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Abstract: An efficient synthesis of alkyl 8-hydroxy-6,10-dioxo-
6,10-dihydro-5H-pyrido[1,2-a]quinoxaline-7-carboxylates and alkyl
8-hydroxy-6,10-dioxo-6,10-dihydropyrido[2,1-c][1,4]benzoxazine-7-
carboxylates is described. This involves the reaction between malo-
nyl dichloride and alkyl 2-[3,4-dihydro-3-oxoquinoxaline 2(1H)-
ylidene]acetates or alkyl 2-(2-oxo-2H-benzo[b][1,4]oxazin-3(4H)-
ylidene)acetates in CH2Cl2 at room temperature.

Key words: malonyl dichloride, pyrido[1,2-a]quinoxaline, pyri-
do[2,1-c][1,4]benzoxazine, benzene-1,2-diamine, 2-aminophenol,
acetylenic ester

Quinoxalines and benzoxazines are privileged ring sys-
tems. Their derivatives have broad biological activities
and have been used as anticancer,1 antiviral,2 antibacterial
agents,3 and kinase inhibition agents.4,5 In addition to the
medicinal applications, quinoxalines and benzoxazines
have been used as dyes6,7 and key intermediates in the
synthesis of organic semiconductors.8,9 Quinoxalines also
play an important role as a basic skeleton for the design of
a number of antibiotics such as echinomycin, actino-
mycin, and leromycin. It has been reported that these
compounds inhibit the growth of gram-positive bacteria,
and are active against various transplantable tumors.10,11

The majority of quinoxaline and benzoxazine derivatives
are prepared by the reaction of benzene-1,2-diamine or
2-aminophenol with a 1,2-dicarbonyl compound.12,13

As part of our current studies on the development of new
routes in heterocyclic synthesis,14–16 we report17 an effi-
cient and convenient synthetic route to alkyl 8-hydroxy-
6,10-dioxo-6,10-dihydro-5H-pyrido[1,2-a]quinoxaline-7-
carboxylates 4a–c and alkyl 8-hydroxy-6,10-dioxo-6,10-
dihydropyrido[2,1-c][1,4]benzoxazine-7-carboxylates 4d–h
from the reaction between malonyl dichloride and alkyl
2-[3,4-dihydro-3-oxoquinoxaline-2(1H)-ylidene]acetates
3a–c or alkyl 2-[2-oxo-2H-benzo[b][1,4]oxazin-3(4H)-
ylidene]acetates 3d–h in CH2Cl2 at room temperature
(Scheme 1). Compounds 3 were prepared from the reac-
tion of dialkyl acetylenedicarboxylates 2a–c with ben-
zene-1,2-diamine (1a) and 2-aminophenol (1b).18,19 A
number of compounds closely related to 4 have been pre-
pared by reaction of compounds related to 3 with
bis(2,4,6-trichlorophenyl)malonate.20

The structures of compounds 4a–h were apparent from
their mass spectra, which displayed in each case the mo-
lecular ion peak at the appropriate m/z values. The 1H
NMR and 13C NMR spectroscopic data, as well as IR
spectra, are in agreement with the proposed structures.
The 1H NMR spectrum of 4a in DMSO-d6 showed four
singlets for methoxy (d = 3.74 ppm), CH (d = 6.08 ppm),
OH (d = 11.76 ppm), and NH (d = 11.84 ppm) protons.
The 13C NMR spectrum of 4a exhibited 14 signals in
agreement with the proposed structure. Partial assign-
ments of these resonances are given in the experimental
data. The 1H NMR and 13C NMR spectra of 4b–h are sim-
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ilar to those for 4a, except for the ester moieties, which
showed characteristic resonances in appropriate regions
of the spectra.

A tentative mechanism for this transformation is proposed
in Scheme 2. It is conceivable that the initial event is the
formation of intermediate 5 from 1 and the acetylenic es-
ter,18,19 which is converted to alkylidene quinoxaline 3.
Compound 3 is subsequently attacked by malonyl dichlo-
ride to produce 6. Intermediate 6 undergoes cyclization
reaction, HCl elimination, and keto–enol tautomerism to
generate compounds 4.

Scheme 2

In conclusion, we have described a convenient route to
6,10-dioxo-6,10-dihydro-5H-pyrido[1,2-a]quinoxalines and
6,10-dioxo-6,10-dihydropyrido[2,1-c][1,4]benzoxazines
from malonyl dichloride and alkyl 2-[3,4-dihydro-3-oxo-
quinoxaline-2(1H)-ylidene]acetates or alkyl 2-[2-oxo-
2H-benzo[b][1,4]oxazin-3(4H)-ylidene]acetates in CH2Cl2

at room temperature. The advantage of the present proce-
dure is that the reaction is performed in the absence of
added base by simple mixing of the starting materials.
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