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The importance of amine derivatives for the synthesis of
pharmaceuticals and fine chemicals has aroused considerable
interest in allylic and propargylic amination reactions.[1]

Readily available allylic and propargylic alcohols are desir-
able substrates for the synthesis of allylic and propargylic
amines. Substitution of the hydroxy group in alcohols by
amine nucleophiles generally requires preactivation of the
alcohols because of the poor leaving ability of the hydroxy
group. Alcohols are generally transformed into the corre-
sponding halides, carboxylates, carbonates, phosphonates, or
related compounds with good leaving groups. The process
inevitably produces a stoichiometric amount of salt waste.
The substitution of the halides and related compounds also
produces salt waste and requires a stoichiometric amount of a
base (Scheme 1, path a). In this context, well-established

transition-metal-catalyzed allylic aminations of allylic ace-
tates and their derivatives have intrinsic drawbacks in terms
of atom economy.[2] Therefore, the direct catalytic substitu-
tion of alcohols with amines is desirable. As no stoichiometric
hydroxy-group activator is utilized, the products are produced
with water as the only waste (Scheme 1, path b).

A number of direct allylic aminations catalyzed by late
transition metals have been reported.[3, 4] However, in most

cases either a high reaction temperature is required or a
promoter is added to enhance the leaving ability of the
hydroxy group. Notable progress was made by using cationic
Pd complexes with diphosphinidenecyclobutene ligands (with
anilines)[4a] and a Pd complex in aqueous media (with aryl and
alkyl amines).[4b] The reactions proceeded smoothly at room
temperature without any additives;[4] however, the use of
amides, which are less nucleophilic, is still quite rare, and a
high reaction temperature is essential.[5] Nishibayashi, Hidai,
Uemura, and co-workers and Toste and co-workers carried
out pioneering studies on propargylic substitutions with
amides in the presence of a catalytic amount of dinuclear
Ru[6] and oxo-Re complexes[7] in a catalytic Nicholas reac-
tion.[8] Good yields were observed with these systems, and a
broad range of amine nucleophiles can be used; however,
there remains room for improvement, as: a) 3–5 equivalents
of the amine nucleophiles were required, b) the reactions
were performed at a relatively high temperature (60–65 8C),
and c) only secondary propargylic alcohols were used.
Herein, we report that bismuth catalysis is suitable for the
direct substitution of allylic, propargylic, and benzylic alco-
hols with sulfonamides, carbamates, and carboxamides under
mild reaction conditions. A combination of commercially
available Bi(OTf)3 and KPF6 (1–5 mol%) promoted the
amination reactions at room temperature to give the products
in up to 99% yield.

We reported recently the utility of bismuth catalysis[9] in
the hydroamination of 1,3-dienes with amides.[10] In the
hydroamination, a Bi(OTf)3/MPF6 (M=K or Cu) system
not only acts as a p acid to activate 1,3-dienes, but also acts as
a Lewis acid to control the position of attack of the amide
nucleophile. We hypothesized that bismuth catalysis would
also be suitable for the activation of allylic and propargylic
alcohols, as shown in Scheme 2.[11] To test this hypothesis, the
reaction of 1a with amide 2a was examined. Bi(OTf)3/KPF6

promoted the reaction smoothly, and 3aa was obtained in
94% yield after 0.2 h (Table 1, entry 1). To study the
efficiency of the catalyst, several control experiments were
performed (Table 1, entries 2–4). Bi(OTf)3 alone promoted
the reaction, albeit at a lower reaction rate (Table 1, entry 2;
2 h, 76 % yield). The reaction was much slower with BiCl3

Scheme 1. Substitution of the hydroxy group of an alcohol by:
a) preactivation and b) direct catalytic substitution.

Scheme 2. Working hypothesis for the activation of allylic and
propargylic alcohols by a Bi catalyst.
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(Table 1, entry 3; 12 h, 70% yield).[12] KPF6 alone did not
afford any of the product 3aa (Table 1, entry 4). Both
Bi(OTf)3 and KPF6 were required for high reactivity at
room temperature.[13] With the Bi(OTf)3/KPF6 system, the
catalyst loading was successfully decreased to 2 mol%
(Table 1, entry 5; 94% yield after 0.2 h). Compound 3aa
was obtained in 96 % yield after 0.2 h in the presence of the
desiccant drierite (CaSO4; Table 1, entry 6).[14] Under the
optimized conditions with drierite, the catalyst loading was
decreased to 1 mol % without any problems (Table 1, entry 7;
0.2 h, 95% yield).

The scope of the reaction with respect to the amide
substrate was examined with catalyst concentrations of 2–5
mol% (Table 2). When sulfonamides with electron-donating
or electron-withdrawing substituents were used,[15] the reac-
tion was complete within 0.2–1.5 h, and the corresponding
allyl amides were obtained in high yield (Table 2, entries 1–5;
85–99%). Carbamates 2 f–2 i were also suitable substrates
and gave the desired products in 97–99 % yield (Table 2,
entries 6–9). With carboxamides 2j–2 l, the reaction rate
decreased; therefore, the catalyst loading was increased for
these substrates. In the presence of 5 mol% of the catalyst,
carboxamide 2j reacted smoothly, and the product was
obtained in 86 % yield (Table 2, entry 10; 0.6 h). Carb-
oxamides 2k and 2 l were much less reactive; the products
3ak and 3al were obtained in 88 and 95 % yield, respectively,
after 15 or 16 h at room temperature (Table 2, entries 11–12).
The reactions of selected substrates in Table 2 were also
performed in the absence of drierite. The results of these
reactions, which proceeded without any difficulty, are shown
in parenthesis (Table 2, entries 1, 2, 7, and 10).[14]

The scope of the reaction with respect to the alcohol
substrate is summarized in Table 3. The present catalyst is also
suitable for the reaction of non-benzylic allylic alcohols, such
as the cyclic alcohols 1b–1e (Table 3, entries 1–4; 66–96%
yield) and acyclic alcohols 1 f–1 i (Table 3, entries 5–8). The
reaction of 1 f afforded 3 fa regioselectively (Table 3, entry 5;
87%). The desired products were also formed regioselectively
from substrates 1g and 1h, with substituted aromatic rings,
and the N-Ts indole 1 i (Table 3, entries 6–8). The reaction of
1 i proceeded smoothly with an equimolar amount of carba-

mate 2g (Table 3, entry 8; 84%). With 1j and 2e the reaction
proceeded regioselectively to afford 3je (Table 3, entry 9),
which was also obtained starting from 1k (entry 10). Alcohol
1 l also reacted at the less hindered terminal carbon atom to
give 3 le (Table 3, entry 11; 60 %). The reaction of alcohol 1m
afforded 3me as a mixture of regioisomers in a ratio of 6.7:1
(Table 3, entry 12). Diene 3ne was obtained selectively from
alcohol 1n (Table 3, entry 13) and treatment of the tertiary
alcohol 1o with 2g afforded the regioisomer 3og selectively
(Table 3, entry 14; E isomer). The results in entries 5–14 of
Table 3 suggest that the amides attack selectively the steri-
cally less hindered carbon atom of the allylic alcohol
functionality. On the other hand, the propargylic alcohols
1p–1s reacted regioselectively at the propargylic position
(Table 3, entries 15–18).[6,7, 16] Allenic products of amide
attack at the triple bond were not observed for 1p–1s. It is
noteworthy that the desired products were obtained when the
tertiary propargylic alcohols 1r and 1s were used. Previously
reported propargylic-amination catalysts[6,7] were not applied
to tertiary propargylic alcohols, possibly because of a
competitive dehydration reaction to afford enynes. The
addition of drierite was essential for the formation of products
3ra and 3sf in greater than 60 % yield (Table 3, entries 17–
18).[14] This Bi catalysis was also applicable to the benzylic

Table 1: Optimization of the reaction conditions.

Entry Catalyst
(mol%)

2a
[equiv]

Additive 1
(mol%)

Additive 2 t
[h]

Yield
[%][a]

1 Bi(OTf)3 (10) 2 KPF6 (10) – 0.2 94
2 Bi(OTf)3 (10) 2 – – 2 76
3 BiCl3 (10) 2 – – 12 70
4 – – KPF6 (10) – 12 0
5 Bi(OTf)3 (2) 1.5 KPF6 (2) – 0.2 94
6 Bi(OTf)3 (2) 1.5 KPF6 (2) drierite[b] 0.2 96
7 Bi(OTf)3 (1) 1.5 KPF6 (1) drierite[b] 0.2 95

[a] Yield of the isolated product after column chromatography.
[b] A quantity of 45 mg of drierite was used per 0.3 mmol of 1a.
Tf= trifluoromethanesulfonyl, Ts=para-toluenesulfonyl.

Table 2: Direct catalytic allylic substitution of 1a with amides 2a–2 l.[a]

Entry NuH 2 Prod. Cat.
[mol%]

t [h] Yield
[%][b]

1 TsNH2 2a 3aa 2 0.2 96 (94)[c]

2 o-NsNH2 2b 3ab 2 0.2 93 (82)[c]

3 PhSO2NH2 2c 3ac 2 0.2 99
4 p-CF3C6H4SO2NH2 2d 3ad 2 0.2 97
5 TsNMeH 2e 3ae 2 1.5 85
6 CbzNH2 2 f 3af 2 0.2 97

7 2g 3ag 2 0.2 99 (91)[c]

8 2h 3ah 2 0.2 99

9 2 i 3ai 2 0.2 99

10 2 j 3aj 5 0.6 86 (89)[c]

11 2k 3ak 5 15 88

12 2 l 3al 5 16 95

[a] Reaction conditions: 1a (0.3 mmol), 2 (0.45 mmol, 1.5 equiv),
Bi(OTf)3 (0.015 mmol, 5 mol%), KPF6 (0.015 mmol, 5 mol%),
drierite (45 mg), 1,4-dioxane (1.0 mL), room temperature. [b] Yield of
the isolated, analytically pure compound after column chromatography.
[c] The number in parenthesis is the yield of the isolated product when
the reaction was performed in the absence of drierite. Cbz=
carbobenzyloxy, o-Ns=ortho-nitrobenzenesulfonyl.

Communications

410 www.angewandte.org � 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Angew. Chem. Int. Ed. 2007, 46, 409 –413

http://www.angewandte.org


Table 3: Direct catalytic substitution of allylic, propargylic, and benzylic alcohols 1b–1 t with amides 2.[a]

Entry Alcohol 1 NuH (equiv) Product t [h] Yield [%][b]

1 1b 2a (2) 3ba 2 96

2 1c 2e (3) 3ce 2 80

3 1d 2e (3) 3de 2 66

4 1e 2e (3) 3ee 17 74

5 1 f 2a (1.5) 3 fa 17 87

6 1g 2e (3) 3ge 0.2 99

7 1h 2e (3) 3he 0.2 61

8 1 i 2g (1) 3 ig 0.2 84

9 1 j 2e (3) 3 je 7 63

10 1k 2e (3) 3 je 12 62

11 1 l 2e (3) 3 le 2 60

12[c] 1m 2e (3) 3me[d] 1 55

13 1n 2e (2) 3ne 1 69

14 1o 2g (1.5) 3og 0.1 60

15 1p 2a (1.5) 3pa 18 82

16 1q 2a (1.5) 3qa 8 78

17 1r 2a (2) 3ra 4 63

18 1s 2 f (2) 3sf 5 65

19 1 t 2e (2) 3 te 7 60

[a] Reaction conditions: 1 (0.3 mmol), 2 (0.3–0.9 mmol, 1–3 equiv), Bi(OTf)3 (0.015 mmol, 5 mol%), KPF6 (0.015 mmol, 5 mol%), drierite (45 mg),
1,4-dioxane (1.0 mL), room temperature (unless otherwise noted). [b] Yield of the isolated, analytically pure compound after column chromatography.
[c] The reaction was performed at 40 8C. [d] Major/minor=6.7:1.
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alcohol 1t, the reaction of which with 2e gave 3 te in 60%
yield after 7 h at room temperature (Table 3, entry 19).

When the optically active alcohols 1a and 1p and amides
2a and 2g were used, only the racemic products 3aa, 3ag, and
3pa were obtained (Scheme 3). This result suggests a reaction

mechanism in which a carbenium intermediate is formed. The
observed racemization could also be ascribed to the reversi-
bility of the reaction. The result shown in Scheme 4 indicates
that the reaction is reversible under the reaction conditions.
When 3aa was treated with Bi(OTf)3/KPF6 (5 mol%) and
carbamate 2g (1 equiv), a mixture of 3aa (28 %) and 3ag
(68 %) was recovered after 1 h. It appears that Bi(OTf)3/KPF6

cleaved the C�N bond in 3aa, and that 3ag is thermodynami-
cally more stable than 3aa.[17,18]

In summary, we have developed a bismuth-catalyzed
direct substitution of allylic, propargylic, and benzylic alco-
hols with sulfonamides, carbamates, and carboxamides. A
combination of commercially available Bi(OTf)3 and KPF6

(1–5 mol%) catalyzed the reactions effectively, mostly at
room temperature, to give the products in 55–99% yield.
Further applications of the Bi(OTf)3/KPF6 system as well as
mechanistic studies of the present reaction are under inves-
tigation.

Experimental Section
1,4-Dioxane (1.0 mL) was added to a mixture of Bi(OTf)3 (3.92 mg,
0.006 mmol), KPF6 (1.11 mg, 0.006 mmol), and drierite (45 mg) in a
test tube. The resulting mixture was stirred for 10 min at room

temperature, then TsNH2 (2a ; 77.0 mg, 0.45 mmol) was added,
followed by 1a (63.1 mg, 0.3 mmol). The reaction mixture was stirred
at 23–268C for 10 min. It was then diluted with diethyl ether (5 mL),
and silica gel (ca. 3 g) was added. After filtration and washing with
diethyl ether, the solvent was removed under reduced pressure. The
residue was purified by column chromatography on silica gel (hexane/
ethyl acetate 8:1–6:1) to give 3aa (96%) as a colorless solid.
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