,3-butadienes
25a–f in good yields (75–91%). Dienes 25d and 25e have been described, already [26,29]. Heating
of nitrodienes 25a–c in different solvents (MeOH for 26a, EtOH for 26b, and THF for 26c) gave the
corresponding benzazetines 26a–c in 25-37% yield (Scheme 6). No reaction occurred in diethyl ether,
while in benzene, strong tarring was observed [30]. Some details on the synthesis and chemical
transformations of benzazetines have been published, already [30]. N-Unsubstituted derivatives
are unstable. Stable substituted representatives have become accessible for the first time in recent
years. The substructure of a ß-nitro-substituted enamine within compounds 26a–c should enable a
stabilization caused by a strong hydrogen bond between an oxygen atom of the nitro group and the
single proton at the azetine nitrogen atom. The wide-ranging synthetic possibilities of benzazetines
and benzazetes have also been discussed.
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2.1.6. Pyrimidines

In the course of the studies concerning polyhalogenated nitrobutadienes, a new ring closure
approach to perfunctionalized 5-nitropyrimidines was also developed [33]. Using this protocol starting
from 25c–f, four new nitropyrimidines 27c–f were obtained. Even under optimum conditions, yields of
the products 27c–f remained moderate, reaching 49–65%. The assumed mechanism for the formation of
pyrimidines 27 has been presented in the literature [33]. 5-Nitro-substituted pyrimidines are interesting
precursors for the synthesis of a wide range of poly-substituted pyrimidines and other heterocyclic
systems with potential biological activity [34]. Among numerous applications, some examples are
noteworthy: cytotoxic activity is documented [35,36] as well as the potential to inactivate the human
DNA repair process [37]. The broad variety of medicinal applications is further illustrated, e.g. with the
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activity against chronic obstructive pulmonary disease [38], applicability against herpes simplex [39],
and other viral diseases [40]. Furthermore, one field of application of 5-nitropyrimidines uses their
positive modulating effect of the GABAB receptor [41,42]. Pyrimidin-4-yl-1H-indoles are a very rare
class of organic compounds; to the best of our knowledge, only 4 representatives are known till
today [43–45]. With the aim to synthesize a new pyrimidin-4-yl-1H-indole with potent biological
activity, we made an attempt to oxidize the 2,3-dihydroindole 27f. Indeed, by using DDQ as oxidizing
agent (ratio 27f: DDQ 1: 2.25, toluene, reflux 5 h), the expected indole 28 was obtained in 66% yield
(Scheme 7).
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2.1.7. Pyrazoles

In the past ten years, different ways to synthesize persubstituted 4-nitropyrazoles have
been developed [9,18,26,28,46]. Some of these compounds show high biological activities: they
can modulate the biological activity of IFNs-I [47], are active against mycobacterial infections
including tuberculosis [48], and are able to reduce prime virulence factors of Vibrio cholerae [49,50].
In the course of our recent studies, the three 1-amino-1-benzotriazolyldienes 25g–i were
synthesized in good yields (85–91%) from bis(benzotriazole) 24 using 4-(4-chlorophenyl)piperidin-4-ol,
piperazin-1-yl-(tetrahydrofuran-2-yl)methanone and 1-(3-chlorophenyl)piperazine, respectively. The
treatment of dienes 25g–i with a twofold excess of methylhydrazine in methanol at −10 ◦C to rt
led to the formation of new nitropyrazoles 29a–c in good yields (74–79%). By saponification of the
dichloromethyl group in compound 29c by means of 25% aqueous sulfuric acid at 95–100 ◦C, the
aldehyde 30 was obtained (57%) (Scheme 8) [26]. Other 4-nitropyrazoles are known as hypoxia-selective
cytotoxins and radiosensitizers [51]; they can be useful as herbicides [52,53] or show psychosedative
actions [54].

2.1.8. 4H-Pyrido [1,2-a]Pyrimidines

Recently, a new pathway for the synthesis of 4-(dichloromethylene)-3-nitro-4H-pyrido[1,2-a]
pyrimidines with a unique substitution pattern at the pyrimidine ring was developed [28]. Starting with
bis(benzotriazole) 24, using a threefold excess of 2-aminopyridines two enamines 31a,b were formed in
THF in 81–86% yield. The benzotriazole unit in pyridopyrimidines 31, activated through the neighboring
nitro group, acts as a very good leaving group and can be replaced with different nucleophiles at mild
reaction conditions. Thus, treatment of compounds 31 with 1-(4-fluoro-phenyl)piperazine in methanol
at 40 ◦C led to the piperazino-substituted pyridopyrimidines 32 in excellent yields. A SNVin process in
pyridopyrimidines 31 under action of S-nucleophiles such as ethyl 2-mercaptoacetate using sodium
ethanolate as base furnished sulfane 33a,b in 93–97% yield. Another possibility to form compounds
33a,b is reaction of sulfane 18 with 2-aminopyridines. At optimum conditions (MeOH, threefold



Molecules 2020, 25, 2863 8 of 41

excess of amino-pyridines, rt), the yields of pyridopyrimidines 33 reached 47–55% (Scheme 9). Similar
pyrido[1,2-a]pyrimidines show antiviral [55], antithrombotic [56], and antibacterial [57–60] activities.
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2.1.9. Benzo[h]quinolines

In the course of our studies on polyhalogenated nitrobutadienes, a new ring closure approach
to benzo[h]quinolines was also developed [61]. Starting from nitrodiene 1 in three steps, the target
benzo[h]quinolines with a unique substitution pattern at the pyridine ring were obtained in good
yields. In detail, after mono substitution of one chlorine group in diene 1 sulfanes 34a,b were formed
as single isomers each in yields of about 80% according to the literature [62] for the benzyl derivative
34a and literature [9] for the 4-chlorophenyl derivative 34b. In a second step, we synthesized the
aminothiobutadienes 35a,b by interaction of sulfane 34a,b with an excess of 1-naphthylamine in
methanol at −10 ◦C to rt. Dienes 35a,b were also formed (76–85% yield) as single E–isomers due to the
stable six membered hydrogen bridge between the amino and nitro group. Finally, the ring closure at
optimum conditions (twofold excess of triethylamine as a base) proceeded under formation of the
expected benzo[h]quinolines 36a,b in good yields (76–85%). The assumed mechanism for the formation



Molecules 2020, 25, 2863 9 of 41

of benzo[h]quinolines is depicted in the literature [61]. Benzo[h]quinolines are a precious class of
organic compounds and show interesting biological properties [63–67]. Oxidation of quinolines 36a,b
with excess of hydrogen peroxide in a mixture of acetic acid and chloroform lead to the formation
of sulfoxides 37a,b in 89–91% yield. The sulfinyl group is known to be a good leaving group [68–70].
Indeed, treatment of sulfoxide 37a with an excess of pyrrolidine in toluene at 100 ◦C furnished amino
derivative 38 in 77% yield (Scheme 10).Molecules 2019, 24, × FOR PEER REVIEW 10 of 40 

 

 

Scheme 10. Synthesis of benzo[h]quinolines 36–38 and nitrodienes 34, 35. 

2.1.10. Isothiazoles 

The isothiazole 39 was obtained from nitrodiene 1 upon treatment with elemental sulfur at 200 
°C [71]. Subsequent reaction with fuming nitric acid provided the 4,5-dichloroisothiazole-3-
carboxylic acid (40) [72], which could be easily converted into the corresponding acid chloride 42 
with thionyl chloride (93% yield) [28]. Acid 40 reacts with ethyl 2-bromoacetate in the presence of 
sodium ethanolate under reflux conditions to ester 41 in 58% yield. The esterification of acid chloride 
42 with a fourfold excess of 2,2,2-trifluoroethan-1-ol in refluxing THF resulted in the formation of a 
2,2,2-trifluoroethyl 4,5-dichloroisothiazole-3-carboxylate (43) (64% yield). Acid chloride 42 smoothly 
reacted with aromatic and aliphatic amines to provide the corresponding amides 44a–d in 68–95% 
yield. The reaction of chloride 42 with 2 equivalents of 1-(6-chloropyridin-3-yl)-N-methyl-
methanamine in THF furnished amide 44e as mixture of two rotamers in relation 10: 6 with a total 
yield of 86%. An alternative way to obtain amide 44e is the interaction of carbohydrazide 44a with 1-
(6-chloropyridin-3-yl)-N-methylmethanamine at harder reactions conditions (DMSO, 95–100 °C). In 
this case, amide 44e is formed as a mixture of two rotamers (relation 10:6), with a total yield of 69%. 
Reacting hydrazide 44a with a fourfold excess of morpholine (DMSO, 90–95 °C) did not lead to the 
formation of a product similar to amide 44e. Instead, upon substitution of a chlorine group in 5 
position of the heterocyclic ring, an isothiazole 45 was formed (78% yield). These amides 44a–e and 
45 are interesting candidates for biological testing, as amides of 4-chloroisothiazol-3-carboxylic acid 
have been shown to exhibit high antibacterial activity [73–75]. Finally, we investigated the interaction 
of amides 44a–d and ester 41 with S–nucleophiles such as 4-chlorobenzenethiol. In all cases, reaction 
products at 5 position of the heterocyclic ring were formed. Under optimized reaction conditions, the 
yields of the 5-((4-chlorophenyl)thio)isothiazoles 46a–e were in the range of 67–89% (Scheme 11). 

Scheme 10. Synthesis of benzo[h]quinolines 36–38 and nitrodienes 34, 35.

2.1.10. Isothiazoles

The isothiazole 39 was obtained from nitrodiene 1 upon treatment with elemental
sulfur at 200 ◦C [71]. Subsequent reaction with fuming nitric acid provided the
4,5-dichloroisothiazole-3-carboxylic acid (40) [72], which could be easily converted into the
corresponding acid chloride 42 with thionyl chloride (93% yield) [28]. Acid 40 reacts with ethyl
2-bromoacetate in the presence of sodium ethanolate under reflux conditions to ester 41 in 58%
yield. The esterification of acid chloride 42 with a fourfold excess of 2,2,2-trifluoroethan-1-ol in
refluxing THF resulted in the formation of a 2,2,2-trifluoroethyl 4,5-dichloroisothiazole-3-carboxylate
(43) (64% yield). Acid chloride 42 smoothly reacted with aromatic and aliphatic amines to provide
the corresponding amides 44a–d in 68–95% yield. The reaction of chloride 42 with 2 equivalents
of 1-(6-chloropyridin-3-yl)-N-methyl-methanamine in THF furnished amide 44e as mixture of two
rotamers in relation 10: 6 with a total yield of 86%. An alternative way to obtain amide 44e is the
interaction of carbohydrazide 44a with 1-(6-chloropyridin-3-yl)-N-methylmethanamine at harder
reactions conditions (DMSO, 95–100 ◦C). In this case, amide 44e is formed as a mixture of two rotamers
(relation 10:6), with a total yield of 69%. Reacting hydrazide 44a with a fourfold excess of morpholine
(DMSO, 90–95 ◦C) did not lead to the formation of a product similar to amide 44e. Instead, upon
substitution of a chlorine group in 5 position of the heterocyclic ring, an isothiazole 45 was formed
(78% yield). These amides 44a–e and 45 are interesting candidates for biological testing, as amides
of 4-chloroisothiazol-3-carboxylic acid have been shown to exhibit high antibacterial activity [73–75].
Finally, we investigated the interaction of amides 44a–d and ester 41 with S–nucleophiles such as
4-chlorobenzenethiol. In all cases, reaction products at 5 position of the heterocyclic ring were formed.
Under optimized reaction conditions, the yields of the 5-((4-chlorophenyl)thio)isothiazoles 46a–e were
in the range of 67–89% (Scheme 11).
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2.1.11. 4,5-Dihydroisoxazoles

Recently, we developed a novel, fairly general method for the synthesis of dihydroisoxazoles
with a chlorinated side chain in 3-position, starting from gem-dichloronitroalkenes [76]. In particular,
reaction of nitrodiene 1 with a base leads to the formation of 2,3,3-trichloroprop-2-enenitrile oxide.
Trapping of this nitrile oxide with an alkene resulted in 4,5-dihydroisoxazole derivatives 47–50, due to
a 1,3-dipolar cycloaddition. In detail, reaction of nitrodiene 1 with prop-1-en-2-ylbenzene at optimized
conditions furnished 4,5-dihydroisoxazole 47 in 76% yield. The interaction of the acrylonitrile oxide
1 with tert-butyl acrylate and 2-ethylhexyl acrylate at similar reactions conditions provided alkyl
3-(1,2,2-trichlorovinyl)-4,5-dihydroisoxazole-5-carboxylates 48 and 49 (65 and 60% yield). Upon
treatment of diene 1 with cyclohexene, the hexahydrobenzo-[d]isoxazole 50 was isolated in 41% yield
(Scheme 12). The yields of 47–49 are quite similar to certain compounds in [76], whereas for 50 (in
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analogy to the reaction with cyclopentene [76]), the yield is lower as expected. 4,5-Dihydroisoxazoles
were found to exhibit potent cytotoxic, antineoplastic [77], and antimalarial activity [78]. Additionally,
they can be used as androgenic or antiandrogenic agents or androgen receptor modulators [79] and
show antibacterial and antifungal activities [80].
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2.1.12. Thiophenes

In the course of studying nitroperchlorobutadiene 1 as a versatile building block for the directed
synthesis of a range of persubstituted heterocycles, we also developed a three-step synthesis to
persubstituted 3-amino-4-nitrothiophenes [81]. Incorporating both, an enamine and a thioketene unit,
these thiophenes are very electron-rich heterocycles with a unique substitution pattern. Starting from 1,
the piperazine derivative 52 was obtained in 90% yield via the dithiolane 51. The push-pull substituted
thiophene 53 was efficiently accessible in 85% yield upon treatment of dithiolane 52 with sodium
hydroxide using DMSO as solvent. The regioselective ipso-formylation of the 2-chloro-thiophene 53
under Vilsmeier-Haack conditions led to the carbaldehyde 54 (64% yield), according to [82].

The next successive steps were performed with the most stable derivative
3-morpholino-4-nitro-5-(vinylthio)thiophene-2-carbaldehyde (55) [82]. Knoevenagel condensation of
thiophene 55 with malononitrile in ethanol in the presence of a catalytic amount of sodium ethanolate
gave the gem-dicyanovinylthiophene 56 in 68% yield [83]. Oxidation of the vinylsulfanylthiophene 56
with threefold excess of hydrogen peroxide in acetic acid at 50–55 ◦C furnished sulfone 57 in 82%
yield. Interaction of carbaldehyde 55 with an excess of dimedone, (2,4,6-trichlorophenyl)hydrazine
and Meldrum’s acid in methanol led to the formation of bis(5,5-dimethylcyclohexane-1,3-dione) 58,
vinylsulfanyl-thiophene 59 and 1,3-dioxane-4,6-dione 60, respectively (Scheme 13).

2-Chloro-3-amino-4-nitro-5-(vinylsulfanyl)thiophenes similarly to compound 53 were identified
as anti-HIV compounds to treat drug-resistant retroviral infections [84] and show antiviral activity [85].
Other 3(4)-nitrothiophenes can be used in fungicidal and/or bactericidal compositions [86], and show
insecticidal and acaricidal activity [87].

2.2. Biological Activity of the Polyhalonitrobutadiene Derivatives

Evaluation of the biological activity of the chosen polyhalonitrobutadiene derivatives showed
that most of them did not display antibacterial or cytotoxic effects, i.e., residual growth or viability
after incubation for 1 and 3 days, respectively, were higher than 50%. Tables with all primary screening
data are shown in Supplementary Figures S204–S205. None of the derivatives showed an antibacterial
activity against the uropathogenic Escherichis coli strain UPEC 796, whereas some had antibacterial
activity against Staphylococcus aureus. The cytotoxic activity of nine compounds could be proven, as
these compounds had IC50–values < 50 µM in the viability assay. Among those compounds was
the “conjugate” 23b of the pyrazole 22 and the thiazolidinone 19b. Whereas the compound series
21 was more or less completely inactive, introduction of the pyrazole group proved successful. In
particular, the introduction of a CF3 substituent resulted in a compound with significant cytotoxicity
(IC50 = 6.2 ± 1.8 µM). Similarly, among the pyrimidines 27, 28, the most potent derivatives were those
with the aromatic residues at the nitropyrimidine–core, namely 27c and 28 with IC50-values of 1.5 ±
0.4 µM and 1.05 ± 0.2 µM, respectively. The non-aromatic nature of the ring next to the pyrimidine
core in 27f prevented the cytotoxic activity. Following the synthesis route of the pyridopyrimidines
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32 and 33 revealed that the precursor with the leaving group benzotriazole was the only cytotoxic
compound (IC50 = 6.0 and 5.7 ± 1.0 µM), and that cytotoxicity was lost, when the benzotriazole group
was replaced. In addition, the benzo[h]quinolines 36, 38 lost the cytotoxic activity, which was still
observed for the intermediate naphthalene-aminothiobutadiene 35. All tested derivatives of both
the groups of isothiazoles and dihydroisoxazoles were inactive, whereas among the thiophenes, the
derivatives with a cyclic dione residue 58 and 60 represented cytotoxic compounds (IC50 = 3.1 ± 0.4
µM and 20.1 ± 3.9 µM). Obviously, the morpholino-nitrothiophene structure was not sufficient for
biological activity as compound 59 was completely inactive.Molecules 2019, 24, × FOR PEER REVIEW 13 of 40 
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3. Experimental

3.1. General Information

General Remarks: Solvents and reagents were used as received from commercial sources without
further purification. TLC was performed with Merck aluminum-backed TLC plates with silica gel 60,
F254. Flash column chromatography was performed with Macherey–Nagel silica gel 60 M (0.040–0.063
mm) with appropriate mixtures of petroleum ether (PE, boiling range 60–70 ◦C) and ethyl acetate as
eluents. Melting points (m.p.) were determined in capillary tubes with a Büchi B-520 instrument and
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were not corrected. FTIR spectra were recorded with a Bruker “Alpha-T” spectro-meter with solid
compounds measured as KBr pellets. ATR-IR spectra were measured on the same instrument with
a Bruker “Alpha Platinum ATR” single reflection diamond ATR module. 1H NMR and 13C NMR
spectra at 600 and 150 MHz, respectively, were recorded with an “Avance III” 600 MHz FT–NMR
spectrometer (Bruker, Rheinstetten, Germany). 1H NMR and 13C NMR spectra at 400 and 100 MHz,
respectively, were recorded with an “Avance” 400 MHz FT–NMR spectrometer (also Bruker). 1H NMR
and 13C NMR spectra at 200 and 50 MHz, respectively, were recorded with an DPX 200 spectrometer
(also Bruker). 14N and 15N NMR spectra were measured at their appropriate resonance frequency on
the aforementioned spectrometers; 15N measurements were taken as gs-1H,15N–HSQC or –HMBC
experiments with inverse detection. 1H and 13C NMR spectra were referenced to the residual solvent
peak: CDCl3, δ = 7.26 (1H) and 77.0 ppm (13C); DMSO-d6, δ = 2.50 (1H), and 39.7 ppm (13C). Mass
spectra were obtained with a Hewlett–Packard MS 5989B spectrometer, usually in direct mode with
electron impact (70 eV). For chlorinated and brominated compounds, all peak values of molecular ions
and fragments refer to the isotope 35Cl and 79Br. High resolution mass spectra were recorded with a
Waters mass spectrometer “VG Autospec” (EI), with a WATERS mass spectrometer “Q-Tof Premier”
coupled with a Waters “Acquity UPLC” (ESI), or with a Micromass mass spectrometer “LCT” coupled
with a Waters “Alliance 2965 HPLC” (ESI) at the Institute of Organic Chemistry, Leibniz University of
Hannover and at the Georg-August University of Göttingen.

3.2. Synthesis

Pentachloro-2-nitro-1,3-butadiene (1) was prepared from 2H-pentachloro-1,3-butadiene
in 53% yield (b.p. 69–71 ◦C/1 mbar) according to the literature [3,4]. (Z)-
and (E)-4-Bromotetrachloro-2-nitrobuta-1,3-diene (2) was obtained from (Z)- and
(E)-1-bromotetrachlorobuta-1,3-diene in 56% yield (b.p. 84–86 ◦C/1.3 mbar) [5].
(Z)-1,1,4-Trichloro-2,4-dinitrobuta-1,3-diene (3) was synthetized from the (Z)- and
(E)-1-bromo-1,4,4-trichlorobuta-1,3-diene in 18% yield, m.p. 70–71 ◦C [6].

Synthesis of 4-methyl-2-(2,3,3-trichloro-1-nitroprop-2-en-1-ylidene)-2,3-dihydro-1,3-benzoxazole (4a) (General
method). At −40 ◦C, a solution of nitrodiene 1 (2.71 g, 10.0 mmol) in 5 mL methanol (MeOH) was added
dropwise to a suspension of 2-amino-3-methylphenol (3.94 g, 32.0 mmol) in 30 mL MeOH within 5
min. The resulting mixture was kept for 1 h at this temperature, and was then allowed to reach room
temperature (r.t.). After 5 h stirring, the mixture was poured into a cold solution (0 ◦C) of 5 mL conc.
HCl in 250 mL of water. After 20 min, the precipitate was filtered off, washed with cold water (3 × 40
mL) and diethyl ether (2 × 10 mL). Drying in vacuo gave 2.57 g of oxazole 4a, yield 80%, yellowish
solid m.p. 149–151 ◦C; IR (KBr) νmax = 3089, 1612, 1382, 1079, 968, 520 cm−1; 1H NMR (200 MHz,
CDCl3), δ = 2.61 (3H, s, CH3 Ph), 7.21–7.33 (2H, m, H Ph), 7.36–7.41 (1H, m, H Ph), 11.78 (1H, s, NH)
ppm; 13C NMR (50 MHz, CDCl3) δ = 16.6 (CH3), 107.0 (C NO2), 108.7 (CH), 120.2 (CCl2), 123.4 (C Me),
125.4 (CH), 127.4, 127.6 (CH), 128.2, 146.6, 159.0 ppm; MS m/z (Irel, %): 320 [M+] (4), 285 [M − Cl]+

(10), 274 [M-NO2]+ (65), 239 [M-Cl-NO2]+ (100); HRMS (ESI−) m/z calcd for C11H6N2O3Cl3 [M − H]−:
318.9444; found: 318.9446.

5-Methyl-2-(2,3,3-trichloro-1-nitroprop-2-en-1-ylidene)-2,3-dihydro-1,3-benzoxazole (4b). Same procedure as
for 4a, but using 2-amino-4-methylphenol (3.94 g, 32.0 mmol). Yield 2.18 g (68%), yellowish solid, m.p.
168–170 ◦C. IR (KBr) νmax = 3380, 1612, 1434, 1375, 1056, 922 cm−1. 1H NMR (400 MHz, DMSO-d6)
δ = 2.42 (3H, s, CH3 Ph), 7.20 (1H, d, J = 8.3 Hz, H Ph), 7.36 (1H, s, H Ph), 7.69 (1H, d, J = 8.3 Hz, H
Ph), 13.64 (1H, s, NH) ppm; 13C NMR (100 MHz, DMSO-d6) δ = 21.2 (CH3), 105.4 (C NO2), 111.0 (CH),
113.6 (CH), 122.1 (CCl2), 126.0 (CH), 126.6, 129.8, 136.4, 144.8, 158.0 (NCO) ppm. MS m/z (Irel, %): 320
[M+] (2), 285 [M-Cl]+ (4), 274 [M-NO2]+ (55), 239 [M-Cl-NO2]+ (100), 204 [M-2Cl-NO2]+ (14); HRMS
(ESI−) m/z calcd for C11H6N2O3Cl3 [M − H]−: 318.9453; found: 318.9444.

Synthesis of [{1-(1,3-benzoxazol-2-yl)-3,3-dichloro-2-[4-(dimethylamino)pyridinium-1-yl]prop-2-en-1-yli-
dene}(oxido)-l5-azanyl]oxidanide (5a) (General method). To a suspension of benzoxazole 4b (0.322 g,
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1.00 mmol) in 15 mL MeOH at 0 ◦C, a solution of 4-dimethylaminopyridine (DMAP) (0.257 g, 2.1
mmol) in 3 mL MeOH was added dropwise. The mixture was stirred for 1 h at 0 ◦C and at r.t. for 12
h. Subsequently, the precipitate was filtered off at 0 ◦C and washed with water (2 × 10 mL) and cold
MeOH (5 mL). Finally, the product 5a was dried in vacuo. Yield 0.301 g (74%), yellowish solid, m.p.
189–190 ◦C. IR (ATR) νmax = 1641, 1531, 1355, 1139, 1055, 790 cm−1; 1H NMR (400 MHz, DMSO-d6) δ =

2.38 (3H, s, CH3 Ph), 3.23 (6H, s, N(CH3)2), 6.99 (1H, d, J = 7.8 Hz, H Ph), 7.06 (2H, d, J = 6.7 Hz, H
pyr), 7.33 (1H, s, H Ph), 7.43 (1H, d, J = 7.9 Hz, H Ph), 8.29 (2H, d, J = 6.7 Hz, H pyr) ppm; 13C NMR
(100 MHz, DMSO-d6) δ = 39.7 (CH3), 40.2 (NCH3), 103.7, 107.3 (CH), 109.3 (CH), 117.8 (CH), 122.7,
123.6 (CH), 133.2, 135.8, 142.3 (CH), 142.5, 147.8, 156.4, 160.9 ppm; MS m/z (Irel, %): 406 [M+] (1), 273
[M-benzoxazole-H]+ (5), 238 [M-benzoxazole-HCl]+ (3), 122 [DMAP]+ (73), 100 (100); HRMS (ESI+)
m/z calcd for C18H17N4O3Cl2 [M + H]+: 407.0672; found: 407.0675.

[{1-(1,3-Benzoxazol-2-yl)-3,3-dichloro-2-[4-(morpholin-4-yl)pyridinium-1-yl]prop-2-en-1-ylidene}
(oxido)-l5-azanyl]oxidanide (5b). Following the typical procedure for 5a, using 4b (0.322 g,
1.00 mmol) and 4-(4-morpholinyl)pyridine (0.345 g, 2.1 mmol) at −18 ◦C and holding at this
temperature for 3 h. Yield 0.270 g (62%), yellowish solid, m.p. 180–181 ◦C. IR (ATR) νmax = 1640, 1548,
1348, 1253, 1156, 792 cm−1. 1H NMR (400 MHz, DMSO-d6) δ = 2.38 (3H, s, CH3 Ph), 3.73 (8H, s, H
morph), 7.00 (1H, dd, J = 8.1 Hz, J = 1.3 Hz, H Ph), 7.25 (2H, d, J = 7.8, H pyr), 7.34 (1H, s, H Ph), 7.43
(1H, d, J = 8.2, H Ph), 8.34 (2H, d, J = 7.6, H pyr) ppm; 13C NMR (100 MHz, DMSO-d6) δ = 21.3 (CH3),
46.6 (N(CH2)2), 65.6 (O(CH2)2), 103.8, 107.5 (CH), 109.3 (CH), 117.8 (CH), 122.9, 123.9 (CH), 133.2, 135.7,
142.5, 143.0 (CH), 147.8, 156.1, 160.8 ppm; MS m/z (Irel, %): 448 [M+] (1), 325 [M-HCl-morpholine]+ (1),
316 [M-methylbenzoxazole]+ (1), 269 [M-pyridine+H]+ (4), 165 (100), 132 [methylbenzoxazole]+ (12);
HRMS (ESI+) m/z calcd for C20H19N4O4Cl2 [M + H]+: 449.0778; found: 449.0780.

1-(Pyridin-4-yl)pyrrolidin-2-one as starting material for the synthesis of azinate 5c was obtained from
4-aminopyridine and 4-chlorobutanoyl chloride according to the literature [88]. Yield 65%, colorless
liquid. 1H NMR (600 MHz, CDCl3) δ = 2.17 (2H, t, J = 7.7 Hz, CH2 pyrro), 2.61 (2H, t, J = 8.2 Hz, CH2

pyrro), 3.82 (2H, t, J = 7.1 Hz, CH2 pyrro), 7.57 (2H, d, J = 4.9 Hz, H pyr), 8.50 (2H, d, J = 4.9 Hz, H
pyr) ppm; 13C NMR (150 MHz, CDCl3) δ = 17.6 (CH2), 32.8 (CH2), 47.4 (CH2), 112.8 (CH), 145.8, 150.4
(CH), 175.2 (CO) ppm; MS m/z (Irel, %): 162 [M+] (31), 147 [M-OH]+ (25), 119 [M-CH2CHO]+ (10), 107
[M-CH2CH2CO+H]+ (100).

[{1-(1,3-Benzoxazol-2-yl)-3,3-dichloro-2-[4-(2-oxopyrrolidin-1-yl)pyridinium-1-yl]prop-2-en-1-ylidene}-
(oxido)-l5-azanyl]oxidanide (5c). Same procedure as for 5a, using 1-(pyridin-4-yl)pyrrolidin-2-one (0.341
g, 2.1 mmol) at −18 ◦C and holding this temperature for 2 h. Stirring was continued for 24 h at r.t.
Yield 67%, yellow solid, m.p. 157–158 ◦C. IR (ATR) νmax = 1733, 1627, 1550, 1349, 1257, 1157 cm−1. 1H
NMR (600 MHz, DMSO-d6) δ = 2.13 (2H, t, J = 7.6 Hz, CH2 pyrro), 2.39 (3H, s, CH3 Ph), 2.67 (2H, t, J =

8.0 Hz, CH2 pyrro), 3.99 (2H, t, J = 7.2 Hz, CH2 pyrro), 7.01 (1H, dd, J = 8.2 Hz, J = 0.8 Hz, H Ph), 7.35
(1H, s, H Ph), 7.45 (1H, d, J = 8.2 Hz, H Ph), 8.25 (2H, d, J = 7.0, H pyr), 8.99 (2H, d, J = 7.5 Hz, H pyr)
ppm; 13C NMR (150 MHz, DMSO-d6) δ = 17.1 (CH2), 21.2 (CH3), 32.7 (CH2), 48.1 (CH2), 104.0, 109.4
(CH), 113.9 (CH), 117.9 (CH), 123.8 (CH), 124.0, 133.3, 136.2, 142.5, 145.7 (CH), 147.8, 152.6, 160.5, 177.5
ppm; 15N NMR (43.4 MHz, DMSO-d6, doped with nitromethane (0.0 ppm)) δ = −187.0 (N-pyridine),
-235.2 (N-pyrrolidine) ppm, other N-atoms could not be detected; MS m/z (Irel, %): 446 [M+] (1), 411
[M-Cl]+ (1), 162 [pyridinyl–pyrrolidinone]+ (45), 133 [methylbenzoxazole+H]+ (6), 107 (100); HRMS
(ESI+) m/z calcd for C20H17N4O4Cl2 [M + H]+: 447.0621; found: 447.0623.

[{1-(1,3-Benzoxazol-2-yl)-3,3-dichloro-2-[3-(1-methylpyrrolidin-2-yl)pyridinium-1-yl]prop-2-en-1- ylidene}-
(oxido)-λ5-azanyl]oxidanide (5d). To a suspension of benzoxazole 4b (0.322 g, 1.0 mmol) in MeOH (10
mL) at −18 ◦C, a solution of (-)-nicotine (0.324 g, 2.0 mmol) in MeOH (5 mL) was added dropwise.
Subsequently, the mixture was stirred at −18 ◦C for 2 h and at r.t. for 18 h. After completion of the
reaction water (10 mL), NaHCO3 (0.184 g, 2.2 mmol) were added and the mixture was stirred for 10
min, following extraction with chloroform (3 × 15 mL). The combined organic phases were dried over
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calcium chloride and purified by column chromatography using DCM–petroleum ether (1:1). The
product 5d was dried in vacuo. Yield 0.237 g (53%), yellow solid, m.p. 96–98 ◦C. IR (ATR) νmax =

1622, 1516, 1354, 1259, 1141, 1062 cm−1. 1H NMR (400 MHz, CDCl3) δ = 1.64–1.77 (1H, m, CH2 pyrro),
1.83–2.01 (2H, m, NCH2), 2.26 (3H, s, NCH3 pyrro), 2.43 (3H, s, Ph-CH3), 2.43–2.49 (1H, m, CH2 pyrro),
3.24–3.34 (1H, m, CH2 pyrro), 3.42–3.57 (1H, m, CH2 pyrro), 3.63–3.89 (1H, m, CH2 pyrro), 7.00 (1H,
dd, J = 1.0 Hz, J = 8.2 Hz, CH3C-CH), 7.37 (1H, s, H Ph), 7.39 (1H, d, J = 8.2 Hz, OCCH), 7.96 (1H, dd, J
= 5.6 Hz, J = 7.8 Hz, H pyr), 8.48 (1H, d, J = 7.8 Hz, H pyr), 9.03 (1H, d, J = 5.6 Hz, H pyr), 9.15 (1H, s,
H pyr) ppm; 13C NMR (100 MHz, CDCl3) δ = 21.5 (CH3 Ph), 23.1 (CH2), 35.8 (CH2), 40.3 (CH3 pyrro),
56.6 (CH2), 67.1 (CH pyrro), 104.6 (CNO2), 109.8 (CH Ph), 118.0 (CH Ph), 124.0 (CH Ph), 127.0 (CH pyr),
128.5 (CCl2), 133.7 (CCH3), 136.3, 142.2, 143.6 (CH pyr), 145.2 (CH pyr), 145.5 (CH pyr), 145.7, 148.3
(C-pyrro), 160.1 (NCO) ppm; MS (ESI+) m/z calcd for C21H21N4O3Cl2 [M + H]+: 447.1; found 447.1.

2-[3-Bromo-2,3-dichloro-1-nitroprop-2-en-1-ylidene]-4-methyl-2,3-dihydro-1,3-benzoxazole (6). Same
proce-dure as for 4a, but starting from 2 (316 mg, 1.00 mmol, a 47: 53 mixture of isomers) using
2-amino-3-methylphenol (394 mg, 3.20 mmol). A 1:1 mixture of isomers was obtained. Yield 73%,
yellowish solid, m.p. 145–146 ◦C. IR (KBr) νmax = 3329, 1620, 1571 (NO2), 1376, 1320, 1047 cm−1; 1H
NMR (200 MHz, CDCl3) δ = 2.61 (3H, s, CH3 Ph), 7.22–7.41 (3H, m, H Ph), 11.77 (1H, s, NH) ppm;
13C NMR (50 MHz,CDCl3) δ = 16.6 (CH3); 106.9 (CNO2); 108.7 (CH); 114.9, 115.8 (CClBr); 121.8, 123.7
(CCl); 123.4 (C Me); 125.4 (CH), 127.4, 127.6 (CH), 146.7, 158.7, 158.9 (NCO) ppm; MS m/z (Irel, %):
364 [M+] (2), 329 [M − Cl]+ (4), 318 [M-NO2]+ (19), 285 [M − Br]+ (25), 283 [M-Cl-NO2]+ (50), 239
[M-Br-NO2]+ (100); HRMS (ESI−) m/z calcd for C11H6N2O3Cl2Br [M − H]−: 362.8944; found: 362.8948.

2-((Z)-3-chloro-1,3-dinitroallylidene)-5-methyl-2,3-dihydro-1H-benzo[d]imidazole (7a). Same procedure as
for 4a, but starting from 3 (247 mg, 1.00 mmol, only Z-isomer) using 4-methylbenzene-1,2-diamine (257
mg, 2.10 mmol). Yield 93%, red solid, m.p. 163–165 ◦C. IR (KBr) νmax = 3330, 1602, 1577 (NO2), 1410,
1268, 987 cm−1. 1H NMR spectrum (200 MHz, DMSO-d6) δ = 2.49 (3H, s, CH3 Ph), 7.36 (1H, d, J = 8.5
Hz, H Ph), 7.58 (1H, s, H Ph), 7.67 (1H, d, J = 8.5 Hz, H Ph), 9.14 (1H, s, CH), 14.45 (2H, s, NH) ppm;
13C NMR (50 MHz, DMSO-d6) δ = 21.4 (CH3), 106.9 (C NO2), 113.4 (CH), 113.6 (CH), 120.1 (CClNO2),
127.5 (CH), 129.1 (C Me), 129.2 (CH), 131.2, 136.1, 142.3 (NCN) ppm; MS m/z (Irel, %): 296 [M+] (5), 250
[M-NO2]+ (55), 233 [M-NO2-OH]+ (12), 204 [M-2NO2]+ (60), 169 [M-2NO2-Cl]+ (48), 157 (100); HRMS
(ESI−) m/z calcd for C11H8N4O4Cl [M − H]−: 295.0240; found: 295.0248.

2-(3-Chloro-1,3-dinitroprop-2-en-1-ylidene)-5-methyl-2,3-dihydro-1,3-benzoxazole (7b). Same procedure as
for 4a, but using 3 (247 mg, 1.00 mmol, only Z-isomer) and 2-amino-4-methylphenol (394 mg, 3.20
mmol). Yield 67%, yellow solid, m.p. 110–112 ◦C. IR (KBr) νmax = 3250, 1602, 1545 (NO2), 1289, 1065,
871 cm−1. 1H NMR (200 MHz, DMSO-d6) δ = 2.45 (3H, s, CH3 Ph), 7.25 (1H, d, J = 8.3 Hz, H Ph), 7.55
(1H, s, H Ph), 7.63 (1H, d, J = 8.5 Hz, H Ph), 9.09 (1H, s, CH), 10.66 (1H, s, NH); 13C NMR (50 MHz,
DMSO-d6) δ = 21.2 (CH3), 110.8 (CH), 112.5 (CNO2), 118.5 (CClNO2), 119.1 (CH), 126.8 (CH), 129.5
(CH), 134.5 (C Me), 139.5, 148.2, 157.2 (NCO) ppm; MS m/z (Irel, %): 297 [M+] (3), 251 [M − NO2]+

(45), 234 [M-NO2-OH]+ (13), 158 (100); HRMS (ESI−) m/z calcd for C11H7N3O5Cl [M − H]−: 296.0072;
found: 296.0070.

2-(3-Chloro-1,3-dinitroprop-2-en-1-ylidene)-4-methyl-2,3-dihydro-1,3-benzoxazole (7c). Same procedure as
for 4a, using 3 (247 mg, 1.00 mmol, only Z-isomer) and 2-amino-3-methylphenol (394 mg, 3.20 mmol).
Yield 85%, yellow solid, m.p. 102–103 ◦C. IR (KBr) νmax = 3254, 1625, 1579 (NO2), 1520, 1077, 646
cm−1. 1H NMR (200 MHz, DMSO-d6) δ = 2.53 (3H, s, CH3 Ph), 7.19 (1H, d, J = 7.5 Hz, H Ph), 7.30
(1H, t, J = 7.5 Hz, H Ph), 7.52 (1H, d, J = 8.0 Hz, H Ph), 9.20 (1H, s, CH), 10.19 (1H, s, NH) ppm; 13C
NMR (50 MHz, DMSO-d6) δ = 16.5 (CH3), 108.5 (CH), 113.6 (CNO2), 115.9 (CClNO2), 125.0 (CH), 125.5
(CH), 130.3 (CH), 140.3, 150.3, 156.3 (NCO) ppm; MS m/z (Irel, %): 297 [M+] (3), 251 [M-NO2]+ (40), 234
[M-NO2-OH]+ (12), 158 (100); MS (ESI−) m/z calcd for C11H7N3O5Cl [M − H]−: 296.0; found: 296.0.

Synthesis of 2-(3-bromo-2,3-dichloro-1-nitroprop-2-en-1-ylidene)-1,3-diphenylimidazolidine (8b) (General
method). To a solution of N,N’-diphenylethane-1,2-diamine (0.446 g, 2.1 mmol) in 10 mL MeOH at
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−40 ◦C a solution of nitrodiene 2 (0.316 g, 1.0 mmol) in 5 mL MeOH was added dropwise. After 1 h of
stirring at −40 ◦C, the solution was allowed to reach r.t. and stirred for another 5 h. The precipitate
was filtered off, washed with water (3 × 20 mL), MeOH (1 × 10 mL), diethyl ether (2 × 10 mL) and
dried in vacuo. A 1:1 mixture of isomers was obtained. Yield 0.410 g (90%), yellow solid, m.p. 222–223
◦C. IR (KBr) νmax = 3455, 3059, 1594, 1523, 1295, 761 cm−1. 1H NMR (200 MHz, DMSO-d6) δ = 4.37
(4H, s, CH2), 7.25–7.47 (10H, m, H Ph) ppm; 13C NMR (50 MHz, DMSO-d6) δ = 51.0, 50.9 (CH2), 104.4,
105.9 (CNO2), 107.2, 107.7 (CBrCl), 122.4, 122.5 (CH), 127.0 (CH), 127.8, 129.5, 129.6 (CH), 139.9, 140.0
(NC Ph), 155.6, 155.7 (NCN) ppm; MS m/z (Irel, %): 453 [M+] (3), 418 [M − Cl]+ (3), 374 [M-Br]+ (45),
339 [M-Cl-Br]+ (8), 279 [M-C2Cl2Br]+ (100); HRMS (ESI+) m/z calcd for C18H15N3O2Cl2Br [M + H]+:
453.9719; found: 453.9728.

2-(3-Chloro-1,3-dinitroprop-2-en-1-ylidene)-1,3-diphenylimidazolidine (8c). Same procedure as for 8b, using
dinitrodiene 3 (0.247 g, 1.0 mmol). Yield 86%, yellow solid, m.p. 236–237 ◦C. IR (KBr) νmax = 3054,
1570, 1491, 1349, 1193, 999 cm−1. 1H NMR (200 MHz, CDCl3) δ = 4.58 (4H, s, CH2), 7.29–7.33 (4H, m, H
Ph), 7.39–7.45 (6H, m, H Ph), 8.69 (1H, s, CH) ppm; 13C NMR (50 MHz, DMSO-d6) δ = 50.6 (CH2), 105.1,
117.8 (CClNO2), 123.2 (CH), 128.4 (CH), 129.0 (CH), 130.0 (CH), 136.7 (NC Ph), 158.7 (NCN) ppm; MS
m/z (Irel, %): 386 [M+] (20), 340 [M −NO2]+ (60), 305 [M-NO2-Cl]+ (3), 281 [M-(CH=CClNO2)+H]+ (20),
247 [M-(CH=CClNO2)-2OH]+ (100); HRMS (ESI+) m/z calcd for C18H16N4O4Cl [M + H]+: 387.0855;
found: 387.0865.

Synthesis of 2-[3,3-dichloro-2-nitro-1-(pyrrolidin-1-yl)prop-2-en-1-ylidene]-1,3-diphenylimidazolidine (9). To a
suspension of imidazolidine 8a (0.387 g, 1.0 mmol) in 10 mL MeOH at r.t. a solution of pyrrolidine
(0.356 g, 5.0 mmol) in 5 mL MeOH was added. Subsequently, the mixture was stirred for 3 h at r.t.
and 4 h at reflux. After cooling to 10 ◦C, the pH was adjusted to 6–7 with HCl (5%). The resulting
precipitate was filtered off and washed with water (3 × 20 mL), MeOH (2 × 10 mL) and dried in
vacuo. Yield 0.223 g (50%), yellow solid, m.p. 156–159 ◦C. IR (KBr) νmax = 2968, 2868, 1597, 1497,
1347, 908 cm−1. 1H NMR (200 MHz, DMSO-d6) δ = 1.52–1.56 (4H, m, CH2 pyr), 2.68–2.73 (4H, m,
CH2 pyr), 4.29 (4H, s, CH2 im), 7.21–7.44 (10H, m, H Ph) ppm; 13C NMR (50 MHz, DMSO-d6) δ =

25.0 (CH2), 50.1 (CH2), 51.0 (CH2), 98.6 (CCl2), 104.7 (CNO2), 122.8 (CH), 126.7 (CH), 129.2 (CH),
140.2, 140.6, 157.1 (NCN) ppm; MS m/z (Irel, %): 444 [M+] (2), 427 [M-OH]+ (2), 408 [M-HCl]+ (3),
373 [M-pyrrolidine]+ (22), 281 [M-(CCl2=C)-pyrrolidine+H]+ (20), 264 [M-(CCl2=C)-pyrrolidine-O]+

(85), 248 [M-(CCl2=C)-pyrrolidine-2O]+ (100); HRMS (ESI+) m/z calcd for C22H23N4O2Cl2 [M + H]+:
445.1193; found: 445.1190.

Synthesis of ethyl 1-(1,1-dichloro-3-{1-[(6-chloropyridin-3-yl)methyl]imidazolidin-2-ylidene}-3
-nitroprop-1-en-2-yl)piperidine-4-carboxylate (12a) (General method). To a suspension of compound 11a
(0.384 g, 1.0 mmol) and piperidine-4-carboxylic acid ethyl ester (0.393 g, 2.5 mmol) in 15 mL MeOH
at r.t., a solution of sodium ethanolate (0.177 g, 2.6 mmol) in 5 mL MeOH was added, and stirred
for 24 h at 35 ◦C. At r.t. 3 drops of conc. HCl were added before adding 50 mL cold water. The
resulting precipitate was filtered off and washed with cold MeOH (2 × 7 mL) and water (3 × 10 mL).
The product was dried in vacuo. Yield 0.303 g (60%), yellow solid, m.p. 60–62 ◦C. IR (KBr) νmax =

3319, 1726, 1561, 1319, 1177, 1043 cm−1. 1H NMR (200 MHz, DMSO-d6) δ = 1.16 (3H, t, J = 6.9 Hz, CH3

Et), 1.53–1.76 (4H, m, CH2 pip), 2.28–2.42 (1H, m, CH pip), 2.73 (4H, s, CH2 pip), 3.35 (2H, s, CH2 imi),
3.67 (2H, s, CH2 imi), 4.06 (2H, q, J = 6.9 Hz, CH2 Et), 4.37–4.47 (2H, m, pyr-CH2-imi), 7.56 (1H, d, J =

8.1 Hz, H pyr), 7.81 (1H, d, J = 8.2 Hz, H pyr), 8.36 (1H, s, H pyr), 9.43 (1H, s, NH) ppm; 13C NMR (50
MHz, DMSO-d6) δ = 14.3 (CH3), 28.4 (CH2), 40.5 (CH), 42.2 (CH2), 48.0 (CH2 pip), 48.4 (CH2), 49.8
(CH2), 60.1 (CH2), 102.8 (CNO2), 103.6 (CCl2), 124.4 (CH), 131.4, 138.8 (CH), 141.3, 148.9 (CH), 149.7,
160.1, 174.4 ppm; MS m/z (Irel, %): 503 [M+] (3), 467 [M − HCl]+ (3), 377 [M-CH2pyridine]+ (2), 254
[M-C2Cl2-piperidine]+ (18), 126 [CH2pyridine]+ (100); HRMS (ESI−) m/z calcd for C20H23N5O4Cl3 [M
− H]−: 502.0821; found: 502.0818.
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2-(1,1-Dichloro-3-{1-[(6-chloropyridin-3-yl)methyl]imidazolidin-2-ylidene}-3-nitroprop-1-en-2-yl)-
1,2,3,4-tetrahydroisoquinoline (12b). Same procedure as for 12a, using 11a (0.384 g, 1.00 mmol)
and 1,2,3,4-tetrahydroisoquinoline (0.368 g, 2.50 mmol) and stirring for 4 h at 50 ◦C. Yield 85%, orange
solid, m.p. 146–148 ◦C. IR (KBr) νmax = 3318, 2895, 1559, 1460, 1320, 749 cm−1. 1H NMR spectrum
(200 MHz, CDCl3) δ = 2.70–3.16 (2H, m, CH2 pip), 3.30–3.55 (2H, m, CH2 pip), 3.59–3.90 (4H, m, CH2

imi), 4.08 (1H, d, J = 15.2 Hz, NCH2); 4.26–4.38 (2H, m, CH2 pip), 4.67 (1H, d, J = 15.2 Hz, NCH2),
6.91–6.97 (1H, m, H Ph), 7.07–7.15 (3H, m, H Ph), 7.32 (1H, d, J = 8.2 Hz, H pyr), 7.60 (1H, dd, J = 8.3 Hz,
J = 2.5 Hz, H pyr), 8.30 (1H, d, J = 2.4 Hz, H pyr), 9.56 (1H, s, NH) ppm. 13C NMR (50 MHz, CDCl3) δ
= 29.7 (CH2), 41.7 (CH2), 48.7 (CH2), 49.6 (CH2), 49.9 (CH2), 51.3 (CH2), 105.1, 105.7, 124.7 (CH), 125.7
(CH), 126.7 (CH), 126.3 (CH), 128.8 (CH), 129.6, 133.9, 134.9, 138.2 (CH), 139.7, 148.9 (CH), 151.6, 160.2
ppm; MS m/z (Irel, %): 479 [M+] (2), 443 [M −HCl]+ (3), 407 [M-2(HCl)]+ (5), 254 [M-C2Cl2-isoquinoline
+ H]+ (7), 126 [Cl-pyr-CH2]+ (100); HRMS (ESI−) m/z calcd for C21H19N5O2Cl3 [M − H]−: 478.0610;
found: 478.0606.

2-[(1,1-Dichloro-3-{1-[(6-chloropyridin-3-yl)methyl]imidazolidin-2-ylidene}-3-nitroprop-1-en-2- yl)sulfanyl]-
ethanol (12c). Same procedure as for 12a, using 11a (0.384 g, 1.00 mmol), 2-mercaptoethanol (0.086 g,
1.1 mmol) and sodium ethanolate (0.082 g, 1.2 mmol) in EtOH. The mixture was stirred for 12 h at 40
◦C. Yield 0.268 g (63%), orange solid, m.p. 185–187 ◦C. IR (KBr) νmax = 3220, 2974, 1575, 1299, 1125,
844 cm−1. 1H NMR spectrum (200 MHz, DMSO-d6) δ = 2.77 (2H, t, J = 6.4 Hz, SCH2), 3.53 (2H, t, J
= 6.4 Hz, CH2OH), 3.73 (4H, s, CH2), 4.30 (2H, s, NCH2), 4.70 (1H, s, OH), 7.53 (1H, d, J = 8.3 Hz),
7.75 (1H, dd, J = 8.3 Hz, J = 2.5 Hz), 8.33 (1H, d, J = 2.3 Hz), 9.55 (1H, s, NH) ppm; 13C NMR (50 MHz,
DMSO-d6) δ = 34.9 (CH2), 42.4 (CH2), 48.9 (CH2), 50.8 (CH2), 60.1 (CH2), 102.8 (CNO2), 115.1 (CCl2),
124.3 (CH), 131.6, 131.9, 138.1 (CH), 148.0 (CH), 149.5, 159.7 ppm; MS m/z (Irel, %): 424 [M+] (1), 254
[M-C2Cl2-mercaptoethanol + H]+ (27), 235 [M − C2Cl2S-H2O]+ (12), 126 [Cl-pyr-CH2]+ (100); HRMS
(ESI−) m/z calcd for C14H14N4O3SCl3 [M − H]−: 422.9858; found: 422.9854.

1,1-Dichloro-3-{3-[(6-chloropyridin-3-yl)methyl]-1,3-oxazolidin-2-ylidene}-N,N-dimethyl-3-nitroprop-1-
en-2-amine (12d). Same procedure as for 12a, using pyridine 11b (0.385 g, 1.00 mmol) and
dimethylamine (0.366 g, 5.00 mmol) and stirring at r.t. for 5 h. Yield 70%, yellow solid, m.p. 127–129 ◦C.
IR (KBr) νmax = 2868, 1597, 1561, 1298, 1118, 903 cm−1. 1H NMR (400 MHz, DMSO-d6) δ = 2.59 (6H, s,
NCH3), 3.96–4.10 (2H, m, CH2 oxa), 4.52–4.81 (4H, m, CH2 oxa, NCH2), 7.59 (1H, d, J = 7.7 Hz, H pyr),
7.91 (1H, d, J = 7.5 Hz, H pyr), 8.41 (1H, s, H pyr) ppm; 13C NMR (100 MHz, DMSO-d6) δ = 42.0 (CH3),
49.3 (CH2), 50.8 (CH2), 68.2 (CH2), 104.0, 105.1, 124.4 (CH), 130.0, 139.8 (CH), 142.1, 149.8 (CH), 150.1,
165.4 ppm; MS m/z (Irel, %): 392 [M+] (1), 311 [M − Cl-NO2]+ (1), 254 [M − C2Cl2-N(CH3)2]+ (2), 126
[Cl-pyr-CH2]+ (100); HRMS (ESI+) m/z calcd for C14H16N4O3Cl3 [M + H]+: 393.0283; found: 393.0280.

Synthesis of 1-[(4-bromo-1,3,4-trichloro-2-nitrobuta-1,3-dien-1-yl)sulfanyl]-4-fluorobenzene (13). To a solution
of nitrodiene 2 (0.316 g, 1.0 mmol) in dry DCM (15 mL) at 0 ◦C, a solution of 4-fluorothiophenole (0.128
g, 1.0 mmol) in 5 mL of dry DCM was added and stirred for 3 h. After reaching r.t. and further stirring
for 24 h the mixture was concentrated and water (20 mL) was added before extraction with chloroform
(3 × 10 mL). The product was purified by column chromatography using petroleum ether-ethyl acetate
(10:1) and dried in vacuo. A 1:1 mixture of isomers was obtained. Yield 0.301 g (74%), yellow solid,
m.p. 98–99 ◦C. IR (ATR) νmax = 1587, 1527, 1292, 1223, 815, 526 cm−1. 1H NMR (400 MHz, CDCl3) δ =

7.11–7.25 (2H, m, H Ph), 7.48–7.64 (2H, m, H Ph) ppm; 13C NMR (101 MHz, CDCl3) δ = 115.2, 116.4
(CClBr), 117.0, 117.2 (CH), 124.0, 124.1, 124.2, 124.5, 138.3, 138.4 (CH), 157.3, 157.8 (CClS), 163.4, 165.9
(CF) ppm, CNO2 could not be detected; MS m/z (Irel, %): 405 [M+] (1), 370 [M − Cl]+ (1), 326 [M − Br]+

(6), 291 [M − Br-Cl]+ (3), 127 [S-Ph-F]+ (100); HRMS (ESI+) m/z calcd for C10H5NO2Cl3SBrF [M + H]+:
405.8269; found: 405.8286.

Synthesis of 5-(((2E)-2-(3-bromo-2,3-dichloro-1-nitroallylidene)imidazolidin-1-yl)methyl)-2-chloropyridine (14)
and 1,1’-[(4-bromo-3,4-dichloro-2-nitrobuta-1,3-diene-1,1-diyl)disulfanediyl]bis(4-fluorobenzene) (15). A
solution of N-[(6-chloropyridin-3-yl)methyl]ethane-1,2-diamine 10a (0.515 g, 3.0 mmol) in MeOH
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(5 mL) was added to a suspension of diene 13 (0.407 g, 1.0 mmol, a 1: 1 mixture of isomers ) in MeOH
(10 mL) at –10 ◦C and stirred for 1 h at the same temperature. The precipitated bisthiodiene 15 was
filtered off, washed with water and cold MeOH (2 × 3 mL), and dried under reduced pressure to yield
diene 15. The collected filtrates were carefully neutralized by means of hydrochloric acid and stirred
with additional 50 mL of water. Again, the solid was filtered off, and then washed with water and
diethyl ether (3 × 5 mL). Recrystallization from methanol gave imidazolidine 14.

Imidazolidine 14. A 1: 1 mixture of isomers was obtained. Yield 0.189 g (44%), white solid, m.p. 172–173
◦C. IR (KBr) νmax = 3312, 3055, 2917, 1588, 1420, 1137, 824 cm−1. 1H NMR (200 MHz, DMSO-d6) δ =

3.67–3.90 (4H, m, CH2 imi), 4.46-4.60 (2H, m, NCH2-pyr), 7.48–7.60 (1H, m, H pyr), 7.71–7.81 (1H, m, H
pyr), 8.24–8.39 (1H, m, H pyr), 9.41 (1H, s, NH) ppm; 13C NMR (50 MHz, DMSO-d6) δ = 42.7 (CH2 imi),
49.4 (NCH2-pyr), 50.8 (CH2 imi), 103.4, 105.2 (CNO2), 113.0, 113.8 (CClBr), 124.3, 124.4 (CH), 126.6,
128.7, 131.4, 131.5, 137.9, 138.0 (CH), 147.9, 148.0, 149.6, 159.6, 159.7 (NCN) ppm; MS m/z (Irel, %): 426
[M+] (1), 380 [M-NO2]+ (1), 347 [M-Br]+ (20), 314 [M-pyr]+ (3), 312 [M-Br-Cl]+ (3), 254 [M-C2Cl2Br+H]+

(35), 126 [Cl-pyr-CH2]+ (100); HRMS (ESI+) m/z calcd for C12H9N4O2Cl3Br [M-H]−: 424.8980; found:
424.8967.

Bisthiodiene 15. A 1: 1 mixture of isomers was obtained. Yield 0.150 g (30%), yellow solid, m.p.
141–142 ◦C. IR (ATR) νmax = 1589, 1489, 1293, 1230, 823, 505 cm−1. 1H NMR (400 MHz, CDCl3) δ =

6.84–7.01 (6H, m, H Ph), 7.05–7.17 (2H, m, H Ph) ppm; 13C NMR (101 MHz, CDCl3) δ = 115.1, 117.2
(CClBr), 116.3–116.7 (CH Ph), 123.4, 125.5, 126.1 (CPh-S), 133.4, 133.5, 136.5, 136.6, 136.7 (C Ph), 138.3,
138.4 (CNO2), 159.1, 159.5 (CSS), 163.1 (CF, JC,F = 251.5 Hz), 163.1 (CF, JC,F = 252.3 Hz) ppm; MS, m/z (Irel,
%): 497 [M+] (2), 462 [M − Cl]+ (2), 418 [M − Br]+ (30), 383 [M − Br-Cl]+ (3), 372 [M − Br-NO2]+ (4), 127
[S-Ph-F]+ (100); HRMS (ESI+) m/z calcd for C16H9NO2BrCl2F2S2 [M + H]+: 497.8598; found 497.8588.

Alternative synthesis of diene 15: To a solution of bromonitrodiene 2 (0.316 g, 1.0 mmol, a 47: 53 mixture
of isomers) and 4-fluorobenzenethiol (0.256 g, 2.0 mmol) in MeOH (10 mL) at 0 ◦C, a solution of sodium
methanolate (0.108 g, 2.0 mmol) in MeOH (5 mL) was added. The solution was stirred for 3 h at 0 ◦C
and at r.t. for 1 d. Subsequently, the solution was concentrated and the precipitate filtered off and
washed with diluted HCl (5 mL) and cold MeOH (2 × 2 mL). A mixture of both isomers was obtained.
Yield of bisthiodiene 15 is 0.414 g (83%, a 1:1 mixture of isomers).

N,N’-Bis[(2-chloro-1,3-thiazol-5-yl)methyl]ethane-1,2-diamine (16) was prepared according to the
literature [13] in 70% yield.

Synthesis of 5,5’-{[2-(3-bromo-2,3-dichloro-1-nitroprop-2-en-1-ylidene)imidazolidine-1,3-diyl]
dimethanediyl}-bis(2-chloro-1,3-thiazole) (17). To a solution of diene 2 (0.166 g, 0.5 mmol) in a mixture of
MeOH and water (10 mL, 10: 1) at 0 ◦C N,N’-bis[(2-chloro-1,3-thiazol-5-yl)methyl]ethane-1,2-diamine
(16) (0.170 g, 0.5 mmol) and Na2CO3 (0.112 g, 2.0 mmol) were added carefully. After 1 h at 0 ◦C,
the mixture was allowed to reach r.t. and stirred for another 5 h. Subsequently, the mixture was
concentrated in vacuo and the resulting precipitate was filtered off and washed with cold MeOH (2 × 5
mL), water (2 × 5 mL) and again MeOH (1 × 5 mL). A 1: 1 mixture of isomers was obtained. Yield 0.252
g (89%), white solid, mp 162–163 ◦C. IR (ATR) νmax = 1569, 1533, 1325, 1143, 1046, 770 cm−1. 1H NMR
(400 MHz, DMSO-d6) δ = 3.73–3.96 (4H, m, CH2), 4.58–4.80 (4H, m, imi-CH2), 7.69 (2H, s, CH) ppm;
13C NMR (100 MHz, DMSO-d6) δ = 45.2, 45.4 (CH2 imi), 45.2, 45.4 (CH2 imi), 47.2, 47.3 (imi-CH2), 98.1,
99.7 (CNO2), 109.7, 110.6 (CClBr), 127.0, 128.8 (CCl), 133.6, 133.7 (SC thiaz), 141.8, 141.9 (NC thiaz),
151.7, 151.8 (NCS), 161.6, 161.8 (NCN) ppm; MS m/z (Irel, %): 563 [M+] (1), 527 [M − Cl]+ (1), 484 [M
− Br]+ (1), 132 [thiazole-Cl-CH2]+ (100); HRMS (ESI+) m/z calcd for C14H11N5O2Cl4BrS2 [M + H]+:
563.8286; found: 563.8284.

Ethyl [(1,3,4,4-tetrachloro-2-nitrobuta-1,3-dien-1-yl)sulfanyl]acetate (18) was prepared according to the
literature [18] in 80% yield.
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Synthesis of 3-[4-(propan-2-yl)phenyl]-2-(2,3,3-trichloro-1-nitroprop-2-en-1-ylidene)-1,3-thiazolidin-4-one (19a)
(General method). To a suspension of the acetate 18 (0.355 g, 1.0 mmol) in MeOH (3 mL) at −18 ◦C a
solution of 4-(propan-2-yl)aniline (0.297 g, 2.2 mmol) in MeOH (3 mL) was added dropwise within 10
min. The mixture was stirred for 3 h at −18 ◦C and 12 h at r.t. before it was concentrated. The resulting
precipitate was filtered off and washed with cold MeOH (1 × 5 mL), water (2 × 5 mL) and again MeOH
(2 × 5 mL). The product was dried in vacuo. Yield 0.298 g (73%), beige solid, m.p. 208–209 ◦C. IR (ATR)
νmax = 2962, 1758, 1520, 1289, 1167, 686 cm−1. 1H NMR (400 MHz, DMSO-d6) δ = 1.22 (3H, d, J = 6.9
Hz, i-Pr), 1.23 (3H, d, J = 6.9 Hz, i-Pr), 2.95 (1H, sep, J = 6.8 Hz, i-Pr), 4.13 (1H, d, J = 18.7 Hz, SCH2),
4.17 (1H, d, J = 18.7 Hz, SCH2), 7.28–7.33 (2H, m, H Ar), 7.34–7.40 (2H, m, H Ar) ppm; 13C NMR (100
MHz, DMSO-d6) δ = 23.6, 23.8 (CH3), 32.5 (CH2), 33.6 (CH i-Pr), 121.3 (CCl2), 121.4 (CNO2), 126.9
(CH), 127.3 (CH), 127.4 (CH), 128.4, 128.8 (CH), 132.1, 150.6, 165.8 (NCS), 174.1 (C=O) ppm; MS m/z
(Irel, %): 406 [M+] (10), 389 [M-OH]+ (5), 371 [M-Cl]+ (5), 278 [M-C2Cl3+H]+ (15), 261 [M-C2Cl3-O]+

(100); MS (ESI−) m/z calcd for C15H12N2O3Cl3S 405.0; found: 405.0.

2-(2,3,3-Trichloro-1-nitroprop-2-en-1-ylidene)-3-[4-(trifluoromethyl)phenyl]-1,3-thiazolidin-4-one (19b). Same
procedure as for 19a, using 4-(trifluoromethyl)aniline (0.355 g, 2.2 mmol) at 0 ◦C for 3 h and 15 h at r.t..
Yield 0.330 g (76%), yellowish solid, m.p. 228–229 ◦C. IR (ATR) νmax = 3058, 1737, 1515, 1285, 1170,
691 cm−1. 1H NMR (400 MHz, DMSO-d6) δ = 4.13 (1H, d, J = 18.7 Hz, SCH2), 4.20 (1H, d, J = 18.7 Hz,
SCH2), 7.67–7.74 (2H, m, H Ar), 7.91–7.98 (2H, m, H Ar) ppm; 13C NMR (400 MHz, DMSO-d6) δ = 32.8
(CH2), 121.2 (CNO2), 121.3 (CCl2), 123.9 (JC,F = 272.4 Hz, CF3), 126.2 (JC,F = 3.9 Hz, CH), 126.6 (JC,F =

4.2 Hz, CH), 128.9 (CH), 129.1, 130.2 (CH), 130.7 (JC,F = 32.3 Hz, CF3-C), 138.1, 165.4 (NCS), 173.9 (C=O)
ppm; MS m/z (Irel, %): 432 [M+] (3); 397 [M − Cl]+ (12); 304 [M-C2Cl3+H]+ (30); 287 [M-C2Cl3-O]+ (93);
145 (100); HRMS (ESI−) m/z calcd for C13H5N2O3Cl3SF3 [M − H]−: 430.9044; found: 430.9062.

Synthesis of 3-(hydrazinylidenemethyl)-4-nitro-N-[4-(propan-2-yl)phenyl]-1H-pyrazol-5-amine (20a). To a
stirred suspension of thiazolidinone 19a (0.408 g, 1.0 mmol) in MeOH (10 mL) at −18 ◦C, a solution of
hydrazine hydrate (0.400 g, 8.0 mmol) in MeOH (5 mL) was added dropwise within 5 min. Subsequently,
the mixture was allowed to reach 0 ◦C. After 5 h, and 18 h at r.t., the solution was concentrated and
neutralized to pH 7 with HCl (5%), then extracted with ethyl acetate (3 × 10 mL). The combined organic
phases were purified over a short column chromatography using ethyl acetate-petroleum ether (1:1).
Subsequently, the obtained solution was concentrated and the resulting precipitate was filtered and
washed with diethyl ether (2 × 3 mL). Yield 0.150 g (52%), red solid, m.p. 194–195 ◦C. IR (ATR) νmax =

3365, 2956, 1597, 1562, 1461, 1350, 579 cm−1. 1H NMR (400 MHz, DMSO-d6) δ = 1.18 (6H, d, J = 6.9 Hz,
CH3 i-Pr), 2.83 (1H, sep, J = 6.8 Hz, CH i-Pr), 7.16 (2H, d, J = 8.5 Hz, H Ar), 7.61 (2H, d, J = 8.4 Hz, H
Ar), 8.07 (1H, s, NCH), 8.15 (2H, s, N-NH2), 8.53 (1H, s, NH anil), 13.29 (1H, s, NH pyr) ppm; 13C NMR
(100 MHz, DMSO-d6) δ =24.2 (CH3), 32.9 (CH i-Pr), 117.4 (CNO2), 118.0 (2 × CH Ph), 122.7 (NCH),
126.7 (2 × CH Ph), 138.3, 138.7, 141.4, 147.4 (NNHC) ppm; MS m/z (Irel, %): 288 [M+] (60), 273 [M −
CH3]+ (100), 256 [M-CH3-OH]+ (5), 245 [M-i-Pr]+ (8), 169 [M-NH-Ph-i-Pr]+ (5); HRMS (ESI−) m/z calcd
for C13H15N6O2 [M − H]−: 287.1261; found: 287.1272.

Synthesis of 3-(hydrazinylidenemethyl)-4-nitro-N-[4-(trifluoromethyl)phenyl]-1H-pyrazol-5-amine (20b). To a
stirred suspension of thiazolidinone 19b (0.434 g, 1.0 mmol) in MeOH (10 mL) at −18 ◦C, a solution of
hydrazine hydrate (0.250 g, 5.0 mmol) in MeOH (5 mL) was added dropwise within 5 min. Subsequently,
the mixture was allowed to reach 0 ◦C. After 5 h with stirring at 0 ◦C and 18 h at r.t., the solution was
concentrated and the resulting precipitate filtered off. Washing the product with cold MeOH (2 × 5
mL) and drying in vacuo yielded the pyrazole 20b. Yield 0.145 g (46%), yellow solid, m.p. 248–250
◦C. IR (ATR) νmax = 3440, 1602, 1516, 1327, 1160, 832 cm−1. 1H NMR (400 MHz, DMSO-d6) δ = 7.63
(2H, d, J = 8.7 Hz, H Ph), 7.91 (2H, d, J = 8.6 Hz, H Ph), 8.07 (1H, s, NCH), 8.21 (2H, s, NH2), 8.97 (1H,
s, Ph-NH), 13.45 (1H, s, NH Pyr) ppm; 13C NMR (100 MHz, DMSO-d6) δ = 117.6 (2 × CH Ph), 117.8
(CNO2), 121.0 (JC,F = 32.1 Hz, CCF3), 122.2 (JC,F = 270.7 Hz, CF3), 122.5 (NCH), 126.2 (JC,F = 3.7 Hz,
2 × CH Ph), 139.0, 144.2, 146.4 (NNHC) ppm;. MS m/z (Irel, %): 314 [M+] (2), 270 [M-CH2=N-NH2]+
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(3), 254 [M-CH2=N-NH2-O]+ (14), 161 [CF3-Ph-NH2]+ (60), 142 [CF2-Ph-NH2]+ (27), 96 (100); HRMS
(ESI−) m/z calcd for C11H8N6O2F3 [M − H]−: 313.0665; found: 313.0666.

Synthesis of 5-(furan-2-ylmethylidene)-3-[4-(propan-2-yl)phenyl]-2-(2,3,3-trichloro-1-nitroprop-2-en-
1-ylidene)-1,3-thiazolidin-4-one (21a) (General method). To a suspension of thiazolidinone 19a (0.408 g, 1.0
mmol) in acetic acid (15 mL) furan-2-carbaldehyde (0.115 g, 1.2 mmol) and triethylamine (0.152 g, 1.5
mmol) were added. The resulting mixture was refluxed for 4 h. After concentration of this mixture
in vacuo to a volume of about 3 mL and cooling to r.t., the resulting precipitate was filtered off and
washed with water (2 × 10 mL) and cold MeOH (1 × 2 mL). The product was dried in vacuo. Yield
0.466 g (96%), orange solid, m.p. 228–229 ◦C. IR (ATR) νmax = 2958, 1718, 1598, 1519, 1167, 764 cm−1.
1H NMR (400 MHz, DMSO-d6) δ = 1.24 (3H, d, J = 6.9 Hz, CH3 i-Pr), 1.25 (3H, d, J = 6.9 Hz, CH3 i-Pr),
2.97 (1H, sep, J = 6.8 Hz, CH i-Pr), 6.86 (1H, dd, J = 1.8 Hz, J = 3.6 Hz, H fur), 7.34 (1H, d, J = 3.5 Hz, H
fur), 7.37–7.45 (4H, m, H Ar), 7.90 (1H, s, =CH), 8.30 (1H, d, J = 1.7 Hz, H fur) ppm; 13C NMR (100
MHz, DMSO-d6) δ = 23.6 (CH3), 23.9 (CH3), 33.6 (CH i-Pr), 114.4 (CH), 116.7, 120.8 (CNO2), 121.0
(CCl2), 121.8 (CH), 122.8 (CH), 126.9 (CH), 127.3 (CH), 127.4 (CH), 128.8 (CH), 128.8 (CCl-CCl2), 132.1,
149.4 (CH), 149.9, 150.8, 158.5 (NCS), 166.5 (C=O) ppm; MS m/z (Irel, %): 484 [M+] (6), 449 [M-Cl]+ (2),
339 [M-C2Cl3-O]+ (75), 325 [M-furan-CH=C=S-Cl]+ (7), 124 [furan-CH=C=S]+ (100). HRMS (ESI+) m/z
calcd for C20H15N2O4SCl3Na [M + Na]+: 506.9716; found: 506.9712.

3-[4-(Propan-2-yl)phenyl]-5-(thiophen-2-ylmethylidene)-2-(2,3,3-trichloro-1-nitroprop-2-en-1-ylidene)
-1,3-thiazolidin-4-one (21b). Same procedure as for 21a, using thiophene-2-carbaldehyde (0.135 g, 1.2
mmol). After filtration of the product, it was further purified by column chromatography using
chloroform. Yield 0.462 g (92%), dark yellow solid, m.p. 221–223 ◦C. IR (ATR) νmax = 2963, 1717, 1586,
1525, 1258, 729 cm−1. 1H NMR (400 MHz, CDCl3) δ = 1.29 (6H, d, J = 6.7 Hz, CH3 i-Pr), 2.99 (1H, sep,
J = 6.9 Hz, CH i-Pr), 7.16–7.20 (1H, m, H Ar), 7.24–7.27 (1H, m, H thien), 7.27–7.30 (1H, m, H Ar),
7.35–7.39 (2H, m, H Ar), 7.56 (1H, d, J = 3.7 Hz, H thien), 7.78 (1H, d, J = 5.0 Hz, H thien), 8.12 (1H, s,
=CH) ppm; 13C NMR (100 MHz, CDCl3) δ = 23.5 (CH3), 23.7 (CH3), 34.1 (CH i-Pr), 117.6, 120.6 (CCl2),
122.6 (CNO2), 126.8 (CH), 127.4 (CH), 127.8 (CH), 127.9 (CH), 129.1 (CH), 129.6 (CH), 129.7 (CClCCl2),
131.6, 133.6 (CH), 134.8 (CH), 137.6, 151.4 (i-Pr-C), 155.3 (NCS), 166.7 (C=O) ppm; MS m/z (Irel, %): 500
[M+] (3), 465 [M-Cl]+ (2), 372 [M-C2Cl3+H]+ (4), 355 [M-C2Cl3-O]+ (73), 140 [thienyl-C=CS]+ (100).
HRMS (ESI+) m/z calcd for C20H15N2O3Cl3S2Na [M + Na]+: 522.9487; found: 522.9482.

5-[(1-Methyl-1H-pyrrol-2-yl)methylidene]-3-[4-(propan-2-yl)phenyl]-2-(2,3,3-trichloro-1-nitroprop-2
-en-1-ylidene)-1,3-thiazolidin-4-one (21c). Same procedure as for 21a, using
1-methyl-1H-pyrrole-2-carbaldehyde (0.328 g, 3.0 mmol) and triethylamine (0.304 g, 3.0 mmol). The
mixture was refluxed for 6 h. Yield 0.459 g (92%), red solid, m.p. 244–246 ◦C. IR (ATR) νmax = 2986,
1700, 1584, 1520, 1273, 745 cm−1. 1H NMR (400 MHz, DMSO-d6) δ = 1.24 (3H, d, J = 6.9 Hz, CH3 i-Pr),
1.25 (3H, d, J = 6.9 Hz, CH3 i-Pr), 2.98 (1H, sep, J = 6.9 Hz, CH i-Pr), 3.83 (3H, s, NCH3), 6.47 (1H, dd, J =

2.6 Hz, J = 4.2 Hz, H pyrr), 6.88 (1H, dd, J = 1.1 Hz, J = 4.2 Hz, H pyrr), 7.36–7.44 (5H, m, 4H Ph, H pyrr),
7.84 (1H, s, =CH) ppm; 13C NMR (100 MHz, DMSO-d6) δ = 23.6 (CH3), 23.9 (CH3 i-Pr), 33.6 (NCH3),
34.3 (CH i-Pr), 111.5 (CCl2), 111.9 (CH), 118.0 (CH), 120.2 (CNO2), 121.2, 124.9 (CH), 126.9 (CH), 127.4
(2 × CH), 128.0, 128.6, 128.7 (CH), 131.8 (CH), 132.2, 150.7 (i-Pr-C), 157.5 (NCS), 166.5 (C=O) ppm; MS
m/z (Irel, %): 497 [M+] (10), 462 [M-Cl]+ (1), 361 [M-pyrrol-CH=C=S+H]+ (3), 352 [M-C2Cl3-CH4]+ (25),
137 [Me-pyrrol-CH=C=S]+ (100); HRMS (ESI+) m/z calcd for C21H18N3O3Cl3SNa [M + Na]+: 520.0032;
found: 520.0018.

5-(Furan-2-ylmethylidene)-2-(2,3,3-trichloro-1-nitroprop-2-en-1-ylidene)-3-[4-(trifluoromethyl)
phenyl]-1,3-thiazolidin-4-one (21d). Same procedure as for 21a, using thiazolidinone 21b (0.433
g, 1.0 mmol), furan-2-carbaldehyde (0.115 g, 1.2 mmol) and triethylamine (0.152 g, 1.5 mmol). Yield
0.374 g (73%), orange solid, m.p. 227–229 ◦C. IR (ATR) νmax = 3130, 1720, 1525, 1286, 1162, 622 cm−1.
1H NMR (400 MHz, CDCl3) δ = 6.67 (1H, dd, J = 1.8 Hz, J = 3.6 Hz, H fur), 6.98 (1H, d, J = 3.6 Hz, H
fur), 7.41–7.45 (1H, m, H Ar), 7.50–7.55 (1H, m, H Ar), 7.72 (1H, s, =CH), 7.78–7.84 (2H, m, H Ar), 7.85
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(1H, d, J = 1.8 Hz, H fur) ppm; 13C NMR (100 MHz, CDCl3) δ = 113.9 (CH), 116.9, 120.4 (CH), 120.6
(CCl2), 123.4 (JC,F = 272.8 Hz, CF3), 122.5 (CNO2), 122.9 (CH), 126.4 (JC,F = 3.7 Hz, CH), 126.9 (JC,F =

3.7 Hz, CH), 127.8 (CH), 128.8 (CH), 130.2 (CClCCl2), 132.6 (JC,F = 33.0 Hz, CF3C), 137.2, 148.0 (CH),
149.9, 156.0, 166.4 (C=O)ppm; MS m/z (Irel, %): 510 [M+] (3), 475 [M-Cl]+ (1), 429 [M-Cl-NO2]+ (1), 382
[M-C2Cl3+H]+ (5), 365 [M-C2Cl3-O]+ (37), 145 [Ph-CF3]+ (24), 124 [furan-CH=C=S]+ (100); HRMS
(ESI+) m/z calcd for C18H8N2O4Cl3SF3Na [M + Na]+: 532.9120; found: 532.9117.

5-(Thiophen-2-ylmethylidene)-2-(2,3,3-trichloro-1-nitroprop-2-en-1-ylidene)-3-[4-(trifluoromethyl)-
phenyl]-1,3-thiazolidin-4-one (21e). Same procedure as for 21a, using thiazolidinone 21b (0.433
g, 1.0 mmol), thiophene-2-carbaldehyde (0.135 g, 1.2 mmol) and triethylamine (0.152 g, 1.5 mmol).
After filtration, the product was purified by column chromatography using chloroform. The fraction
containing the product was dried, suspended in MeOH (2 mL), filtered, and the solid washed with
cold MeOH (1 × 2 mL). Yield 0.449 g (85%), orange solid, m.p. 245–246 ◦C. IR (ATR) νmax = 3076, 1699,
1522, 1281, 1126, 730 cm−1. 1H NMR (400 MHz, CDCl3) δ = 7.28 (1H, dd, J = 3.8 Hz, J = 5.0 Hz, H
thien), 7.43–7.45 (1H, m, H Ar), 7.52–7.54 (1H, m, H Ar), 7.58 (1H, d, J = 3.7 Hz, H thien), 7.79–7.84 (2H,
m, H Ar), 7.84–7.86 (1H, m, H thien), 8.15 (1H, s, =CH) ppm; 13C NMR (100 MHz, CDCl3) δ = 116.9,
120.4 (CCl2), 123.3 (JC,F = 271.9 Hz, CF3), 126.4 (JC,F = 3.9 Hz, CH), 126.9 (JC,F = 4.2 Hz, CH), 127.8
(CH), 128.8 (CH), 129.3 (CH), 130.3 (CH), 130.4 (CClCCl2), 132.3 (JC,F = 32.0 Hz, CF3-C), 134.1 (CH),
135.3 (CH), 137.2, 137.4, 154.5 (NCS), 166.2 (C=O) ppm, CNO2 could not be detected; MS m/z (Irel, %):
526 [M+] (4), 491 [M-Cl]+ (1), 398 [M-C2Cl3+H]+ (5), 381 [M-C2Cl3-O]+ (48), 140 [thienyl-C=CS]+ (100);
HRMS (ESI+) m/z calcd for C18H8N2O3Cl3S2F3Na [M + Na]+: 548.8892; found, m/z: 548.8888.

5-[(1-Methyl-1H-pyrrol-2-yl)methylidene]-2-(2,3,3-trichloro-1-nitroprop-2-en-1-ylidene)-3- [4-(tri
fluoro-methyl)-phenyl]-1,3-thiazolidin-4-one (21f). Same procedure as for 21a, using thiazolidinone 21b
(0.433 g, 1.0 mmol), 1-methyl-1H-pyrrole-2-carbaldehyde (0.262 g, 2.4 mmol) and triethylamine (0.152
g, 1.5 mmol). The mixture was refluxed for 8 h. Yield 0.289 g (55%), red solid, shows fluorescence, m.p.
241–242 ◦C. IR (ATR) νmax = 1688, 1589, 1521, 1269, 1064, 620 cm−1. 1H NMR (400 MHz, DMSO-d6) δ
= 3.84 (3H, s, NCH3), 6.48 (1H, dd, J = 2.3 Hz, J = 4.1 Hz, H pyrr), 6.90 (1H, dd, J = 1.3 Hz, J = 4.1 Hz, H
pyrr), 7.39 (1H, dd, J = 1.3 Hz, J = 2.3 Hz, H pyrr), 7.78–7.86 (2H, m, H Ar), 7.87 (1H, s, =CH), 7.94–8.00
(2H, m , H Ph) ppm; 13C NMR (100 MHz, DMSO-d6) δ = 34.3 (NCH3), 111.3, 112.1 (CH), 118.2 (CH),
120.0 (CNO2), 121.2 (CCl2), 123.9 (JC,F = 273.1 Hz, CF3), 125.1 (CH), 126.2 (CH), 126.7 (CH), 128.0, 129.0
(CH), 129.2, 130.1 (CH), 130.8 (JC,F = 32.3 Hz, CCF3), 132.0 (CH), 138.2, 157.2 (NCS), 166.2 (C=O) ppm;
MS m/z (Irel, %): 523 [M+] (5), 458 [M-F-NO2]+ (2), 378 [M-Ph-CF3]+ (12), 287 (100), 145 [Ph-CF3]+ (90);
HRMS (ESI+) m/z calcd for C19H11N3O3Cl3SF3Na [M + Na]+: 545.9436; found: 545.9433.

1-Methyl-4-nitro-3-(morpholin-4-yl)-1H-pyrazole-5-carbaldehyde (22) was prepared according to the
literature [26] in 48% yield.

Synthesis of 5-{[3-(Morpholin-4-yl)-4-nitro-1H-pyrazol-5-yl]methylidene}-3-[4-(propan-2-yl)phenyl]-2-
(2,3,3-trichloro-1-nitropropylidene)-1,3-thiazolidin-4-one (23a) (General method). To a suspension
of thiazolidinone 19a (0.408 g, 1.0 mmol) in acetic acid (10 mL), a solution of
1-methyl-3-(morpholin-4-yl)-4-nitro-1H-pyrazole-5-carbaldehyde (0.240 g, 1.0 mmol) in acetic
acid (5 mL) and triethylamine (0.152 g, 1.5 mmol) was added. Subsequently, the mixture was refluxed
for 4 h. After cooling, the solvent was removed and MeOH (5 mL) added. The resulting precipitate
was filtered off and washed with cold MeOH (2 × 5 mL). The product was dried in vacuo. Yield 0.592 g
(94%), orange solid, mixture of two isomers (100: 16), m.p. 212–213 ◦C. IR (ATR) νmax = 2961, 1735,
1535, 1290, 1178, 683 cm−1. 1H NMR major isomer (400 MHz, DMSO-d6) δ = 1.21 (6H, d, J = 6.9 Hz,
CH3 i-Pr), 2.99 (1H, sep, J = 6.8 Hz, CH i-Pr), 3.22–3.28 (4H, m, NCH2), 3.72–3.78 (4H, m, OCH2), 3.85
(3H, s, NCH3), 7.33–7.53 (4H, m, H Ar), 7.90 (1H, s, =CH) ppm; 13C NMR major isomer (100 MHz,
DMSO-d6) δ = 23.5, 23.8 (CH3 i-Pr), 33.6 (CH i-Pr), 39.0 (NCH3), 49.9 (NCH2), 65.9 (OCH2), 120.1,
121.4 (CH), 121.8, 123.5 (CNO2), 127.0 (CH), 127.4 (2 × CH), 128.9 (CH), 129.5, 130.9, 131.7, 137.4, 151.1
(C-i-Pr), 153.2 (N-N-C-N), 156.5 (NCS), 165.1 (C=O) ppm; MS m/z (Irel, %): 628 [M+] (55), 613 [M-CH3]+
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(83), 598 [M-2(CH3)]+ (22), 582 [M-NO2]+ (20), 499 [M-C2Cl3]+ (10), 146 (100); HRMS (ESI+) m/z calcd
for C24H23N6O6Cl3SNa [M + Na]+: 651.0363; found: 651.0360.

5-{[3-(Morpholin-4-yl)-4-nitro-1H-pyrazol-5-yl]methylidene}-2- (2,3,3-trichloro-1-nitropropylidene)
-3-[4-(trifluoromethyl)phenyl]-1,3-thiazolidin-4-one (23b). Same procedure as for 23a, using thiazolidinone
19b (0.434 g, 1.0 mmol), 1-methyl-3-(morpholin-4-yl)-4-nitro-1H-pyrazole-5-carbaldehyde (0.240 g, 1.0
mmol) and triethylamine (0.152 g, 1.5 mmol). The mixture was refluxed for 2 h. Yield 0.636 g (97%),
mixture of two isomers (100: 17), orange solid, m.p. 226–227 ◦C. IR (ATR) νmax = 1733, 1538, 1291, 1171,
1065, 630 cm−1. 1H NMR major isomer (400 MHz, DMSO-d6) δ = 3.22–3.29 (4H, m, NCH2), 3.72–3.79
(4H, m, OCH2), 3.85 (3H, s, NCH3), 7.81–8.04 (4H, m, 4H Ar), 7.93 (1H, s, =CH) ppm; 13C NMR major
isomer (100 MHz, DMSO-d6) δ = 39.1 (NCH3), 49.9 (NCH2), 65.9 (OCH2), 120.1, 121.6 (pyr-CH), 121.7
(CH), 123.9 (JC,F = 272.7 Hz, CF3), 123.6 (CNO2), 126.3 (JC,F = 3.9 Hz, CH), 126.8 (JC,F = 3.9 Hz, CH),
129.0 (CH), 130.2, 130.3 (CH), 130.8, 131.2 (JC,F = 32.1 Hz, CCF3), 137.3, 137.7, 153.2, 156.2 (NCS), 164.9
(C=O) ppm; MS m/z (Irel, %): 654 [M+] (35), 639 [M − CH3]+ (60), 619 [M − Cl]+ (8), 145 [Ph-CF3]+ (50),
127 (100); HRMS (ESI+) m/z calcd for C22H16N6O6Cl3SF3Na [M + Na]+: 676.9767; found: 676.9769.

1,1’-(3,4,4-Trichloro-2-nitrobuta-1,3-diene-1,1-diyl)bis(1H-benzotriazole) (24) was prepared according to the
literature [28] in 76% yield.

Synthesis of N-[1-(1H-Benzotriazol-1-yl)-3,4,4-trichloro-2-nitrobuta-1,3-dien-1-yl]-2-methoxyaniline (25a)
(General method). To a suspension of azole 24 (0.437 g, 1.0 mmol) in MeOH (10 mL) at 0 ◦C,
2-methoxyaniline (0.129 g, 1.05 mmol) was slowly added. The mixture was allowed to reach r.t.
and stirred for another 3 h. After evaporation of the solvent, HCl (10%, 10 mL) was added and the
resulting sludge was stirred for 20 min. The precipitate was then filtered off and washed with HCl
(10%, 5 mL), cold water (5 mL) and cold Et2O (2 × 5 mL). The product was dried in vacuo. Yield 0.392
g (89%), yellow solid, m.p. 128–129 ◦C. IR (KBr) νmax = 1621, 1580, 1463, 1252, 1023, 753 cm−1. 1H
NMR (200 MHz, CDCl3) δ = 3.91 (3H, s, OCH3), 6.15 (1H, dd, J = 1.3 Hz, J = 8.0 Hz, H Ar), 6.46 (1H,
ddd J = 7.7 Hz, J = 1.2 Hz, J = 7.5 Hz, H Ar), 6.82 (1H, dd, J = 1.5 Hz, J = 8.3 Hz, H Ar), 7.00 (1H,
ddd, J = 8.3 Hz, J = 1.4 Hz, J = 7.5 Hz, H Ar), 7.27–7.42 (3H, m, H Bzt), 8.02–8.06 (1H, m, H Bzt), 11.65
(1H, s, NH) ppm; 13C NMR (50 MHz, CDCl3) δ = 55.9 (OCH3), 109.8 (CH Bzt), 111.3 (CH Ar), 120.6
(CH Ar), 120.9 (CH Bzt), 122.2 (CH Ar), 123.8 (CNH), 125.3 (CH Bzt), 128.6 (CH Ar), 129.5 (CH Bzt),
131.9, 145.3 (NCN), 145.9, 151.4 (COCH3) ppm, three C signals from butadiene-chain due to their low
intensity could not be detected; MS m/z (Irel, %): 439 [M+] (4), 403 [M-HCl]+ (3), 358 [M-Cl-NO2]+ (3),
331 [M-Ph-OCH3]+ (6), 122 [H2NPhOCH3]+ (100); HRMS (ESI+) m/z calcd for C17H13N5O3Cl3 [M +

H]+: 440.0079; found: 440.0077.

N-[1-(1H-Benzotriazol-1-yl)-3,4,4-trichloro-2-nitrobuta-1,3-dien-1-yl]-2-ethoxyaniline (25b). Same procedure
as for 25a, using 2-ethoxyaniline (0.144 g, 1.05 mmol). Yield 0.355 g (78%), orange solid, m.p. 145–146
◦C. IR (ATR) νmax = 1620, 1583, 1471, 1241, 1147, 741 cm−1. 1H NMR (400 MHz, CDCl3) δ = 1.56 (3H, t,
J = 7.0 Hz, OCH2CH3), 4.15 (2H, q, J = 6.7 Hz, OCH2CH3), 5.99 (1H, dd, J = 1.0 Hz, J = 8.0 Hz, H Ar),
6.41 (1H, ddd, J = 7.6 Hz, J = 1.0 Hz, J = 7.9 Hz, H Ar), 6.82 (1H, dd, J = 8.3 Hz, J = 0.9 Hz, H Ar), 6.97
(1H, ddd, J = 8.0 Hz, J = 1.2 Hz, J = 7.8 Hz, H Ar), 7.31 (1H, d, J = 8.0 Hz, H Bzt), 7.37 (ddd, J = 7.0 Hz, J
= 1.1 Hz, J = 8.1 Hz, H Bzt), 7.43 (1H, t, J = 7.36 Hz, H Bzt), 8.06 (1H, d, J = 8.2 Hz, H Bzt) ppm; 13C
NMR (100 MHz, CDCl3) δ = 14.7 (CH3), 64.7 (OCH2), 109.8 (CH), 112.2 (CH), 120.6 (CH), 120.7 (CH),
121.5 (CH), 124.0, 125.3 (CH), 128.3 (CH), 129.5 (CH), 131.9, 145.3, 145.6, 150.6 ppm, three C signals
from butadiene-chain due to their low intensity could not be detected; MS m/z (Irel, %): 453 [M+] (1),
417 [M − HCl]+ (1), 390 [M-Cl-N2]+ (1), 135 [NPhOEt2]+ (38), 100 (100); HRMS (ESI+) m/z calcd for
C18H15N5O3Cl3 [M + H]+: 454.0235; found: 454.0234.

N’-[1-(1H-Benzotriazol-1-yl)-3,4,4-trichloro-2-nitrobuta-1,3-dien-1-yl]-N,N-dimethylbenzene-1,4-di- amine
(25c). Same procedure as for 25a, using N,N-dimethylbenzene-1,4-diamine (0.143 g, 1.05 mmol) keeping
the reaction mixture at 0 ◦C until completion. Yield 0.413 g (91%), dark red solid, m.p. 147–148 ◦C.
IR (ATR) νmax = 2891, 1620, 1491, 1358, 1168, 818 cm−1. 1H NMR (400 MHz, CDCl3) δ = 2.81 (6H, s,
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NCH3), 6.31 (2H, d, J = 9.0 Hz, H Ar), 6.60 (2H, d, J = 9.0 Hz, H Ar), 7.35–7.44 (3H, m, H Bzt), 8.04 (1H,
d, J = 8.4 Hz, H Bzt), 11.88 (1H, s, NH) ppm; 13C NMR (100 MHz, CDCl3) δ = 40.1 (CH3), 109.8 (CH),
112.2 (CH), 117.0, 120.6 (CH), 120.9, 123.8 (CH), 125.2 (CH), 128.0, 129.3 (CH), 129.5, 145.3, 146.8, 149.4
ppm, three C signals from butadiene-chain due to their low intensity could not be detected; MS m/z
(Irel, %): 452 [M+] (2), 416 [M − Cl]+ (1), 388 [M-HCl-N2]+ (1), 119 [Bzt + H]+ (100); HRMS (ESI+) m/z
calcd for C18H16N6O2Cl3 [M + H]+: 453.0395; found: 453.0395.

1-[3,4,4-Trichloro-1-(2,3-dihydro-1H-indol-1-yl)-2-nitrobuta-1,3-dien-1-yl]-1H-benzotriazole (25f). Same
procedure as for 25a, using 1H-indoline (0.125 g, 1.05 mmol). Yield 0.354 g (87%), yellow solid, m.p.
178–179 ◦C. IR (ATR) νmax = 3065, 1533, 1295, 1023, 905, 655 cm−1. 1H NMR (400 MHz, CDCl3) δ =

3.34–3.46 (2H, m, CH2 ind), 3.89–4.25 (2H, m, CH2 ind), 5.06–6.38 (1H, s, H ind), 6.66–7.00 (1H, m, H
Bzt), 7.06 (1H, s, H ind), 7.29–7.36 (1H, m, H ind), 7.40–7.88 (3H, m, 2H Bzt, 1H ind), 8.16 (1H, d, J
= 8.1 Hz, H Bzt) ppm; 13C NMR (100 MHz, CDCl3) δ = 29.2 (CH2), 54.5 (CH2), 113.9 (CNO2), 121.1
(2 × CH), 123.2, 125.9 (2 × CH), 126.0 (CH), 127.9 (CH), 128.0 (CH), 130.0 (CH), 131.8 (CCl2), 141.2
(NCN), 146.1, 146.2 ppm; MS m/z (Irel, %): 435 [M+] (12), 289 [M-indolin-N2]+ (34), 271 [M-Bzt-NO2]+

(79), 118 [benzotriazole]+ (100); HRMS (ESI+) m/z calcd for C18H13N5O2Cl3 [M + H]+: 436.0129; found:
436.0127.

Synthesis of 5-Methoxy-8-(2,3,3-trichloro-1-nitroprop-2-en-1-ylidene)-7-azabicyclo[4.2.0]octa-1,3,5- triene (26a)
(General method). A suspension of azole 25a (0.441 g, 1.0 mmol) in MeOH (10 mL) was stirred at reflux
for 5 h. Subsequently, the mixture was concentrated and cooled to 0 ◦C. The precipitate was filtered off

and washed with diethyl ether (2 × 5 mL). Yield 0.119 g (37%), yellow solid, m.p. 168–169 ◦C. IR (KBr)
νmax = 3112, 1637, 1536, 1395, 1083, 859 cm−1. 1H NMR (200 MHz, DMSO-d6) δ = 3.96 (3H, s, OCH3),
7.30–7.42 (2H, m, CH), 7.74 (1H, dd, J = 2.3 Hz, J = 7.6 Hz, CH), 12.40 (1H, s, NH) ppm; 13C NMR (50
MHz, DMSO-d6) δ = 57.0 (OCH3), 110.9 (CH), 114.3 (CH), 119.5, 123.9 (CH), 124.0, 125.9, 130.6, 134.0,
147.3, 153.9 (COCH3) ppm; MS m/z (Irel, %): 320 [M+] (1), 284 [M − HCl]+ (12), 256 [M-NO2-NH2+H]+

(40), 64 (100); HRMS (ESI+) m/z calcd for C11H8N2O3Cl3 [M + H]+: 320.9595; found: 320.9594.

5-Ethoxy-8-(2,3,3-trichloro-1-nitroprop-2-en-1-ylidene)-7-azabicyclo[4.2.0]octa-1,3,5-triene (26b). Same
procedure as for 26a, using azole 25b (0.455, 1.0 mmol) and refluxing in EtOH for 10 h. Yield
0.091 g (27%), yellow solid, m.p. 204–205 ◦C. IR (KBr) νmax = 2992, 1647, 1533, 1378, 1234, 554 cm−1.
1H NMR (400 MHz, DMSO-d6) δ = 1.42 (3H, t, J = 7.0 Hz, OCH2CH3), 4.16–4.26 (2H, m, OCH2CH3),
7.30–7.38 (2H, m, CH), 7.71 (1H, dd, J = 1.5 Hz, J = 8.2 Hz, CH), 12.37 (1H, s, NH) ppm; 13C NMR (100
MHz, DMSO-d6) δ = 14.5 (CH3), 65.4 (OCH2), 110.7 (CH), 114.9 (CH), 119.5, 123.9 (CH), 124.0, 125.9,
130.6, 133.9, 146.5, 153.9 ppm; MS m/z (Irel, %): 334 [M+] (3), 299 [M − Cl]+ (52), 271 [M-Cl-EtO+H]+

(100); HRMS (ESI+) m/z calcd for C12H10N2O3Cl3 [M + H]+: 334.9752; found: 334.9750.

Synthesis of N,N-Dimethyl-8-(2,3,3-trichloro-1-nitroprop-2-en-1-ylidene)-7-azabicyclo[4.2.0]octa-1,3,5-
trien-3-amine (26c). A suspension of azole 25c (0.454 g, 1.0 mmol) in THF (20 mL) was stirred at
reflux for 10 h. After evaporation of the solvent, dilute HCl (10 mL) was added and the mixture
stirred for 15 min. Subsequently, the mixture was extracted with chloroform and purified by column
chromatography using petroleum ether - ethyl acetate (1:1). Yield 0.084 g (25%), red solid, m.p. 171–173
◦C. IR (KBr) νmax = 2856, 1567, 1369, 1063, 846, 550 cm−1. 1H NMR (400 MHz, DMSO-d6) δ = 2.97 (6H,
s, N(CH3)2), 7.22 (1H, d, J = 2.0 Hz, CH), 7.32 (1H, d, J = 9.0 Hz, CH), 7.36 (1H, dd, J = 2.1 Hz, J = 9.2
Hz, CH), 12.65 (1H, s, NH) ppm; 13C NMR (100 MHz, DMSO-d6) δ = 40.3 (Me), 98.6 (CH), 117.8 (CH),
119.9, 121.1 (CH), 124.0, 125.6, 130.9, 133.5, 147.5 (CNMe2), 153.1 ppm; MS m/z (Irel, %): 333 [M+] (27),
298 [M − Cl]+ (40), 270 [M-NO2-NH3]+ (100); HRMS (ESI+) m/z calcd for C12H11N3O2Cl3 [M + H]+:
333.9917; found: 333.9919.

Synthesis of N’-[6-(Dichloromethyl)-2-methyl-5-nitropyrimidin-4-yl]-N, N-dimethylbenzene-1,4- diamine (27c).
To a solution of the nitrobutadiene 25c (0.454 g, 1.0 mmol) and acetamidine hydrochloride (0.284 g, 3.0
mmol) in 20 mL dry THF, sodium hydride (0.160 g, 4.0 mmol, 60%) was added at 0 ◦C. The solution
was thoroughly stirred for 1 h at 0 ◦C and then at r.t. for 2 d. After evaporation of the solvent and
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addition of 10% HCl (5 mL) the precipitate was filtered off and washed with 10% HCl (2 × 10 mL),
cold water (10 mL), cold MeOH (2 × 5 mL) and dried in vacuo. Yield 0.232 g (65%), yellow solid, m.p.
124–125 ◦C. IR (KBr) νmax = 3321, 1612, 1573 (NO2), 1517, 1204, 746 cm−1. 1H NMR (400 MHz, CDCl3)
δ = 2.64 (3H, s, CCH3), 2.99 (6H, s, NCH3), 6.74 (2H, d, J = 9.0 Hz, H Ar), 7.40 (2H, d, J = 8.9 Hz, H Ar),
7.42 (1H, s, CHCl2), 9.73 (1H, s, NH) ppm; 13C NMR (100 MHz, CDCl3) δ = 26.5 (CH3), 40.5 (NCH3),
66.8 (CHCl2), 112.3 (CH), 122.8, 124.5 (CH), 125.3, 148.9, 153.2, 160.6, 171.0 ppm; MS m/z (Irel, %): 355
[M+] (39), 136 [phenylendiamine+H]+ (100); HRMS (ESI+) m/z calcd for C14H16N5O2Cl2 [M + H]+:
356.0676; found: 356.0674.

6-(Dichloromethyl)-N,N,2-trimethyl-5-nitropyrimidin-4-amine (27d). Same procedure as for 27c, using
diene 25d (0.363 g, 1.0 mmol). The precipitate was further purified by column chromatography using
petroleum ether - ethyl acetate, 5: 1. Yield 0.148 g (56%), yellowish solid, m.p. 82–83 ◦C. IR (ATR)
νmax = 3048, 1579 (NO2), 1500, 1338 (NO2), 1195, 746 cm−1. 1H NMR (400 MHz, CDCl3) δ = 2.61
(3H, s, CCH3), 3.09 (6H, s, NCH3), 6.98 (1H, s, CHCl2); 13C NMR (100 MHz, CDCl3) δ = 26.1 (CH3),
39.3 (NCH3), 65.4 (CHCl2), 125.6 (CNO2), 154.7, 156.2, 168.1 ppm; MS m/z (Irel, %): 264 [M+] (55), 218
[M − NO2]+ (30), 182 [M-CHCl2+H]+ (63), 135 [M-CHCl2-NO2]+ (52). HRMS (ESI+) m/z calcd for
C8H11N4O2Cl2 [M + H]+: 265.0254; found: 265.0255.

N-[6-(Dichloromethyl)-2-methyl-5-nitropyrimidin-4-yl]quinolin-8-amine (27e). Same procedure as for 27c,
using azole 25e (0.462 g, 1.0 mmol) as starting material. Yield 0.178 g (49%), yellow solid, m.p. 217–219
◦C. IR (KBr) νmax = 3262, 1573 (NO2), 1298 (NO2), 1208, 766, 590 cm−1. 1H NMR (400 MHz, CDCl3) δ =

2.82 (3H, s, CCH3), 7.37 (1H, s, CHCl2), 7.52 (1H, dd, J = 8.3 Hz, J = 4.2 Hz, H quin), 7.58–7.63 (2H, m,
H quin), 8.21 (1H, dd, J = 8.3 Hz, J = 1.6 Hz, H quin), 8.94 (1H, dd, J = 4.2 Hz, J = 1.6 Hz, H quin),
9.04–9.07 (1H, m, H quin), 12.17 (1H, s, NH) ppm; 13C NMR (100 MHz, CDCl3) δ = 26.6 (CH3), 66.4
(CHCl2), 118.4 (CH), 122.0 (CH), 122.93 (CH), 124.6, 127.0 (CH), 128.1, 134.0, 136.4 (CH), 139.3, 149.0
(CH), 152.1, 159.7, 170.9 ppm; MS m/z (Irel, %): 363 [M+] (15), 317 [M-NO2]+ (100), 281 [M − CHCl2]+

(25), 235 [M − quin]+ (12), 128 [quinoline]+ (45); HRMS (ESI+) m/z calcd for C15H12N5O2Cl2 [M + H]+:
364.0368; found: 364.0368.

1-[6-(Dichloromethyl)-2-methyl-5-nitropyrimidin-4-yl]-2,3-dihydro-1H-indole (27f). Same procedure as for
27c, using diene 25f (0.437 g, 1.0 mmol), DMSO (25 mL) and NaOH (30%, 4 mmol). Yield 0.216 g (64%),
yellow solid, m.p. 132–133 ◦C. IR (ATR) νmax = 3048, 1562 (NO2), 1529, 1340 (NO2), 1209, 768 cm−1. 1H
NMR (400 MHz, CDCl3) δ = 2.72 (3H, s, CCH3), 3.20 (2H, t, J = 7.9 Hz, H ind), 3.86 (2H, t, J = 7.9 Hz, H
ind), 7.04 (1H, s, CHCl2), 7.11 (1H, t, J = 7.4 Hz, H ind), 7.24–7.29 (2H, m, H ind), 7.93 (1H, d, J = 8.1 Hz,
H ind) ppm; 13C NMR (100 MHz, CDCl3) δ = 26.0 (CH), 28.8 (CH2), 50.2 (CH2), 65.3 (CHCl2), 117.6
(CH), 124.8 (CH), 125.1 (CH), 126.4, 127.1 (CH), 132.3, 142.1, 151.6, 156.8, 168.7 ppm; MS m/z (Irel, %):
338 [M+] (100), 323 [M-CH3]+ (13), 257 [M-NO2-Cl] (48), 118 [indole]+ (24); HRMS (ESI+) m/z calcd for
C14H13N4O2Cl2 [M + H]+: 339.0416; found: 339.0413.

Synthesis of 1-[6-(Dichloromethyl)-2-methyl-5-nitropyrimidin-4-yl]-1H-indole (28). A solution of pyrimidine
27f (0.400 g, 1.2 mmol) and DDQ (0.600 g, 2.7 mmol) in toluene (10 mL) was heated to reflux for 5
h, allowed to cool down to r.t., and the precipitate filtered off. The filtrate was purified by column
chromatography using petroleum ether–ethyl acetate, 25: 1. The product was dried in vacuo. Yield
0.267 g (66%), m.p. 103–104 ◦C. IR (ATR) νmax = 3022, 1589 (NO2), 1342, 1261 (NO2), 1099, 745 cm−1.
1H NMR (600 MHz, CDCl3) δ = 2.92 (3H, s, CCH3), 6.79 (1H, dd, J = 3.7 Hz, J = 0.7 Hz, H ind), 7.01
(1H, s, CHCl2), 7.12 (1H, d, J = 3.7 Hz, H ind), 7.30 (1H, t, J = 8.0 Hz, H ind), 7.36 (1H, t, J = 8.4 Hz, H
ind), 7.63 (1H, d, J = 8.2 Hz, H ind), 8.10 (1H, d, J = 9.1 Hz, H ind) ppm; 13C NMR (150 MHz, CDCl3) δ
= 26.2 (CH3), 64.8 (CHCl2), 110.9 (CH), 114.1 (CH), 121.6 (CH), 123.8 (CH), 124.5 (CH), 124.9 (CH),
128.3, 130.4, 135.4, 150.5, 157.6, 170.5 ppm; MS m/z (Irel, %): 336 [M+] (100), 291 [M + H-NO2]+ (42),
238 [M-CH3-CHCl2]+ (48), 116 [indole]+ (62); HRMS (ESI+) m/z calcd for C14H11N4O2Cl2 [M + H]+:
337.0259; found: 337.0261.



Molecules 2020, 25, 2863 25 of 41

Synthesis of 1-[1-(1H-Benzotriazol-1-yl)-3,4,4-trichloro-2-nitrobuta-1,3-dien-1-yl]-4-(4-chlorophenyl)-
piperidin-4-ol (25g). Same procedure as for 25a, using 4-(4-chlorophenyl)piperidin-4-ol (0.223 g, 1.05
mmol). Yield 0.482 g (91%), yellowish solid, m.p. 149–150 ◦C. IR (ATR) νmax = 2931, 1565, 1498, 1290,
1005, 749 cm−1. 1H NMR (400 MHz, CDCl3) δ = 1.83–2.03 (2H, m, H pip), 2.33–2.61 (2H, m, H pip),
2.95–3.25 (2H, m, NCH2), 3.76–4.08 (3H, m, OH + NCH2), 7.35–7.38 (2H, m, H Ar), 7.45–7.47 (2H, m, H
Ar), 7.47–7.79 (3H, m, H Bzt), 8.10–8.13 (1H, m, H Bzt) ppm; 13C NMR (100 MHz, CDCl3) δ = 38.3
(CH2), 47.3 (CH2), 70.4 (COH), 110.4 (CH), 111.89 (CNO2), 120.9 (CH), 124.8 (CCl), 125.9 (2 × CH),
126.0 (CH), 126.2 (CCl2), 128.8 (2 × CH), 130.6 (CH), 132.4, 133.6 (CCl), 144.8, 146.1, 148.0 (CNN) ppm;
MS m/z (Irel, %): 527 [M+] (1), 499 [M-N2]+ (1), 453 [M-N2-NO2]+ (1), 416 [M-Ph-Cl]+ (1), 111 [PhCl]+

(20), 91 (100); HRMS (ESI+) m/z calcd for C21H18N5O3Cl4 [M + H]+: 538.0158; found: 528.0156.

{4-[1-(1H-Benzotriazol-1-yl)-3,4,4-trichloro-2-nitrobuta-1,3-dien-1-yl]piperazin-1-yl}(tetrahydrofuran-2-
yl)-methanone (25h). Same procedure as for 25a, using piperazin-1-yl(tetrahydrofuran-2-yl)methanone
(0.193 g, 1.05 mmol). Yield 0.426 g (85%), yellow solid, m.p. 170–172 ◦C. IR (KBr) νmax = 2871, 1657,
1560, 1290, 1006, 747 cm−1. 1H NMR (200 MHz, CDCl3) δ = 1.80–2.11 (3H, m, CH2 fur), 2.30–2.49 (1H,
m, CH2 fur), 3.18–3.60 (4H, m, NCH2), 3.72–4.41 (6H, m, 2NCH2, OCH2), 4.52–4.67 (1H, m, OCH),
7.48–7.80 (3H, m, H Bzt), 8.17–8.20 (1H, m, H Bzt) ppm; 13C NMR (50 MHz, CDCl3) δ 25.7 (CH2), 27.7
(CH2), 41.8 (NCH2), 45.2 (NCH2), 50.6 (NCH2), 69.2 (OCH2), 76.1 (OCH), 110.2 (CH), 116.2 (CCl2),
120.6 (CNO2), 121.1 (CH), 125.5, 126.1 (CH), 129.9, 130.7 (CH), 146.3, 147.5 (CNN), 169.7 (C=O) ppm;
MS m/z (Irel, %): 500 [M+] (1), 465 [M-Cl]+ (1), 426 [M-NO2-N2]+ (1), 337 [M-Bzt-NO2+H]+ (4), 119 [Bzt
+ H]+ (16), 92 (100); HRMS (ESI+) m/z calcd for C19H20N6O4Cl3 [M + H]+: 501.0606; found: 501.0605.

1-{3,4,4-Trichloro-1-[4-(3-chlorophenyl)piperazin-1-yl]-2-nitrobuta-1,3-dien-1-yl}-1H-benzotriazole (25i).
Same procedure as for 25a, using 1-(3-methylphenyl)piperazine (0.207 g, 1.05 mmol). Yield 0.452 g
(88%), yellow solid, m.p. 68–70 ◦C. IR (KBr) νmax = 2916, 1594, 1560, 1291, 942, 768 cm−1. 1H NMR (200
MHz, CDCl3) δ = 3.41–3.61 (8H, m, NCH2), 6.75–6.90 (1H, m, H Ar), 6.91–6.98 (2H, m, H Ar), 7.18–7.24
(1H, m, H Ar), 7.40–7.68 (3H, m, H Bzt), 8.16 (1H, d, J = 8.1 Hz, H Bzt) ppm; 13C NMR (50 MHz, CDCl3)
δ = 49.2 (NCH2), 49.4 (NCH2), 110.3 (CH), 115.1 (CH), 117.2 (CH), 121.1 (CH), 121.6 (CH), 124.3 (CCl2),
125.3 (CCl), 126.1 (CH), 130.4 (CH), 130.7 (CH), 132.4, 135.2 (CCl), 146.3, 147.6 (CNN), 150.7 ppm,
CNO2 could not be detected; MS m/z (Irel, %): 512 [M+] (2), 449 [M-Cl-N2]+ (1), 401 [M-PhCl]+ (2), 138
[PhClNCH]+ (100); HRMS (ESI+) m/z calcd for C20H17N6O2Cl4 [M + H]+: 512.0078; found: 512.0075.

Synthesis of 4-(4-Chlorophenyl)-1-[5-(dichloromethyl)-1-methyl-4-nitro-1H-pyrazol-3-yl]piperidin-4-ol (29a)
(General method). To a suspension of azole 25g (0.529 g, 1.0 mmol) in MeOH (10 mL) at −10 ◦C,
methylhydrazine (0.921 g, 2.0 mmol) was added dropwise. After 2 h, the solution was allowed reach
r.t. and stirred for 1 d. The solution was then concentrated and 10% HCl (5 mL) was added. The
resulting precipitate was filtered off, washed with water, and purified by column chromatography
using chloroform. Yield 0.311 g (74%), yellow solid, m.p. 95–96 ◦C. IR (ATR) νmax = 2951, 1553, 1484,
1348, 1024, 746 cm−1. 1H NMR (400 MHz, CDCl3) δ = 1.65 (1H, s, OH), 1.78–1.85 (2H, m, CCH2), 2.28
(2H, ddd, J = 13.1 Hz, J = 4.2 Hz, J = 13.1 Hz, CCH2), 3.33 (2H, ddd, J = 12.5 Hz, J = 2.5 Hz, J = 12.5 Hz,
NCH2), 3.51–3.59 (2H, m, NCH2), 4.12 (3H, s, NCH3), 7.34 (2H, d, J = 8.7 Hz, H Ar), 7.47 (2H, d, J = 8.7
Hz, H Ar), 7.88 (1H, s, CHCl2) ppm; 13C NMR (100 MHz, CDCl3) δ = 38.0 (2 × CH2), 39.7 (NCH3), 46.0
(2 × NCH2), 57.8 (CHCl2), 71.1 (HO-C), 120.4 (CNO2), 126.1 (CH), 129.2 (CH), 133.0 (CCl), 137.9, 146.5,
152.8 (NC-pyr) ppm; MS m/z (Irel, %): 418 [M+] (3), 401 [M-OH]+ (6), 383 [M − Cl]+ (5), 367 [M-Cl-O]+

(4), 347 [M-Cl-HCl]+ (4), 100 (100); HRMS (ESI+) m/z calcd for C16H18N4O3Cl3 [M + H]+: 419.0439;
found: 419.0437.

{4-[5-(Dichloromethyl)-1-methyl-4-nitro-1H-pyrazol-3-yl]piperazin-1-yl}(tetrahydrofuran-2-yl)methanone
(29b). Same procedure as for 29a, using diene 25h (0.502 g, 1.0 mmol) and DCM as the eluent. Yield
0.310 g (79%), yellowish oil. IR (ATR) νmax = 2954, 1647, 1551, 1341, 1198, 745 cm−1. 1H NMR (400
MHz, CDCl3) δ = 1.86–2.12 (3H, m, CH2 Fur), 2.25–2.35 (1H, m, CH2 Fur), 3.17–3.31 (4H, m, NCH2),
3.63–3.73 (2H, m, NCH2), 3.79–3.98 (4H, m, NCH2, OCH2), 4.10 (3H, s, NCH3), 4.64 (1H, dd, J = 5.6
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Hz, J = 7.5 Hz, COCHO), 7.84 (1H, s, CHCl2) ppm; 13C NMR (100 MHz, CDCl3) δ = 25.7 (CH2), 28.4
(CH2), 39.7 (NCH3), 41.6 (NCH2), 45.0 (NCH2), 49.6 (NCH2), 50.0 (NCH2), 57.6 (CH), 69.1 (OCH2), 75.9
(OCH), 120.5 (CNO2), 138.1, 152.1, 170.1 (C=O) ppm; MS m/z (Irel, %): 391 [M+] (100), 374 [M − OH]+

(20), 356 [M − Cl]+ (65), 320 [M − furan]+ (20), 292 [M-CO-furan]+ (35); HRMS (ESI+) m/z calcd for
C14H20N5O4Cl2 [M + H]+: 392.0887; found: 392.0889.

1-(3-Chlorophenyl)-4-[5-(dichloromethyl)-1-methyl-4-nitro-1H-pyrazol-3-yl]piperazine (29c). Same
proce-dure as for 29a, using diene 25i (0.514 g, 1.0 mmol) and a mixture of petroleum ether and
ethyl acetate (5: 1) as the eluent. Yield 0.299 g (74%), yellow solid, m.p. 162–163 ◦C. IR (ATR) νmax

= 2832, 1552, 1475, 1338, 936, 737 cm−1. 1H NMR (400 MHz, CDCl3) δ = 3.31–3.36 (4H, m, NCH2),
3.38–3.43 (4H, m, NCH2), 4.13 (3H, s, NCH3), 6.81–6.86 (2H, m, H Ar), 6.93 (1H, t, J = 2.1 Hz, H Ar),
7.18 (1H, t, J = 8.0 Hz, H Ar), 7.87 (1H, s, CHCl2) ppm; 13C NMR (100 MHz, CDCl3) δ = 39.7 (CH3),
48.5 (NCH2), 49.5 (NCH2), 57.7 (CHCl2), 114.1 (CH), 116.1 (CH), 119.7 (CH), 120.5 (CNO2), 130.1 (CH),
135.0 (CCl), 138.0, 152.2 (CN), 152.3 (CN) ppm; MS m/z (Irel, %): 403 [M+] (45), 357 [M − NO2]+ (6),
322 [M-NO2-Cl]+ (22), 138 [PhClNCH]+ (100); HRMS (ESI+) m/z calcd for C15H17N5O2Cl3 [M + H]+:
404.0442; found: 404.0444.

Synthesis of 3-[4-(3-Chlorophenyl)piperazin-1-yl]-1-methyl-4-nitro-1H-pyrazole-5-carbaldehyde (30). Pyrazole
29c (0.405 g, 1.0 mmol) was suspended in 10 mL sulfuric acid (25%) and heated to 95–100 ◦C for 10 h.
After cooling to r.t., the solution was extracted with chloroform (3 × 10 mL) and purified by column
chromatography using petroleum ether - ethyl acetate (5: 1). The product was dried in vacuo. Yield
0.199 g (57%), yellow solid, m.p. 159–160 ◦C. IR (ATR) νmax = 2827, 1683, 1546, 1474, 1236, 775 cm−1.
1H NMR (400 MHz, CDCl3) δ = 3.32–3.38 (4H, m, NCH2), 3.45–3.5 (4H, m, NCH2), 6.81–6.87 (2H, m, H
Ph), 6.93 (1H, t, J = 2.0 Hz, H Ph), 7.19 (1H, t, J = 8.1 Hz, H Ph), 10.43 (1H, s, CHO) ppm; 13C NMR (100
MHz, CDCl3) δ = 40.9 (NCH3), 48.5 (2 × NCH2), 49.4 (2 × NCH2), 114.2 (CH), 116.1 (CH), 119.8 (CH),
125.7 (CNO2), 130.1 (CH), 135.0 (CCl), 135.2 (CCHO), 151.9, 152.1, 181.8 (CHO) ppm; MS m/z (Irel, %):
349 [M+] (100), 332 [M − OH]+ (5), 314 [M − Cl]+ (4), 304 [M-NO2+H]+ (20), 138 [ClPhNCH]+ (75);
HRMS (ESI+) m/z calcd for C15H17N5O3Cl [M + H]+: 350.1014; found: 350.1016.

Synthesis of 2-(1H-Benzotriazol-1-yl)-4-(dichloromethylidene)-3-nitro-4H-pyrido[1,2-a]pyrimidine (31a)
(General method). To a solution of azole 24 (0.437 g, 1.0 mmol) in THF (10 m), 2-aminopyridine
(0.282 g, 3.0 mmol) was added at r.t. The solution was stirred for 8 h, then concentrated, and the residue
treated with dilute HCl for 1 h, filtered off and washed with water (2 × 10 mL) and cold MeOH (5
mL). The product was dried in vacuo. Yield 0.304 g (81%), red solid, m.p. 158–160 ◦C. IR (KBr) νmax =

3082, 1628, 1552, 1434, 1307, 1215 cm−1. 1H NMR (200 MHz, DMSO-d6) δ = 7.50–7.64 (2H, m, H Ar),
7.64–7.75 (1H, m, H Bzt), 7.87 (1H, d, J = 8.3 Hz, H Ar), 7.90–7.95 (1H, m, H Bzt), 8.21 (1H, d, J = 7.8
Hz, H Bzt), 8.22–8.32 (1H, m, H Bzt), 8.99 (1H, dd, J = 6.8 Hz, 0.9 Hz, H Ar) ppm; 13C NMR (50 MHz,
DMSO-d6) δ = 102.3 (CCl2), 113.0 (CH), 119.2 (CH), 120.0 (CH), 121.3 (CNO2), 123.7 (CH), 125.5 (CH),
126.3, 129.6 (CH), 132.3, 138.8 (CH), 143.6 (CH), 145.6, 148.0, 151.3 ppm; MS m/z (Irel, %): m/z (%) = 374
[M+] (1), 256 [M–benzotriazole]+ (14), 219 (18), 119 [benzotriazole] (14), 92 (100); HRMS (ESI+) m/z
calcd for C15H9N6O2Cl2 [M + H]+: 375.0164; found: 375.0164.

2-(1H-Benzotriazol-1-yl)-7-chloro-4-(dichloromethylidene)-3-nitro-4H-pyrido[1,2-a]pyrimidine (31b). Same
procedure as for 31a, using 2-amino-5-chloropyridine (0.386 g, 3.0 mmol) and heating the reaction
mixture to 45 ◦C. Yield 0.352 g (86%), orange solid, m.p. 182–184 ◦C. IR (KBr) νmax = 3066, 1505, 1437,
1318, 1238, 1222 cm−1. 1H NMR (200 MHz, DMSO-d6) δ = 7.55 (1H, t, J = 7.9 Hz, H Bzt), 7.71 (1H, t, J =

8.1 Hz, H Bzt), 7.86 (1H, d, J = 9.3 Hz, H pyr), 7.92 (1H, d, J = 8.2 Hz, H Bzt), 8.23 (1H, d, J = 8.2 Hz, H
Bzt), 8.35 (1H, dd, J = 9.4 Hz, J = 2.3 Hz, H pyr), 9.35 (1H, d, J = 2.3 Hz, H pyr) ppm; 13C NMR (50
MHz, DMSO-d6) δ = 102.8 (CCl2), 112.9 (CH), 119.9 (CH), 122.2 (CNO2), 124.7 (CCl), 124.8 (CH), 125.6
(CH), 129.6 (CH), 132.3, 136.6 (CH), 143.1 (CH), 145.6, 147.7 (NC), 150.6 ppm; MS m/z (Irel, %): 408 [M+]
(1), 380 [M −N2]+ (1), 373 [M − Cl]+ (2), 334 [M-N2-NO2]+ (7), 112 (100); HRMS (ESI+) m/z calcd for
C15H8N6O2Cl3 [M + H]+: 408.9769; found: 408.9768.
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Synthesis of 4-(dichloromethylidene)-2-[4-(4-fluorophenyl)piperazin-1-yl]-3-nitro-4H-pyrido[1,2-a]pyrimi- dine
(32a) (General method). To a solution of pyrimidine 31a (0.375 g, 1 mmol) in MeOH (10 mL)
1-(4-fluorophenyl)piperazine (0.216 g, 1.2 mmol) was added and the mixture stirred at 40 ◦C for
5 h. Subsequently, the mixture was cooled to 0 ◦C and treated with dilute HCl for 1 h. The precipitate
was filtered off and washed with water (2 × 5 mL) and cold MeOH (5 mL). The product was dried
in vacuo. Yield 0.423 g (97%), yellow solid, m.p. 126–127 ◦C. IR (KBr) νmax = 1639, 1551, 1504, 1253,
1145, 933 cm−1. 1H NMR (200 MHz, DMSO-d6) δ = 3.15–3.50 (4H, m, NCH2), 3.78–4.31 (4H, m, NCH2),
6.78–7.18 (5H, m, H Pyr, 4H Ph-F), 7.31 (1H, d, J = 8.6 Hz, H pyr), 7.94 (1H, ddd, J = 8.6 Hz, J = 1.3 Hz,
J = 7.3 Hz, H pyr), 8.60 (1H, dd, J = 7.2 Hz, J = 1.3 Hz, H pyr) ppm; 13C NMR (50 MHz, DMSO-d6)
δ = 49.5 (4 × NCH2), 94.9 (CCl2), 114.7 (CH), 115.6 (JC,F = 21.6 Hz, 2 × CH Ph), 118.1 (JC,F = 7.9 Hz,
2 × CH Ph), 120.5 (CNO2), 122.7 (CH), 128.2 (CCCl2), 137.1 (CH), 142.0 (CH), 147.3 (NC Ph), 151.5,
156.6 (JC,F = 235.9 Hz, CF), 156.1 (NCN) ppm; MS m/z (Irel, %): 435 [M+] (7), 256 [M-morph-Ph-F]+ (10),
179 [Morph-Ph-F]+ (15), 95 (100); HRMS (ESI+) m/z calcd for C19H17N5O2Cl2F [M + H]+: 436.0738;
found: 436.0736.

7-Chloro-4-(dichloromethylidene)-2-[4-(4-fluorophenyl)piperazin-1-yl]-3-nitro-4H-pyrido[1,2-a]pyrimidine
(32b). Same procedure as for 32a, using compound 31b (0.410 g, 1.0 mmol) but without adding HCl.
Yield 0.447 g (95%), yellow solid, m.p. 141–142 ◦C. IR (KBr) νmax = 1635, 1563, 1493, 1373, 1237, 827
cm−1. 1H NMR (200 MHz, DMSO-d6) δ = 3.14–3.29 (4H, m, NCH2), 3.50–4.33 (4H, m, NCH2), 6.95–7.14
(4H, m, H Ph), 7.31 (1H, d, J = 9.4 Hz, H pyr), 7.99 (1H, dd, J = 9.5 Hz, J = 2.3 Hz, H pyr); 8.92 (1H, d, J
= 8.9 Hz, H pyr) ppm; 13C NMR (50 MHz, DMSO-d6) δ = 49.4 (4 ×NCH2), 94.7 (CCl2), 115.3 (JC,F =

21.9 Hz, 2 × FCCH), 117.6 (JC,F = 7.7 Hz, 2 × CH Ph), 120.1 (CCl), 121.1 (CNO2), 123.9 (CH), 127.6,
134.7 (NCH), 141.8 (CH), 147.3 (JC,F = 1.8 Hz, NC Ph), 150.4, 156.2 (JC,F = 236.4 Hz, CF), 156.0 ppm; MS
m/z (Irel, %): 469 [M+] (8), 290 [M-piperazine-Ph-F]+ (3), 179 [piperazine-Ph-F]+ (20), 112 (100); HRMS
(ESI+) m/z calcd for C19H16N5O2Cl3F [M + H]+: 470.0348; found: 470.0350.

Synthesis of Ethyl {[4-(dichloromethylidene)-3-nitro-4H-pyrido[1,2-a]pyrimidin-2-yl]sulfanyl}acetate (33a)
(General method). To a solution of pyrimidine 31a (0.375 g, 1.0 mmol) in EtOH (10 mL), ethyl
2-mercaptoacetate (0.240 g, 2.0 mmol) and sodium ethanolate (0.204 g, 3.0 mmol) were added. The
solution was stirred at r.t. for 3 d. Subsequently, dilute HCl (5 mL) was added under stirring for 30
min. The resulting precipitate was filtered off, washed with water (2 × 5 mL) and cold MeOH (3 mL),
and dried in vacuo. Yield 0.365 g (97%).

Alternative synthesis of pyrimidine 33a from nitrodiene 18. To a solution of nitrobutadiene 18 (0.355 g, 1.0
mmol) in MeOH (10 mL) 2-aminopyridine (0.282 g, 3.0 mmol) was added. After stirring at r.t. for 1 d,
the solution was concentrated and the resulting precipitate filtered off, washed with water (2 × 3 mL),
cold MeOH (3 mL) and dried in vacuo. Yield 0.177 g (47%) of 33a, orange solid, m.p. 147–148 ◦C. IR
(ATR) νmax = 1731, 1597, 1451, 1202, 1141, 764 cm−1. 1H NMR (400 MHz, CDCl3) δ = 1.27 (3H, t, J = 7.1
Hz, OCH2CH3); 3.85 (2H, s, SCH2), 4.20 (2H, q, J = 7.1 Hz, OCH2), 7.00 (1H, ddd, J = 1.3 Hz, J = 6.9 Hz,
J = 6.9 Hz, CH), 7.23 (1H, ddd, J = 1.2 Hz, J = 0.6 Hz, J = 9.0 Hz, CH), 7.72 (1H, ddd, J = 1.7 Hz, J = 7.1
Hz, J = 8.8 Hz, CH), 8.04 (1H, ddd, J = 1.6 Hz, J = 0.7 Hz, J = 6.9 Hz, NCH) ppm; 13C NMR (100 MHz,
CDCl3) δ = 14.2 (CH3), 33.7 (SCH2), 61.5 (OCH2), 114.5 (CH), 117.1 (CCl2), 123.0 (CH), 125.1 (CNO2),
135.6 (NCH), 140.0 (CH), 149.7 (NCN), 164.1 (SCN), 169.3 (C=O) ppm, NCCHCl2 could not be detected;
MS m/z (Irel, %): 375 [M+] (10), 340 [M-Cl]+ (9), 288 [M-CH2CO2Et]+ (25), 209 [M-HNO2-SCH2CO2Et]+

(95), 149 (100); HRMS (ESI+) m/z calcd for C13H11N3O4Cl2SNa [M + Na]+: 397.9745; found: 397.9746.

Ethyl {[7-chloro-4-(dichloromethylidene)-3-nitro-4H-pyrido[1,2-a]pyrimidin-2-yl]sulfanyl}acetate (33b). Same
procedure as for 33a,but starting from compounds 31b (Yield 0.382 g, 93%), or 18 (Yield 0.226 g, 55%),
orange solid, m.p. 171–172 ◦C. IR (ATR) νmax = 3074, 1727, 1626, 1489, 1235, 741 cm−1. 1H NMR (200
MHz, CDCl3) δ = 1.27 (3H, t, J = 7.1 Hz, CH3), 3.83 (2H, s, SCH2), 4.19 (2H, q, J = 7.2 Hz, OCH2), 7.17
(1H, dd, J = 9.4 Hz, J = 0.5 Hz, CH), 7.63 (1H, dd, J = 9.5 Hz, J = 2.3 Hz, CH), 8.05 (1H, dd, J = 2.3 Hz, J =

0.6 Hz, NCH) ppm; 13C NMR (50 MHz, CDCl3) δ = 14.3 (CH3), 33.6 (SCH2), 61.6 (OCH2), 117.5 (CCl2),
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121.4 (CNO2), 122.2 (CCl), 123.2 (CH), 124.4 (NC), 133.0 (CH), 140.5 (CH), 148.2, 163.7 (SC), 169.2 (C=O)
ppm; MS m/z (Irel, %): 409 [M+] (10), 373 [M-HCl]+ (18), 363 [M-NO2]+ (15), 321 [M-CH3CO2Et]+ (45),
242 (100); HRMS (ESI+) m/z calcd for C13H10N3O4Cl3SNa [M + Na]+: 431.9355; found: 431.9357.

Synthesis of N-[1-(benzylsulfanyl)-3,4,4-trichloro-2-nitrobuta-1,3-dien-1-yl]naphthalen-1-amine (35a) (General
method). To a solution of diene 34a (0.359 g, 1.0 mmol) in MeOH (10 mL) at −10 ◦C, naphthalen-1-amine
(0.315 g, 2.2 mmol) was added. The solution was kept at −10 ◦C for 2 h and then allowed to warm up
to r.t. for 8 h. Subsequently, the solution was concentrated and the resulting precipitate was filtered
off, washed with water (2 × 5 mL) and cold MeOH (5 mL), and dried in vacuo. Yield 0.428 g (92%),
green-yellow solid, m.p. 132–133 ◦C. IR (ATR) νmax = 1536, 1332, 1149, 939, 768, 702 cm−1. 1H NMR
(400 MHz, CDCl3) δ = 3.47 (2H, q, J = 12.4 Hz, SCH2), 6.86 (2H, dd, J = 7.7 Hz, J = 1.7 Hz, H Ph),
7.14–7.25 (3H, m, H Ar), 7.57 (1H, dd, J = 7.8 Hz, J = 7.8 Hz, H Ph), 7.59–7.65 (2H, m, H Ph), 7.73 (1H, d,
J = 7.4 Hz, H Ar), 7.93 (1H, d, J = 8.2 Hz, H Ar), 7.94–7.99 (2H, m, H Ar), 13.32 (1H, s, NH) ppm; 13C
NMR (100 MHz, CDCl3) δ = 38.5 (CH2), 121.5 (CH), 122.0 (CNO2), 122.9 (CH), 123.9 (CCl2), 125.4 (CH),
127.2 (CH), 127.8 (CH), 128.0 (CCl), 128.2 (CH), 128.5, 128.6 (CH), 128.7 (2 × CH), 128.7 (CH), 128.9 (2 ×
CH), 133.4, 134.1, 134.2, 159.7 (NCS) ppm; MS m/z (Irel, %): 464 [M+] (1), 447 [M − OH]+ (1), 418 [M −
NO2]+ (1), 127 [naphthalene]+ (11), 91 [PhCH2]+ (100); HRMS (ESI+) m/z calcd for C21H16N2O2Cl3S [M
+ H]+: 464.9993; found: 464.9991.

N-{3,4,4-Trichloro-1-[(4-chlorophenyl)sulfanyl]-2-nitrobuta-1,3-dien-1-yl}naphthalen-1-amine (35b). Same
procedure as for 33a, but starting from 34b. Yield 0.423 g (87%), green-yellow solid, m.p. 185–186 ◦C.
IR (ATR) νmax = 1538, 1472, 1345, 1161, 824, 767 cm−1. 1H NMR (400 MHz, CDCl3) δ = 6.68 (2H, d, J =

8.8 Hz, H Ar), 6.71 (2H, d, J = 8.8 Hz, H Ar), 7.33–7.43 (3H, m, H Ar), 7.48 (1H, ddd, J = 6.8 Hz, J =

1.2 Hz, J = 8.1 Hz, H Ar), 7.55 (1H, d, J = 8.5 Hz, H Ar), 7.71–7.80 (2H, m, H Ar), 11.96 (1H, s, NH)
ppm; 13C NMR (100 MHz, CDCl3) δ = 121.4, 121.3 (CH), 123.8 (CNO2), 124.6 (CH), 124.9 (CH), 125.6,
126.8 (CH), 126.9 (CH), 128.2 (CH), 128.4, 128.5, 128.7 (CH), 129.1 (2 × CH), 133.2, 133.6, 134.3 (2 × CH),
135.4, 160.8 (NCS) ppm; MS m/z (Irel, %): 484 [M+] (5), 449 [M-Cl]+ (5), 438 [M-NO2]+ (3), 356 [M −
naphthalene]+ (2), 143 [naphthylamine]+ (60), 127 [naphthalene]+ (100); HRMS (ESI+) m/z calcd for
C20H13N2O2Cl4S [M + H]+: 484.9446; found: 484.9443.

Synthesis of 2-(Benzylsulfanyl)-4-(dichloromethyl)-3-nitrobenzo[h]quinoline (36a) (General method). To a
solution of diene 35a (0.466 g, 1.0 mmol) in chloroform (10 mL) at 0 ◦C, triethylamine (0.202 g, 2.0
mmol) was added. The solution was kept at 0 ◦C for 2 h and then allowed to warm to r.t. for 3 h.
Subsequently, the solution was concentrated and diluted with 5 mL MeOH. The resulting precipitate
was filtered off, washed with 10% aq. HCl (2 × 5 mL), water (2 × 5 mL) and cold MeOH (5 mL), and
dried in vacuo to give benzoquinoline 36a. Yield 0.326 g (76%), yellow solid, m.p. 173–174 ◦C. IR
(ATR) νmax = 3033, 1541, 1336, 1198, 828, 711 cm−1. 1H NMR (400 MHz, CDCl3) δ = 4.78 (2H, s, SCH2),
7.12 (1H, s, CHCl2), 7.27–7.36 (3H, m, H Ph), 7.48–7.52 (2H, m, H Ph), 7.57 (1H, ddd, J = 7.2 Hz, J =

1.1 Hz, J = 7.9 Hz, H Ar), 7.79 (1H, ddd, J = 7.3 Hz, J = 1.4 Hz, J = 7.3 Hz, H Ar), 7.95 (2H, d, J = 9.0
Hz, H Ar), 8.64 (1H, d, J = 9.4 Hz, H Ar), 9.18 (1H, dd, J = 7.6 Hz, J = 0.8 Hz, H Ar) ppm; 13C NMR
(100 MHz, CDCl3) δ = 35.8 (SCH2), 63.4 (CHCl2), 119.2, 122.3 (CH), 125.4 (CH), 127.7 (CH), 127.9 (CH),
128.0 (CH), 128.5 (CH), 128.7 (2 × CH), 129.0 (2 × CH), 130.1 (CH), 130.4, 134.2, 134.8, 136.1, 139.4, 147.7,
149.8 ppm; MS m/z (Irel, %): 428 [M+] (2), 344 [M-CH2Cl2]+ (2), 91 [PhCH2]+ (100); HRMS (ESI+) m/z
calcd for C21H14N2O2Cl2SNa [M + Na]+: 451.0051; found: 451.0050.

2-[(4-Chlorophenyl)sulfanyl]-4-(dichloromethyl)-3-nitrobenzo[h]quinoline (36b). Same procedure as for 36a,
but starting from 35b. Yield 0.382 g (85%), yellow solid, m.p. 162–163 ◦C. IR (ATR) νmax = 3073, 1572,
1541, 1388, 1028, 739 cm−1. 1H NMR (400 MHz, CDCl3) δ = 7.19 (1H, s, CHCl2), 7.53 (2H, d, J = 8.6 Hz,
H Ph), 7.58 (1H, ddd, J = 7.1 Hz, J = 1.3 Hz, J = 8.3 Hz, H Ph), 7.63 (2H, d, J = 8.6 Hz, H Ph), 7.72 (1H,
ddd, J = 7.0 Hz, J = 1.1 Hz, J = 8.1 Hz, H Ph), 7.88 (1H, d, J = 7.9 Hz, H Ph), 7.92 (1H, d, J = 9.3 Hz, H Ph),
8.32 (1H, d, J = 8.3 Hz, H Ph), 8.61 (1H, d, J = 9.3 Hz, H Ph) ppm; 13C NMR (100 MHz, CDCl3) δ = 63.4
(CHCl2), 119.8, 122.0 (CH), 125.3 (CH), 127.2, 127.8 (CH), 128.0 (CH), 129.1 (CH), 129.6 (2 × CH), 130.1
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(CH), 130.4 (SC Ph), 134.0 (CCl), 135.4, 136.4 (Cl2CHC), 137.5 (2 × CH), 138.9 (CNO2), 147.8 (NC), 149.8
(NCS) ppm; MS m/z (Irel, %): 448 [M+] (28), 413 [M − Cl]+ (7), 364 [M-CHCl2-NO2+H]+ (15), 175 (100),
111 [PhCl]+ (55); HRMS (ESI+) m/z calcd for C20H11N2O2Cl3SNa [M + Na]+: 470.9505; found: 470.9504.

Synthesis of 2-(Benzylsulfinyl)-4-(dichloromethyl)-3-nitrobenzo[h]quinoline (37a) (General method). To a
solution of quinoline 36a (0.429 g, 1.0 mmol) in chloroform (5 mL) and glacial acetic acid (2 mL) at
0 ◦C, hydrogen peroxide (1.13 g, 10.0 mmol, 30% aq.) was added dropwise. After 3 h at 0 ◦C, the
solution was allowed to reach r.t. and stirred additionally for 2 d. The solution was then extracted
with chloroform (3 × 30 mL), washed with water (2 × 50 mL), dried with CaCl2 and dried in vacuo.
Column chromatography was carried out with a solvent ratio of 2: 1 (petroleum ether-ethyl acetate).
Yield 0.396 g (89%), orange solid, m.p. 138–139 ◦C. IR (ATR) νmax = 1697, 1533, 1353, 1076, 830, 695
cm−1. 1H NMR (400 MHz, CDCl3) δ = 4.57 (2H, q, J = 12.7 Hz, SCH2), 7.25–7.31 (6H in all, m, CHCl2
and 5H Ph overlapped), 7.81–7.92 (2H, m, H Ar), 8.02 (1H, dd, J = 7.5 Hz, J = 1.5 Hz, H Ar), 8.15 (1H, d,
J = 9.4 Hz, H Ar), 8.76 (1H, d, J = 9.4 Hz, H Ar), 9.31 (1H, dd, J = 7.7 Hz, J = 1.0 Hz, H Ar) ppm; 13C
NMR (100 MHz, CDCl3) δ = 62.2 (CH2), 62.5 (CHCl2), 122.0 (CH), 123.3, 126.2 (CH), 128.0 (CH), 128.6
(CH), 128.7 (CH), 128.8 (2 × CH), 129.5, 130.4 (2 × CH), 130.5, 131.1 (CH), 131.9 (CH), 134.0, 135.9, 138.8
(CNO2), 148.3, 153.2 ppm; MS m/z (Irel, %): 444 [M+] (10), 428 [M − O]+ (5), 360 [M − CH2Cl2] (5), 96
(100); HRMS (ESI+) m/z calcd for C21H14N2O3Cl2SNa [M + Na]+: 467.0000; found: 466.9998.

2-[(4-Chlorophenyl)sulfinyl]-4-(dichloromethyl)-3-nitrobenzo[h]quinoline (37b). Same procedure as for 37a,
but starting from 36b (0.450 g, 1.0 mmol). Yield 0.424 g (91%), yellow solid, m.p. 166–168 ◦C. IR (ATR)
νmax = 3082, 1546, 1342, 1092, 828, 750 cm−1. 1H NMR (400 MHz, CDCl3) δ = 7.20 (1H, s, CHCl2), 7.50
(2H, d, J = 8.6 Hz, H Ar), 7.84–7.91 (2H, m, H Ar), 7.95–8.03 (3H, m, H Ar), 8.12 (1H, d, J = 9.4 Hz, H
Ar), 8.71 (1H, d, J = 9.4 Hz, H Ar), 9.28–9.33 (1H, m, H Ar) ppm; 13C NMR (100 MHz, CDCl3) δ = 62.4
(CHCl2), 122.0 (CH), 123.3, 125.8 (CH), 127.0 (2 × CH), 128.2 (CH), 128.8 (CH), 129.7 (2 × CH), 130.5,
131.0 (CH), 132.0 (CH), 134.0, 136.0, 138.0 (CNO2), 138.3, 141.1, 148.2, 153.4 (NCS) ppm; MS m/z (Irel, %):
464 [M+] (2), 418 [M-NO2]+ (2), 365 [M-O-CHCl2]+ (38), 335 [M-CHCl2-NO2]+ (12), 111 [PhCl]+ (50),
100 (100); HRMS (ESI+) m/z calcd for C20H11N2O3Cl3SNa [M + Na]+: 486.9454; found: 486.9454.

Synthesis of 4-(Dichloromethyl)-3-nitro-2-(pyrrolidin-1-yl)benzo[h]quinoline (38). To a solution of quinoline
37a (0.445 g, 1.0 mmol) in toluene (10 mL), pyrrolidine (0.107 g, 1.5 mmol) was added and the mixture
heated to 100 ◦C for 3 h. After cooling, the crude product was purified by column chromatography
using petroleum ether - ethyl acetate (10: 1). Yield 0.290 g (77%), red solid, m.p. 169–170 ◦C. IR
(ATR) νmax = 2884, 1584, 1506, 1359, 821, 734 cm−1. 1H NMR (400 MHz, CDCl3) δ = 1.99–2.09 (4H, m,
NCCH2), 3.61–3.71 (4H, m, NCH2), 7.07 (1H, s, CHCl2), 7.61–7.71 (3H, m, H Ar), 7.85 (1H, dd, J = 7.6
Hz, J = 1.3 Hz, H Ar), 8.50 (1H, d, J = 9.3 Hz, H Ar), 9.03 (1H, d, J = 7.9 Hz, H Ar) ppm; 13C NMR (100
MHz, CDCl3) δ = 25.5 (2 ×NCCH2), 48.1 (2 ×NCH2), 64.0 (CHCl2), 113.9, 122.6 (CH), 124.1 (CH), 125.5
(CH), 126.6 (CH), 127.6 (CH), 129.2 (CH), 130.2, 130.4 (CNO2), 134.3, 135.6, 145.5, 147.5 ppm; MS m/z
(Irel, %): 375 [M+] (100), 358 [M −OH]+ (15), 340 [M − Cl]+ (5), 329 [M −NO2]+ (12), 259 [M-NO2-Pyr]+

(30); HRMS (ESI+) m/z calcd for C18H15N3O2Cl2Na [M + Na]+: 398.0439; found: 398.0440.

Synthesis of 2-ethoxy-2-oxoethyl 4,5-dichloro-1,2-thiazole-3-carboxylate (41). To a solution of isothiazole 40
(0.198 g, 1.0 mmol) and ethyl bromoacetate (0.501 g, 3.0 mmol) in EtOH (10 mL), sodium ethanolate
(0.204 g, 3.0 mmol) was added at r.t. The mixture was heated to reflux for 3 d. The product was
extracted with chloroform (3 × 10 mL) and purified through a short column chromatography using
petroleum ether – ethyl acetate (10:1). Yield 0.165 g (58%), yellowish solid, m.p. 31–33 ◦C. IR (KBr)
νmax = 2983, 1743, 1427, 1193, 1038, 947 cm−1. 1H NMR (200 MHz, CDCl3) δ = 1.31 (3H, t, J = 7.1 Hz,
OCH2CH3), 4.28 (2H, q, J = 7.1 Hz, OCH2CH3), 4.91 (2H, s, OCH2C=O) ppm; 13C NMR (50 MHz,
CDCl3) δ = 14.0 (CH3), 61.7 (OCH2CH3, OCH2C=O), 126.1 (CCl), 150.8 (SCCl), 153.1 (C=N), 158.2, 166.7;
MS m/z (Irel, %): 283 [M+] (18), 238 [M − OEt]+ (15), 210 [M − CO2Et]+ (12), 180 [M − OCH2CO2Et]+

(100); HRMS (ESI+) m/z calcd for C8H7NO4Cl2SNa [M + Na]+: 305.9371; found: 305.9370.
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Synthesis of 2,2,2-Trifluoroethyl 4,5-dichloro-1,2-thiazole-3-carboxylate (43). A solution of isothiazole 42
(0.217 g, 1.0 mmol) and 2,2,2-trifluoroethanol (0.300 g, 4.0 mmol) in 20 mL dry THF was refluxed for
4 d. After cooling to r.t., the solution was concentrated, diluted with water (20 mL), extracted with
hexane (3 × 20 mL), and washed with water (2 × 20 mL). Subsequently, the product was purified by
column chromatography (hexane). Yield 0.179 g (64%), white solid, m.p. 51–52 ◦C. IR (KBr) νmax =

cm−1: 1741, 1430, 1358, 1167, 1091, 745. 1H NMR (200 MHz, CDCl3) δ = 4.61 (2H, q, J = 8.2 Hz, OCH2);
13C NMR (50 MHz, CDCl3) δ = 61.3 (JC,F = 37.1 Hz, CH2), 122.6 (JC,F = 276.0 Hz, CF3), 126.3 (CCl),
151.3 (C=N), 152.3 (SCCl), 157.3 (C=O) ppm; MS m/z (Irel, %): 279 [M+] (15), 244 [M − Cl]+ (2), 197
[M-CH2CF3+H]+ (12), 180 [M-OCH2CF3]+ (100), 153 [M-CO2CH2CF3+H]+ (40); HRMS (ESI+) m/z
calcd for C6H2NO2Cl2SF3Na [M + Na]+: 301.9033; found: 301.9035.

Synthesis of 4,5-Dichloro-N’-phenyl-1,2-thiazole-3-carbohydrazide (44a) (General method). To a suspension of
phenylhydrazine (0.324 g, 3.0 mmol) in dry THF (10 mL), the isothiazole 42 (0.216 g, 1.0 mmol) was
added at r.t. The mixture was stirred for 1 d. After removal of the solvent, the residue was treated with
cold HCl (10%) and the resulting precipitate filtered off. Subsequently, it was washed with cold water
(3 × 5 mL) and Et2O (2 × 3 mL). The product was dried in vacuo. Yield 0.216 g (75%), light brown solid,
m.p. 145–147 ◦C. IR (KBr) νmax = 3254, 1678, 1605, 1351, 884, 746 cm−1. 1H NMR (200 MHz, CDCl3) δ
= 6.88–6.96 (3H, m, H Ph), 7.20–7.26 (3H, m, NH, 2H Ph), 8.81 (1H, s, NH) ppm; 13C NMR (50 MHz,
CDCl3) δ = 113.8 (2 × CH), 121.6 (CH), 125.3 (CCl), 129.2 (2 × CH), 147.3, 150.9 (SCCl), 155.3, 158.9
ppm; MS m/z (Irel, %): 287 [M+] (14), 180 [M-CONHNHPh]+ (5), 107 [PhNHNH]+ (100); HRMS (ESI+)
m/z calcd for C10H7N3OCl2SNa [M + Na]+: 309.9585; found: 309.9585.

4,5-Dichloro-N’-[3-(trifluoromethyl)phenyl]-1,2-thiazole-3-carbohydrazide (44b). Same procedure as for 44a,
but using 3-trifluoromethylphenylhydrazine (0.370 g, 2.1 mmol) and stirring the mixture at reflux for 4
h. Yield 0.338 g (95%), yellowish solid, m.p. 152–153 ◦C. IR (KBr) νmax = 3300, 1691, 1497, 1340, 1161,
798 cm−1. 1H NMR (200 MHz, DMSO-d6) δ = 7.03–7.09 (3H, m, H Ar), 7.34–7.49 (1H, m, H Ar), 8.57
(1H, s, NH), 10.79 (1H, s, NH) ppm; 13C NMR (50 MHz, DMSO-d6) δ = 108.2 (JC,F = 3.9 Hz, CH), 115.2
(JC,F = 4.0 Hz, CH), 116.1 (CH), 124.6 (JC,F = 271.5 Hz, CF3), 123.0 (CCl), 129.7 (JC,F = 31.3 Hz, CCF3),
130.2 (CH), 149.5 (CCl), 149.9, 157.8, 160.1 (C=O) ppm; MS m/z (Irel, %): 355 [M+] (25), 336 [M-F]+ (2),
180 [M-CF3-Ph-NHNH]+ (60), 175 [CF3-Ph-NHNH]+ (100), 152 [M-CONHNH-Ph-CF3]+ (10); HRMS
(ESI+) m/z calcd for C11H6N3OCl2SF3Na [M + Na]+: 377.9458; found: 377.9459.

4,5-Dichloro-N-(4-cyano-2,5-difluorophenyl)-1,2-thiazole-3-carboxamide (44c). Same procedure as for 44a,
but using 4-cyano-2,5-difluoro-aniline (0.354 g, 2.3 mmol) and stirring the mixture at reflux for 6 h.
Yield 0.227 g (68%), white solid, m.p. 164–166 ◦C. IR (KBr) νmax = 3361, 2237 (CN), 1715, 1528, 1190,
673 cm−1. 1H NMR (200 MHz, CDCl3) δ = 7.41 (1H, dd, J = 9.8 Hz, J = 5.4 Hz, H Ar), 8.57 (1H, dd,
J = 10.6 Hz, J = 6.2 Hz, H Ar), 9.49 (1H, s, NH) ppm; 13C NMR (50 MHz, CDCl3) δ = 95.6 (JC,F =

18.8 Hz, 9.6 Hz, C(CN)), 108.6 (JC,F = 28.7 Hz, 1.5 Hz, CH), 112.9 (JC,F = 2.3 Hz, C(CN)), 118.3 (JC,F =

24.5 Hz, 2.3 Hz, CH), 125.7 (CCl), 131.7 (JC,F = 11.9 Hz, NC Ph), 147.5 (JC,F = 244.0 Hz, 2.8 Hz, CF),
152.1 (CCl), 154.6, 156.3 (C=O), 160.1 (JC,F = 255.3 Hz, 2.3 Hz, CF) ppm; MS m/z (Irel, %): 333 [M+]
(22), 180 [M-NH-Ph-F2-(CN)]+ (100), 152 [M-CONH-Ph-F2-(CN)]+ (15); HRMS (ESI+) m/z calcd for
C11H3N3OCl2SF2Na [M + Na]+: 355.9240; found: 355.9241.

4,5-Dichloro-N-[2-(1H-indol-3-yl)ethyl]-1,2-thiazole-3-carboxamide (44d). Same procedure as for 44a, but
using tryptamine (0.352 g, 2.2 mmol) and triethylamine (0.223 g, 2.1 mmol). Yield 0.265 g (78%), white
solid, m.p. 183–185 ◦C. IR (KBr) νmax = 3302, 1650, 1537, 1349, 946, 738 cm−1. 1H NMR (200 MHz,
CDCl3) δ = 3.08 (2H, t, J = 8.1 Hz, Ind-CH2), 3.72–3.82 (2H, m, NCH2), 7.07 (1H, s, NHC=O), 7.11–7.25
(3H, m, 2H Ar, NCH), 7.37 (1H, d, J = 7.7 Hz, H Ar), 7.63 (1H, d, J = 7.7 Hz, H Ar), 8.15 (1H, s, NH)
ppm; 13C NMR (50 MHz, CDCl3) δ = 25.3 (CH2), 39.6 (CH2), 111.2 (CH), 112.6, 118.7 (CH), 119.5 (CH),
122.1 (CH, CCl), 122.2 (CH), 127.2, 136.4, 150.4 (CCl), 156.7, 159.0 (C=O) ppm; MS m/z (Irel, %): 339
[M+] (4), 180 [M-NHCH2-ind]+ (5), 143 [ind-CHCH2]+ (100), 130 [ind-CH2]+ (91); HRMS (ESI+) m/z
calcd for C14H11N3OCl2SNa [M + Na]+: 361.9900; found: 361.9898.
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4,5-Dichloro-N-[(6-chloropyridin-3-yl)methyl]-N-methyl-1,2-thiazole-3-carboxamide (44e). Same proce-dure
as for 44a, but using isothiazole 42 and 1-(6-chloropyridin-3-yl)-N-methylmethanamine (0.313 g, 2.0
mmol) at 0 ◦C and then stirring at r.t. for 5 h. Yield 0.290 g (86%).

Alternative synthesis of thiazole 44e: To a suspension of
4,5-dichloro-N’-phenyl-1,2-thiazole-3-carbohydrazide (44a) (0.288 g, 1.0 mmol) in DMSO (10
mL), 1-(6-chloropyridin-3-yl)-N-methylmethanamine (0.313 g, 2.0 mmol) was added. The mixture was
heated to 100 ◦C for 8 h. After cooling to r.t., water (50 mL) was added and the mixture extracted with
chloroform (3 × 15 mL). Subsequently, the product was purified by column chromatography using
petroleum ether-ethyl acetate (3: 1). The product was dried in vacuo. Yield 0.232 g (69%), a mixture
of two rotamers in relation 10: 6, yellowish solid, m.p. 43–45 ◦C. IR (KBr) νmax = 2934, 1651, 1460,
1349, 1106, 834 cm−1. 1H NMR (600 MHz, CDCl3) for major isomer δ = 2.90 (3H, s, NCH3), 4.73 (2H, s,
NCH2), 7.34 (1H, d, J = 8.2 Hz, H pyr), 7.71 (1H, dd, J = 2.5 Hz, J = 8.3 Hz, H pyr), 8.37 (1H, d, J = 2.3
Hz, H pyr) ppm; minor isomer δ = 3.02 (1.8H, s, NCH3), 4.48 (1.2H, s, NCH2), 7.34 (0.6H, d, J = 8.2
Hz, H pyr), 7.72 (0.6H, dd, J = 2.5 Hz, J = 8.3 Hz, H pyr), 8.28 (0.6H, d, J = 2.3 Hz, H pyr) ppm; 13C
NMR (150 MHz, CDCl3) for major isomer δ = 35.7 (NCH3), 47.8 (NCH2), 122.5 (CCl), 124.6 (CH), 130.7
(CH2C), 138.8 (CH), 149.2 (CH), 149.6 (CCl), 151.2 (NCCl), 159.6, 162.8 (C=O) ppm; minor isomer δ =

32.8 (NCH3), 51.2 (NCH2), 123.2 (CCl), 124.5 (CH), 130.3 (CH2C), 138.1 (CH), 148.9 (CH), 149.8 (CCl),
151.5 (NCCl), 159.5, 162.4 (C=O) ppm; 15N NMR (43.4 MHz, CDCl3, doped with nitromethane (0.0
ppm)) δ = -267.5 (NMe, minor isomer), -266.3 (NMe, major isomer), -75.7 (NCCl, major isomer), -75.5
(NCCl, minor isomer) ppm, NS not detected; MS m/z (Irel, %): 337 [M+] (3), 319 [M-CH3]+ (2), 300
[M-Cl]+ (6), 180 [M-CH3-N-CH2-isothiazole]+ (14), 155 [isothiazole-N-CH2-CH3]+ (100); HRMS (ESI+)
m/z calcd for C11H8N3OCl3SNa [M + Na]+: 357.9351; found: 357.9352.

4-Chloro-5-(morpholin-4-yl)-N’-phenyl-1,2-thiazole-3-carbohydrazide (45). Following the alternative
procedure for azole 44e using morpholine (0.348 g, 4.0 mmol). The mixture was stirred at 90–95 ◦C for
4 h. Yield 0.264 g (78%), yellowish solid, m.p. 163–164 ◦C. IR (ATR) νmax = 3294, 1695, 1494, 1403, 1115,
688 cm−1. 1H NMR (400 MHz, CDCl3) δ = 3.32–3.41 (4H, m, NCH2), 3.82–3.91 (4H, m, OCH2), 6.24
(1H, s, Ph-NH), 6.88–6.95 (3H, m, H Ph), 7.21–7.26 (2H, m, H Ph), 8.78 (1H, s, CONH) ppm; 13C NMR
(100 MHz, CDCl3) δ = 50.8 (2 × NCH2), 66.0 (2 × OCH2), 108.9, 113.8 (2 × CH), 121.4 (CH), 129.2 (2 ×
CH), 147.7, 156.0 (NCC=O), 160.1 (C=O), 173.1 (morph-C) ppm; MS m/z (Irel, %): 338 [M+] (75), 303
[M-Cl]+ (8), 231 [M-PhNHNH]+ (35), 197 [M-PhNHNH-Cl+H]+ (100), 107 [PhNHNH]+ (60); HRMS
(ESI+) m/z calcd for C14H15N4O2ClSNa [M + Na]+: 361.0502; found: 361.0502.

Synthesis of 4-chloro-5-[(4-chlorophenyl)sulfanyl]-N’-phenyl-1,2-thiazole-3-carbohydrazide (46a) (General
method). To a solution of isothiazole 44a (0.288 g, 1.0 mmol) in DMSO (10 mL), 4-chlorothiophenol
(0.173 g, 1.2 mmol) and sodium ethanolate (0.082 g, 1.2 mmol) were added. The mixture was stirred
at 110 ◦C for 8 h. After concentration at 100 ◦C, it was poured into 50 mL diluted HCl (5%) and
extracted with chloroform (3 × 20 mL). The combined organic phases were washed with water, dried
over calcium chloride, and purified by column chromatography using petroleum ether-ethyl acetate
(2:1). Subsequently, the dried product was washed with cold methanol (1 × 3 mL). Yield 0.266 g (67%),
white solid, m.p. 169–170 ◦C. IR (ATR) νmax = 3250, 1655, 1493, 1094, 896, 695 cm−1. 1H NMR (400
MHz, CDCl3) δ = 5.11 (1H, s br, Ph-NH), 6.88–6.95 (3H, m, H Ph), 7.20–7.26 (2H, m, H Ph), 7.43 (2H,
d, J = 8.5 Hz, H Ar), 7.53 (2H, d, J = 8.5 Hz, H Ar), 8.7 (1H, s, CONH) ppm; 13C NMR (100 MHz,
CDCl3) δ = 113.8 (2 × CH), 121.6 (CH), 123.3, 128.2 (CCl), 129.2 (2 × CH), 130.5 (2 × CH), 134.7 (2 ×
CH), 136.7 (CS-Thiaz), 147.5, 155.5 (CC=O), 159.3, 160.9 (C=O) ppm; MS m/z (Irel, %): 395 [M+] (20), 288
[M-PhNHNH]+ (10), 261 [M-PhNHNHCO+H]+ (4), 225 [M-PhNHNHCO-Cl]+ (15), 107 [NHNHPh]+

(100); HRMS (ESI+) m/z calcd for C16H11N3OCl2S2Na [M + Na]+: 417.9618; found: 417.9617.

4-Chloro-5-[(4-chlorophenyl)sulfanyl]-N’-[3-(trifluoromethyl)phenyl]-1,2-thiazole-3-carbohydrazide (46b).
Same procedure as for 46a, but using 44b (0.356 g, 1.0 mmol). The product was purified using
petroleum ether-ethyl acetate (10: 1). Yield 0.325 g (70%), white solid, m.p. 144–145 ◦C. IR (ATR) νmax



Molecules 2020, 25, 2863 32 of 41

= 3246, 1662, 1476, 1338, 1123, 694 cm−1. 1H NMR (400 MHz, CDCl3) δ = 6.39 (1H, s br, NH), 7.05 (1H,
dd, J = 8.0 Hz, J = 2.1 Hz, H Ar), 7.11 (1H, s, H Ar), 7.15 (1H, d, J = 7.9 Hz, H Ar), 7.32 (1H, t, J = 8.0 Hz,
H Ar), 7.44 (2H, d, J = 8.6 Hz, H Ar), 7.54 (2H, d, J = 8.6 Hz, H Ar), 8.77 (1H, s, NH). 13C (100 MHz,
CDCl3) δ = 110.2 (JC,F = 4.1 Hz, CH), 116.8 (CH), 118.1 (JC,F = 3.9 Hz, CH), 123.9 (JC,F = 272.5 Hz, CF3),
123.1 (CCl), 128.0 (CCl), 129.7 (CH), 130.9 (2 × CH), 131.6 (JC,F = 32.2 Hz, CCF3), 134.8 (2 × CH), 136.9
(CS), 148.1 (N2H2C), 155.1 (SCS), 159.5 (CCO), 161.5 (C=O) ppm; MS m/z (Irel, %): 463 [M+] (35), 288
[M-N2H2PhCF3]+ (93), 225 [M-CON2H2PhCF3]+ (80), 145 [PhCF3]+ (100); HRMS (ESI+) m/z calcd for
C17H10N3OCl2S2F3Na [M + Na]+: 485.9492; found: 485.9494.

4-Chloro-5-[(4-chlorophenyl)sulfanyl]-N-(4-cyano-2,5-difluorophenyl)-1,2-thiazole-3-carboxamide (46c). Same
procedure as for 46a, but using 44c (0.334 g, 1.0 mmol). The product was purified by using petroleum
ether-ethyl acetate (10: 1). Yield 0.367 g (83%), white solid, m.p. 152–153 ◦C. IR (ATR) νmax = 3384,
2241 (CN), 1703, 1473, 1196, 617 cm−1. 1H NMR (400 MHz, CDCl3) δ = 7.24–7.66 (5H, m, H Ar), 8.57
(1H, s, H Ar), 9.47 (1H, s, NH) ppm; 13C NMR (101 MHz, CDCl3) δ = 95.4 (JC,F = 19.8 Hz, 11.0 Hz, Ar
CCN), 108.6 (JC,F = 28.6 Hz, CH), 112.9 (Ph-CN), 118.3 (JC,F = 24.2 Hz, CH), 123.0 (CCl), 127.6 (CCl),
130.7 (2 × CH), 131.9 (JC,F = 11.7 Hz, CNH), 135.0 (2 × CH), 137.1 (SC), 147.5 (JC,F = 244.3 Hz, CF), 154.9
(SCS), 156.9 (SNC), 160.2 (JC,F = 253.8 Hz, CF), 163.0 (C=O) ppm; MS m/z (Irel, %): 441 [M+] (40), 288
[M-NHPhF2CN]+ (100), 225 [M-ClCOPhF2CN]+ (80), 143 [SPhCl]+ (53); HRMS (ESI+) m/z calcd for
C17H7N3OCl2S2F2Na [M + Na]+: 463.9273; found: 463.9271.

4-Chloro-5-[(4-chlorophenyl)sulfanyl]-N-[2-(1H-indol-3-yl)ethyl]-1,2-thiazole-3-carboxamide (46d). Same
procedure as for 46a, but using 44d (0.340 g, 1.0 mmol). After addition of HCl the crude product
precipitated and was filtered off, washed with diluted HCl (3 mL), water (2 × 5 mL), cold MeOH (3
mL) and dried in vacuo. Yield 0.399 g (89%), white solid, m.p. 176–177 ◦C. IR (ATR) νmax = 3280, 1667,
1525, 1338, 821, 740 cm−1. 1H NMR (400 MHz, DMSO-d6) δ = 2.88–2.99 (2H, m, Ind-CH2), 3.47–3.58
(2H, m, NCH2), 6.98 (1H, t, J = 7.0 Hz, H ind), 7.06 (1H, t, J = 7.0 Hz, H ind), 7.19 (1H, s, H ind), 7.34
(1H, d, J = 7.7 Hz, H ind), 7.51–7.73 (5H, m, H ind, 4H Ar), 8.84 (1H, s, CONH), 10.82 (1H, s, NH ind);
13C NMR (101 MHz, DMSO-d6) δ = 25.1 (ind-CH2), 39.7 (NCH2), 111.5, 111.6 (CH), 118.4 (CH), 118.5
(CH), 121.1 (CH), 121.5, 122.8 (NCH), 127.4, 128.8, 130.6 (2 × CH), 134.5 (2 × CH), 135.3 (SC), 136.4,
158.6 (CCO), 159.4 (SCS), 159.8 (C=O) ppm; MS m/z (Irel, %): 447 [M+] (3), 288 [M-NHC2H4-ind]+ (1),
143 [SPhCl]+ (100), 130 [I ndCH2]+ (53); HRMS (ESI+) m/z calcd for C20H15N3OCl2S2Na [M + Na]+:
469.9931; found: 469.9931.

2-Ethoxy-2-oxoethyl 4-chloro-5-[(4-chlorophenyl)sulfanyl]-1,2-thiazole-3-carboxylate (46e). Same proce-dure
as for 46a, but using 41 (0.284 g, 1.0 mmol). The product was purified by using petroleum ether-ethyl
acetate (10: 1). Yield 0.267 g (68%), yellowish solid, m.p. 72–73 ◦C. IR (ATR) νmax = 1755, 1722, 1344,
1198, 1084, 505 cm−1. 1H NMR (400 MHz, CDCl3) δ = 1.28 (3H, t, J = 7.0 Hz, OCH2CH3), 4.25 (2H, q, J
= 7.0 Hz, OCH2), 4.87 (2H, s, OCH2), 7.42 (2H, d, J = 8.7 Hz, H Ar), 7.51 (2H, d, J = 8.6 Hz, H Ar) ppm;
13C NMR (101 MHz, CDCl3) δ = 14.1 (CH3), 61.6 (OCH2CH3), 61.7 (COOCH2), 124.0 (CCl), 128.1 (CCl),
130.5 (2 × CH), 134.6 (2 × CH), 136.7 (SC Ar), 153.5 (NC), 158.6, 160.9 (C=O), 166.8 (COOEt); MS m/z
(Irel, %): 391 [M+] (48), 288 [M-OCH2CO2Et]+ (50), 225 [M-CO2CH2CO2Et-Cl]+ (70), 144 [ClPhSH]+

(100); HRMS (ESI+) m/z calcd for C14H11NO4Cl2S2Na [M + Na]+: 413.9404; found: 413.9405.

Synthesis of 5-methyl-5-phenyl-3-(trichloroethenyl)-4,5-dihydro-1,2-oxazole (47) (General method). To a
solution of nitrodiene 1 (0.271 g, 1.0 mmol) in dry toluene (10 mL) prop-1-en-2-ylbenzene (1.182 g, 10.0
mmol), 18-crown-6 (0.066 g, 0.25 mmol), activated molar sieves 4 Å (0.250 g), and powdered NaOH
(0.120 g, 3.0 mmol) were added under nitrogen atmosphere. The mixture was then stirred at 60 ◦C
for 16 h, and at 80 ◦C for another 16 h. After completion of the reaction, the solvent was evaporated,
10% aq. HCl (10 mL) was added, and the mixture was extracted with DCM (3 × 10 mL). The crude
product was purified by column chromatography using petroleum ether-ethyl acetate (10: 1). Yield
0.221 g (76%), yellow viscous oil. IR (ATR) νmax = 2977, 1684, 1446, 1265, 859, 697 cm−1. 1H NMR
(400 MHz, CDCl3) δ = 1.77 (3H, s, CH3), 3.43 (1H, d, J = 16.9 Hz, ONCCH2), 3.50 (1H, d, J = 16.9 Hz,
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ONCH2), 7.37–7.48 (5H, m, H Ph) ppm; 13C NMR (100 MHz, CDCl3) δ = 27.8 (CH3), 50.1 (CH2), 90.3
(OCCH3), 121.7, 124.5 (2 × CH), 127.7 (CH), 128.6 (2 × CH), 137.1 (CCl2), 144.2, 152.5 (NCCCl) ppm;
MS m/z (Irel, %): 289 [M+] (4), 274 [M-CH3]+ (4), 117 [PhC2H5]+ (60), 105 (100); HRMS (ESI+) m/z calcd
for C12H10NOCl3Na [M + Na]+: 311.9726; found: 311.9725.

tert-Butyl 3-(trichloroethenyl)-4,5-dihydro-1,2-oxazole-5-carboxylate (48). Same procedure as for 47, but
using tert-butyl prop-2-enoate (1.282 g, 10.0 mmol). Yield 0.195 g (65%), yellowish oil. IR (ATR) νmax =

2981, 1732, 1368, 1232, 1150, 838 cm−1. 1H NMR (400 MHz, CDCl3) δ = 1.47 (9H, s, CCH3), 3.53 (2H, d,
J = 9.4 Hz, ONCCH2), 5.03 (1H, t, J = 9.4 Hz, OCH) ppm; 13C NMR (100 MHz, CDCl3) δ = 27.8 (3 ×
CH3), 40.0 (CH2), 80.2 (OCH), 83.1 (OCMe3), 120.5 (CCl), 125.2 (CCl2), 152.3 (ONC), 168.0 (C=O) ppm;
15N NMR (43.4 MHz, CDCl3, doped with nitromethane (0.0 ppm)) δ = 7.8 ppm; MS m/z (Irel, %): 299
[M+] (12), 200 [M-CO2CMe3]+ (100), 170 [M-C2Cl3]+ (12), 129 [C2Cl3]+ (52), 100 [CO2CMe3-H]+ (95);
HRMS (ESI+) m/z calcd for C10H12NO3Cl3Na [M + Na]+: 321.9781; found: 321.9781.

2-Ethylhexyl 3-(trichloroethenyl)-4,5-dihydro-1,2-oxazole-5-carboxylate (49). Same procedure as for 47, but
using 2-ethylhexyl prop-2-enoate (1.843 g, 10.0 mmol). Yield 0.216 g (60%), yellowish oil. IR (ATR)
νmax = 2958, 2860, 1732, 1461, 1162, 851 cm−1. 1H NMR (400 MHz, CDCl3) δ = 0.86–0.88 (6H, m, 2 ×
CH3), 1.19–1.42 (8H, m, 4 × CH2), 1.60–1.64 (1H, m, CH), 3.60 (1H, d, J = 10.7 Hz, ONCCH2), 3.61 (1H,
d, J = 7.8 Hz, ONCCH2), 4.06–4.18 (2H, m, OCH2), 5.17 (1H, dd, J = 10.7 Hz, J = 7.7 Hz, OCH) ppm; 13C
NMR (100 MHz, CDCl3) δ = 10.9 (CH3), 14.0 (CH3), 22.9 (CH2), 23.6 (CH2), 28.8 (CH2), 30.2 (CH2), 28.6
(CH), 40.2 (ONCCH2), 68.5 (OCH2), 79.6 (OCH), 120.4 (CCl), 125.5 (CCl2), 152.4 (ONC), 169.2 (C=O)
ppm; MS m/z (Irel, %): 355 [M+] (10), 320 [M-Cl]+ (22), 198 [M-CO2C8H17]+ (100); HRMS (ESI+) m/z
calcd for C14H20NO3Cl3Na [M + Na]+: 378.0407; found: 378.0406.

3-(Trichloroethenyl)-3a,4,5,6,7,7a-hexahydro-1,2-benzoxazole (50). Same procedure as for 47, but using
cyclohexene (0.821 g, 10.0 mmol). Yield 0.104 g (41%), yellowish oil. IR (ATR) νmax = 2935, 2863, 1448,
912, 838, 739 cm−1. 1H NMR (400 MHz, CDCl3) δ = 1.23–1.43 (2H, m, CH2), 1.48–1.64 (3H, m, CH2),
1.72–1.82 (1H, m, CH2), 1.83–1.93 (1H, m, CH2), 2.00–2.09 (1H, m, CH2), 3.32–3.41 (1H, m, CH), 4.58
(1H, ddd, J = 8.2 Hz, J = 4.2 Hz, J = 4.2 Hz, CH) ppm; 13C (100 MHz, CDCl3) δ = 19.9 (CH2), 21.7 (CH2),
24.8 (CH2), 25.3 (CH2), 46.1 (CH), 81.4 (CH), 121.0 (CCl), 124.4 (CCl2), 159.1 (ONC) ppm; MS m/z (Irel,
%): 253 [M+] (75), 236 [M-OH]+ (5), 218 [M-Cl]+ (7), 182 [M-Cl-HCl]+ (16), 91 (100); HRMS (ESI+) m/z
calcd for C9H10NOCl3Na [M + Na]+: 275.9726; found: 275.9725.

Synthesis of 1-[1,1-dichloro-3-(1,3-dithiolan-2-ylidene)-3-nitroprop-1-en-2-yl]-4-(4-fluorophenyl)pipera- zine
(52). A solution of dithiolane 51 (0.292 g, 1.0 mmol) in MeOH (10 mL) and 1-(4-fluorophenyl)piperazine
(0.433 g, 2.4 mmol) was stirred at reflux for 7 d. After cooling, the solution was concentrated and
treated with water for 30 min. The resulting precipitate was filtered off and washed with water (2 × 5
mL). Yield 0.393 g (90%), orange solid, m.p. 47–50 ◦C. IR (KBr) νmax = 2825, 1509, 1272, 1226, 954, 816
cm−1. 1H NMR (200 MHz, CDCl3) δ = 3.08–3.39 (8H, m, NCH2), 3.48–3.61 (4H, m, SCH2), 6.80–7.11
(4H, m, H Ar) ppm; 13C NMR (50 MHz, CDCl3) δ = 37.6 (SCH2), 40.1 (SCH2), 49.2 (2 × NCH2), 50.6 (2
×NCH2), 113.3 (CCl2), 115.5 (JC,F = 21.9 Hz, 2 × CH), 118.2 (JC,F = 7.7 Hz, 2 × CH), 130.9 (CNO2), 139.0
(CN), 147.9 (JC,F = 2.2 Hz, NC Ar), 157.3 (JC,F = 238.9 Hz, CF), 170.4 (SCS) ppm; MS m/z (Irel, %): 439
[M+] (25), 418 [M − OH]+ (4), 389 [M −NO2]+ (7), 179 [F-Ph-piperazine]+ (15), 122 (100); HRMS m/z
calcd for C16H16N3O2FCl2S2 [M]+: 435.0045; found: 435.0047.

Synthesis of 1-[2-Chloro-5-(ethenylsulfanyl)-4-nitrothiophen-3-yl]-4-(4-fluorophenyl)piperazine (53). An
aqueous solution of NaOH (3.0 mmol, 40%) was added dropwise to a solution of dithiolane 52 (0.436 g,
1.0 mmol) in DMSO (10 mL) at 0 ◦C. After 1 h at 0 ◦C, the mixture was stirred at r.t. for an additional 3
h. Subsequently, cold water was added and the mixture was treated dropwise with diluted HCl until a
precipitate formed. The precipitate was filtered off and washed with water (2 × 5 mL) and cold MeOH
(3 mL). Yield 0.340 g (85%), yellowish solid, m.p. 83–86 ◦C. IR (KBr) νmax = 2829, 1543, 1511, 1322,
1233, 831 cm−1. 1H NMR (200 MHz, CDCl3) δ = 3.16–3.26 (4H, m, NCH2), 3.31–3.47 (4H, m, NCH2),
5.83 (1H, d, J = 9.1 Hz, SCHCH2), 8.55 (1H, d, J = 5.9 Hz, SCHCH2), 6.55 (1H, dd, J = 16.4 Hz, J = 9.2
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Hz, SCH), 6.86–7.09 (4H, m, H Ar) ppm; 13C NMR (50 MHz, CDCl3) δ = 50.0 (2 × NCH2), 51.5 (2 ×
NCH2), 115.6 (JC,F = 21,9 Hz, 2 × CH), 118.6 (JC,F = 8.1 Hz, 2 × CH), 119.1 (CCl), 126.2 (CH2 vin), 126.8
(CH vin), 139.4 (CNO2), 141.0 (CN), 143.3 (SCS), 148.5 (JC,F = 3.7 Hz, NC Ar), 157.7 (JC,F = 234.5 Hz,
CF) ppm; MS m/z (Irel, %): 399 [M+] (85), 352 [M-HNO2]+ (17), 317 [M-HNO2-Cl]+ (4), 122 (100); HRMS
(ESI+) m/z calcd for C16H15N3O2ClFS2 [M + H]+: 399.0278; found: 399.0278.

Synthesis of 5-(Ethenylsulfanyl)-3-[4-(4-fluorophenyl)piperazin-1-yl]-4-nitrothiophene-2-carbaldehyde (54). A
solution of thiophene 53 (0.400 g, 1.0 mmol) and POCl3 (0.307 g, 2.0 mmol) in dry DMF was stirred at
r.t. for 1 d and then at 55 ◦C for 2 d. After cooling down to 0 ◦C, cold water (15 mL) was added and
the mixture extracted with chloroform (3 × 10 mL). After drying over CaCl2, the crude product was
purified by column chromatography using petroleum ether-ethyl acetate (2: 1). Yield 0.252 g (64%),
orange solid, m.p. 104–105 ◦C. IR (ATR) νmax = 2833, 1621, 1531, 1505, 1223, 997 cm−1. 1H NMR (400
MHz, CDCl3) δ = 3.25–3.33 (4H, m, NCH2), 3.50–3.59 (4H, m, OCH2), 5.99 (2H, dd, J = 16.7 Hz, J = 9.4
Hz, CH2 vin), 6.65 (1H, dd, J = 16.6 Hz, J = 9.3 Hz, SCH vin), 6.88–7.03 (4H, m, H Ar), 10.03 (1H, s,
CHO) ppm; 13C NMR (100 MHz, CDCl3) δ = 50.7 (2 × NCH2), 53.5 (2 × OCH2), 115.6, 115.7 (JC,F =

22.2 Hz, 2 × CH Ar), 118.6 (JC,F = 7.7 Hz, 2 × CH Ar), 124.7 (CN), 125.6 (SCH), 128.7 (CH2 vin), 136.2
(CNO2), 147.6 (JC,F = 2.2 Hz, NC Ar), 150.5 (SCS), 157.6 (JC,F = 239.9 Hz, CF), 159.8 (SC), 180.2 (CHO)
ppm; MS m/z (Irel, %): 393 [M+] (15), 376 [M − OH]+ (5), 346 [M − HNO2]+ (3), 179 [piperazine-Ph-F]+

(7), 122 (100); HRMS (ESI+) m/z calcd for C17H16N3FO3S2Na [M + Na]+: 416.0515 ; found: 416.0514.

Synthesis of {[5-(Ethenylsulfonyl)-3-(morpholin-4-yl)-4-nitrothiophen-2-yl]methylidene}propanedinitrile (57).
A solution of thiophene 56 (0.348 g, 1.0 mmol) and hydrogen peroxide (3.0 mmol, 35%) in acetic acid
was stirred at 50–55 ◦C for 3 h. After cooling, ice was poured into the mixture and the resulting
precipitate was filtered off and washed with water (3 × 5 mL). Yield 0.312 g (82%), red solid, m.p.
121–123 ◦C. IR (KBr) νmax = 2857, 2223 (CN), 1541, 1340, 1111, 857 cm−1. 1H NMR (200 MHz, CDCl3) δ
= 3.23–3.30 (4H, m, NCH2), 3.84–3.90 (4H, m, OCH2), 6.15 (1H, dd, J = 9.3, J = 1.4, CH2, cis vin), 6.45 (1H,
dd, J = 16.2, J = 1.3, CH2, trans vin), 7.09 (1H, dd, J = 16.3, J = 9.3, CH vin), 8.02 (1H, s, SCCH). 13C NMR
(50 MHz, CDCl3) δ = 52.0 (2 × NCH2), 67.0 (2 × OCH2), 80.3 (C(CN)2), 112.2 (2 × CN), 113.3, 124.1
(CH2 vin), 127.4 (SC), 138.5 (CH vin), 146.8 (SCCH), 151.4 (C-morph), 166.1 (SO2C), CNO2 could not
be detected. Mass spectrum, m/z (Irel, %): 380 [M+] (3), 363 [M-OH]+ (20), 346 [M-2(OH)]+ (100), 289
[M-SO2C2H3]+ (2); HRMS (ESI+) m/z calcd for C14H12N4O5S2Na [M + Na]+: 403.0147; found: 403.0146.

Synthesis of 2,2’-{[5-(Ethenylsulfanyl)-3-(morpholin-4-yl)-4-nitrothiophen-2-yl]methanediyl}bis(5,5-
di-methylcyclohexane-1,3-dione) (58). A solution of thiophene 55 (0.300 g, 1.0 mmol), dimedone (0.308 g,
2.2 mmol) and pyridine (8.0 mg, 0.1 mmol) in MeOH (15 mL) was stirred at r.t. for 1 d and then at
35–40 ◦C for 2 d. After cooling to r.t., the mixture was treated with diluted HCl and the resulting
precipitate was filtered off and washed with water (2 × 5 mL) and cold Et2O (3 mL). Yield 0.411 g
(73%), yellow solid, m.p. 159–160 ◦C. IR (KBr) νmax = 3243, 2961, 1717, 1626, 1542, 1068 cm−1. 1H NMR
(200 MHz, CDCl3) δ = 1.03 (12H, s, 4CH3), 2.34 (8H, s, 4COCH2), 2.60–3.80 (10H, m, 2NCH2, 2OCH2,
2COCH), 5.77 (2H, dd, J = 16.4 Hz, J = 9.3 Hz, CH2 vin), 6.41–6.51 (1H, m, SCH), 6.67 (1H, dd, J =

16.4 Hz, J = 9.3 Hz, CH vin) ppm; 13C NMR (50 MHz, CDCl3) δ = 26.7 (SCCH), 28.1 (2 × CH3C), 31.6
(4 × CH3), 46.7 (2 × NCH2), 49.6 (4 × COCH2), 67.4 (2 × OCH2), 77.2 (2 × CC=O), 116.1 (SC), 124.4
(CH2 vin), 127.6 (SCH), 137.2 (CNO2), 141.1 (C-morph), 143.2 (SCS), 189.9 (4 × C=O) ppm; MS m/z (Irel,
%): 562 [M+] (12), 543 [M-H2O-H]+ (12), 526 [M-2(H2O)]+ (42), 458 [M-SC2H3-NO2+H]+ (10); HRMS
(ESI+) m/z calcd for C27H34N2O7S2Na [M + Na]+: 585.1705; found: 585.1705.

Synthesis of 4-[5-(Ethenylsulfanyl)-4-nitro-2-{[2-(2,4,6-trichlorophenyl)hydrazinylidene]methyl}
thiophen-3-yl]morpholine (59). A solution of thiophene 55 (0.300 g, 1.0 mmol) and
(2,4,6-trichlorophenyl)-hydrazine (0.634 g, 3.0 mmol) in MeOH (15 mL) was refluxed for 3 h.
After cooling to r.t., the mixture was treated with diluted HCl and the resulting precipitate was filtered
off and washed with water (2 × 5 mL) and cold MeOH (3 mL). Yield 0.425 g (86%), orange solid, m.p.
192–194 ◦C. IR (KBr) νmax = 3228, 1520, 1445, 1332, 1107, 851 cm−1. 1H NMR (200 MHz, CDCl3) δ =
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3.05–3.19 (4H, m, NCH2), 3.75–3.82 (4H, m, OCH2), 5.87 (2H, dd, J = 16.7 Hz, J = 9.4 Hz, CH2 vin), 6.65
(1H, dd, J = 16.7 Hz, J = 9.4 Hz, SCH vin), 7.36 (2H, s, H Ar), 7.64 (1H, br s, NH), 8.01 (1H, s, NCH)
ppm; 13C (50 MHz, CDCl3) δ = 51.0 (2 × NCH2), 67.5 (2 × OCH2), 126.4 (CH2 vin), 126.8 (SCH vin),
127.6 (2 × CCl), 129.0 (2 × CH), 129.1 (CCl), 130.1 (SC), 133.3 (NCH), 135.8 (NHC), 139.5 (CNO2), 142.3
(SCS), 148.5 (C-morph) ppm; MS m/z (Irel, %): 492 [M+] (12), 433 [M-SC2H3]+ (2), 298 [M-NHPhCl3]+

(55), 195 [H2NPhCl3]+ (100); HRMS (ESI+) m/z calcd for C17H15N4O3Cl3S2Na [M + Na]+: 514.9549;
found: 514.9547.

Synthesis of 5-{[5-(Ethenylsulfanyl)-3-(morpholin-4-yl)-4-nitrothiophen-2-yl]methylidene}-2,2-dimethyl-
1,3-dioxane-4,6-dione (60). A solution of thiophene 55 (0.300 g, 1.0 mmol),
2,2-dimethyl-1,3-dioxane-4,6-dione (0.288 g, 2.0 mmol) and piperidine (8.5 mg, 0.1 mmol) in
MeOH (15 mL) was stirred at r.t. for 1 d. Then another 0.288 g of 2,2-dimethyl-1,3-dioxane-4,6-dione
were added and the mixture was stirred for an additional 2 d. Subsequently, the mixture was treated
with diluted HCl and the resulting precipitate was filtered off and washed with water (2 × 5 mL) and
cold MeOH (3 mL). Yield 0.333 g (73%), red solid, m.p. 173–174 ◦C. IR (ATR) νmax = 1683, 1516, 1332,
1197, 1113, 787 cm−1. 1H NMR (200 MHz, CDCl3) δ = 1.76 (6H, s, CH3), 3.33–3.39 (4H, m, NCH2),
3.93–3.96 (4H, m, OCH2), 6.00 (2H, dd, J = 16.8 Hz, J = 9.5 Hz, CH2 vin), 6.75 (1H, dd, J = 16.8 Hz,
J = 9.5 Hz, SCH vin), 8.68 (1H, s, SCCH) ppm; 13C (200 MHz, CDCl3) δ = 27.5 (2 × CH3), 53.2 (2 ×
NCH2), 67.1 (2 × OCH2), 103.6 (CMe2), 104.7 (CC=O), 119.5 (SC), 124.9 (SCH vin), 128.7 (CH2 vin),
137.2 (CNO2), 144.1 (SCCH), 156.9 (SCS), 161.4 (C-morph), 162.3 (C=O), 163.4 (C=O) ppm; MS m/z (Irel,
%): 426 [M+] (100), 409 [M-OH]+ (10), 351 [M-Me2CO2H]+ (24), 295 [M-NO2-morph+H]+ (27); HRMS
(ESI+) m/z calcd for C17H18N2O7S2Na [M + Na]+: 449.0453; found: 449.0453.

3.3. Evaluation of Biological Activity

For a first evaluation of the biological activity of heterocycles, the influence of the compounds on
the growth of bacteria, namely of the Gram-positive strain Staphylococcus aureus SH−1000 and of the
Gram-negative uropathogenic strain Escherichia coli UPEC796, and on the viability of mammalian cells,
namely the murine fibroblast cell line L929, was evaluated.

Bacteria were cultivated in the complex Lysogeny broth. An aliquot of an overnight culture
was diluted with fresh medium to an OD600 (optical density at 600 nm) of 0.1–0.2. This intermediate
culture was incubated at 37 ◦C with shaking until an OD600 = 0.5 was reached to generate a culture
of exponentially growing cells. The cells were again diluted with fresh medium to an OD600 = 0.2 to
generate the working culture.

In each well of a 96-well plate, 90 µl Lysogeny broth were placed, to which 1.8 µl of compound
solutions were added. The incubation was started after the addition of 90 µl of the working culture,
resulting in a total volume of 180 µl. The microtiter plates were incubated at 37 ◦C. Bacterial growth
was followed by determination of the OD600 with the microplate spectrophotometer PowerWaveTM

(BioTek; Bad Friedrichshall, Germany) in regular time intervals, starting 2 h after the inoculation. The
final value was obtained after a growth period of 24 h.

L929 cells were cultivated in RPMI cell culture medium, supplemented with 10% FBS (serum) in a
cell culture incubator at 37 ◦C and 10% CO2. 60 µl of a cell suspension with 3*104 cells/mL were seeded
in each well of an assay-ready 96 well microtiter plate. The assay-ready microtiter plates were prepared
from the 10 mM DMSO stock solutions of the compounds with the Echo® 525 acoustic liquid handler
(Labcyte Inc., USA). The microtiter plates with compounds and cells were incubated at 37 ◦C, 10%
CO2 in a cell culture incubator for three days. The remaining viability of cells was assessed with the
alamarBlue® assay [88] (Thermo Fisher Scientific (Waltham, MA, USA) according to the instructions
given by the manufacturer, i.e., 5 µl of the resazurin-solution were given in each well of the 96-well
plate and incubated for up to 4 h. The turnover was determined via the fluorescence of resorufin (λex =

540 nm; λem = 600 nm) with the multi-mode microplate reader Synergy™ 4 (BioTek).
The primary evaluation of the biological activity was done with a single concentration of the

compounds, which was 100 µM in the bacterial assays and 10 µM in the cell culture assay. Compounds
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were considered to show activity in these assays, when the residual growth or viability, respectively, was
reduced to 50% or less of the growth or viability of an untreated bacterial or cell culture. The activities
of these compounds were validated by investigating the influences of compound concentrations and
determinations of the EC50 values (concentration resulting in 50% of the observed effect). Diluted
compound solutions were prepared either by manual serial dilutions using eight channel pipettes or
again with the Echo® 525 transfering varying volumes from the compound plate to the assay plate.

The EC50 values were determined by nonlinear regression with a 4-parameter equation using the
respective module from GraphPadPrism.

4. Conclusions

Starting from three polyhalogenated nitro-1,3-butadienes, we developed an efficient
and practical strategy for the multigram synthesis of the following heterocycles with
unique substitution patterns: benzoxazolines, benzimidazolines, imidazolidines, Imidacloprid
analogues, thia-zolidinones, pyrimidines, pyrazoles, 4H-pyrido[1,2-a]pyrimidines, benzo[h]quinolines,
isothiazoles, dihydroisoxazoles, and thiophenes. Quite some of these heterocycles deserve interest as
key units in synthesis, chemical biology, and medicinal chemistry. Successive synthetic modifications
of the heterocycles are predictable and feasible.

Supplementary Materials: The following are available online, Figures S1–S203: 1H–NMR, 13C–NMR, 15N,
1H–HMBC–NMR, and mass spectra. Figures S204 and S205: Biological profiling of compounds 4a–58.
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