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Abstract: Previous SAR studies of C-3 side chain modified analogs of (-)-SCH 48461,1,3, 4 as well as 
information concerning the metabolic stability this series, enabled us to design a cholesterol absorption inhibitor 
(i.e., (-) 2a, SCH 57939) with tenfold higher potency and greatly enhanced metabolic stability. The synthesis 
and pharmacological profile, including the role of relative stereochemistry at both the C3 and 1' positions in 
determining the SAR of these compounds, will be discussed. Copyright © 1996 Elsevier Science Ltd 

(-)-SCH 484611-5 is a potent inhibitor of cholesterol absorption that acts primarily in the intestinal wall 

and is transported in the enterohepatic circulatory system (ECS), accounting for its exposure to liver 

metabolism. 2 Increasing potency and metabolic stability were the basic criteria for future generations of these 

drugs. Modification of the C-3 side-chain of (-)-SCH 48461 has resulted in dramatic changes in the 

pharmacological profile, particularly in analogs that have been modified separately at the C-I'  and C-Y 

positions.3, 4 

In this paper, we probe the effects of combining changes at the C- 1' and C-Y position of the side chain 

in both the cis and trans azetidinone series.3,4, 6 In addition, we report that these changes, in combination with 

appropriate substitution on the aryl rings, result in inhibitors which are both more potent and metabolically 

stable than the parents. The chosen targets (Figure 1) are compounds 1: in which the C-3 side-chain is protected 

Figure 1 Targets which combine structural modifications at the 1' and 3' positions. 
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against metabolism, and 2: in which the N-1 and C-4 aryl groups respectively are, a) protected against N-aryl 

hydroxylation by the incorporation of an electron withdrawing fluorine, and, b) "pre-metabolized" by replacing 

the metabolically labile 3 C-4 ArOMe with the corresponding phenol. 
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Chemistry: Scheme 1 shows the general routes to the trans azetidinone series. Route 1 had the 

advantage of producing easily separable epoxide intermediates 5 and 6 which could then be reacted with a 

variety of phenoxides such as 7 or other nucleophiles to form 8 or 9 of known relative stereochemistry. 

However, lower yields were obtained due to the formation of rearranged by products 12 and 13. We developed 

Route 2 to circumvent this problem 7. The enolate of C-3 unsubstituted azetidinone 10d, when reacted with 

aldehyde 11, produced an 88% yield of a mixture of la  and le plus -10% of the corresponding cis azetidinones 

all of which were separable by HPLC. 8 Route 2 had the added advantage of being adaptable into an asymmetric 

synthesis 7. 

Scheme 1. Synthesis of 3,4-trans-2-Azetidinone Targets 
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Reagents and conditions: a. (for4): MeCH=CHCOCi, Bu3N, toluene, reflux, b. (for 10): BrZnCH2CO2Et, 
THF. c. mCPBA, CH2C12, RT. d.(for 8e and 9e) H2, 10% Pd/C, THF. e. LDA, THF, -60 ° C. 

Both a racemic and stereoselective synthesis of the cis-azetidinones is shown in (Scheme 2). Although 

trans-4 could be isomerized to cis-14 by kinetic protonation of the azetidinone enolate, the derived epoxide 15 

gave only the rearranged product 13 on reaction with phenoxides. Ultimately, a cis isomer was obtained in a 

highly stereoselective manner (18e then 2b, Route 2) from ethyl-(3S)-3,4-dihydroxybutanoate (16) 9 using a 

diethyl- zinc modified ester enolate-imine condensation. 10 

Biological Results: The cholesterol-lowering activities of these compounds in the cholesterol-fed 

hamster model 1, 11 are shown in Table 1. Simple incorporation of an (l'S)-hydroxyl in the p-fluorophenoxy 

series (i.e. (+)-la (Table 1) resulted in comparable in vivo activity to that of the parent. 3 The minus enantiomer 

(i.e., (-)-la,)  proved to have a EDso value lower by a factor of ten when compared to the parent deshydroxy 

analog 3 (EDso = 2.2 mpk) in the identical assay. This data encouraged us to prepare the cis (l'S)-hydroxy 

analog (2b, Scheme 2), 12 a change in geometry which, in the parent carba series, 4 resulted in increased 

potency. This same modification when applied to the p-fluorophenoxy series was detrimental to potency. 12 
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Scheme 2. Synthesis of 3,4-cis -Azetidinone Targets 
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Reagents and Conditions: a. LDA, THF, -70°C; then BHT. b. mCPBA, CH2C12. c. 7 (Scheme 1), 
THF. d. TsCI, py., e. p-FC6H4OMgBr, THF. f. Et2Zn, THF; then LiN(TMS) 2 folowed by imine 3 
(Scheme 1, see ref. 10). g. H 2, 10% Pd/C, THF. 

Table 1 Cholesterol lowering activity 11 of 1' hydroxy-2'-aryloxy analogs of(-)- SCH 48461. 

No. 

(_+)-la 

(-)-la 

(+)-1c 

(_+)-2a 

I'(R or S)* 

3,4(C or T) 

S , T  

S , T  

% L/CE 

-57 @ 1 mpk 

-84 @ 1 mpk 

EDso (MPK) No. 

0.3 

R, T -48 @10mpk 

S, T -38 @ l mpk 0.7 

(-)-2a 

(+)-2b 

(-)-2b 

(_+)-2c 

I'(R or S)* 

3,4(C or T) 

S , T  

% L/CE 

-70 @ 0.3 mpk 

S, C -0 @ 1 mpk 

S, C -0 @ 1 mpk 

R, T -39 @ 10mpk 

EDso (MPK) 

0.27 

*R and S designate relative stereochemistry; C = cis, T = trans and designate 3,4-azetidinone geometry. 

Blocking the remaining major metabolic sites in the trans-2-azetidinone series by replacing the C-4 

arylmethylether with the corresponding phenol and introducing an N-p-fluorophenyl as in (-)-2a (i.e., SCH 

57939, Table 1) maintained potency and, we could now study its pharmacological profile in greater detail. 

At a dose of 512 mpk 13 for eight consecutive days, (-)-SCH 57939 showed negligible hepatic enzyme 

induction in rats. 14 Blood levels in rats were also negligible. In one 3 week Rhesus monkey study (n = 5-6 

animals/group), no significant increase in plasma cholesterol was seen at a dietary dose of 0.1 mg/day of (-)- 

SCH 57939 coadministered with 375 mg cholesterol 2 while the total plasma cholesterol of the untreated 

cholesterol-fed controls roughly doubled from a baseline of 154 mg/dl + 11 to 306 mg/dl + 15. This was typical 

of the rhesus monkey control results at 3 weeks on the high fat/cholesterol diet. 
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In summary, using SAR data3,4, 6 as well as data obtained from detailed pharmacological studies on (-)- 

SCH 48461,2 we were able to design and synthesize a highly potent cholesterol absorption inhibitor which met 

our criteria of enhanced potency and metabolic stability. 
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