
ISSN 1001-604X • CN 31-1547/O6

mc.manuscriptcentral.com/cjoc

www.cjc.wiley-vch.de

Title: Rh-catalyzed formal [3+2] cyclization for synthesis of 5-aryl-2-(quinolin-2-
yl)oxazoles and its applications in metal ions probes

Authors: Tongtong Zhou, Xinwei He,* Youpeng Zuo, Yuhao Wu, Wangcheng Hu, 
Shiwen Zhang, Jiahui Duan and Yongjia Shang*

This manuscript has been accepted and appears as an Accepted Article online.

This work may now be cited as: Chin. J. Chem. 2020, 38, 10.1002/cjoc.202000454.

The final Version of Record (VoR) of it with formal page numbers will soon be
published online in Early View: http://dx.doi.org/10.1002/cjoc.202000454.

Accepted Article

中 国 化 学 - An International JournalCJC
Chinese Journal 

of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fcjoc.202000454&domain=pdf&date_stamp=2020-10-18


Concise Report 2-(Quinolin-2-yl)oxazoles, Cyclization, Metal ions probes, N-Sulfonyl-
1,2,3-triazoles 

 

 

This article has been accepted for publication and undergone full peer review but has not been 
through the copyediting, typesetting, pagination and proofreading process which may lead to 
differences between this version and the Version of Record. Please cite this article as doi: 
10.1002/cjoc.202000454 

 

中 国 化 学 - An International JournalCJC Chinese Journal 
of Chemistry

Rh-catalyzed formal [3+2] cyclization for synthesis of 5-aryl-2-(quinolin-2-
yl)oxazoles and its applications in metal ions probes 

Tongtong Zhou, Xinwei He,* Youpeng Zuo, Yuhao Wu, Wangcheng Hu, Shiwen Zhang, Jiahui Duan and Yongjia Shang* 

Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), 
College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P.R. China 

Cite this paper: Chin. J. Chem. 2019, 37, XXX—XXX. DOI: 10.1002/cjoc.201900XXX 

Summary of main observation and conclusion  A facile and efficient strategy for the synthesis of 5-aryl-2-(quinolin-2-yl)oxazoles via rhodium-catalyzed 
formal [3+2] cyclization of 4-aryl-1-tosyl-1H-1,2,3-triazoles with quinoline-2-carbaldehydes has been described. The protocol employs mild conditons and 
offers good yields of diverse 2,5-aryloxazole derivatives with a broad reaction scope. It is amenable to gram-scale synthesis and easily transformation. 
Moreover, this 5-aryl-2-(quinolin-2-yl)oxazole skeleton is indeed a new fluorophore and its applications in metal ions probes are also investigated and 
showed fluorescent responses to mercury ion. 

 

Background and Originality Content 
In the last few decades, the design and synthesis of functional 

mole-cules that could sense specific ions has attracted intense 
interest in diverse research fields.1 Oxazoles, quinolines and their 
derivatives are well recognized for their important role designing 
novel drug moieties for medicinal applications.2,3 As a consequence, 
the combination of these two structural features within a single 
framework giving novel quinolone-oxazoles has potential for 
biological and pharmacological activities.4 In addition, the extend π 
structure of these compound also has potential fluorescence 
properties to expedite their applications in material science as 
ligands and chemosensors. To date, only one method has been 
reported for the synthesis of 2-(quinolin-2-yl)oxazoles based on the 
cross-dehydrogenative coupling of quinoline N-oxides with 1,3-
azoles (Scheme 1a).5 However, this strategy still possesses some 
limitations, including excess metal catalyst, additive/base, and high 
temperature, and the substrate scope is also relatively limited. 
Therefore, the development of simple, efficient, and 
environmentally benign strategies for the formation of 2-(quinolin-
2-yl)oxazoles is quite appealing. 

N-Sulfonyl-1,2,3-triazoles have recently emerged as structural 
motifs that are studied for synthesizing a variety of biologically 
active heterocycles,6 including pyrrole,7 tetrahydropyridines,8 
imidazoles,9 pyrroloindoline10 and others.11 In these 
transformations, the highly reactive rhodium azavinyl carbenes 
(Rh-AVC), derived from Rh(II)-catalyzed denitrogenation of N-
sulfonyl-1,2,3-triazoles has been successfully employed as a [1C], 
[2C], or aza-[3C]-synthon in various [3+n] cycloaddition reactions.12 
In particularly, a wide range of unsaturated chemical bonds, 
including aldehyde, nitrile, have been well explored in the [3 + 2] 

cycloadditions. For instance, Fokin and co-workers exploited the 
reactivity of Rh-AVC to achieve imidazoles in good to excellent 
yields with N-sulfonyl 1,2,3-triazoles and nitriles.13 Very recently, 
they reported that Rh-AVC reacted with aldehydes to give 3-
sulfonyl-4-oxazolines through an intramolecular cyclization.14 
Inspired by our previous reports and in line with our long-standing 
interesting in diazo chemistry,15 we herein report our new results 
on the synthesis of 5-aryl-2-(quinolin-2-yl)oxazoles in good yields 
via Rh-catalyzed formal [3+2] cyclization from 4-aryl-1-tosyl-1H-
1,2,3-triazoles and quinoline-2-carbaldehydes under mild 
conditions (Scheme 1b). 
Scheme 1  Synthetic strategies for 2-(quinolin-2-yl)oxazoles 
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Results and Discussion 
We commenced our investigation using 4-phenyl-1-tosyl-1H-

1,2,3-triazole (1a), quinoline-2-carbaldehyde (2a) as the model 
substrates to identify the reaction conditions for this formal [3+2] 
cyclization. Preliminary examination identified DCM 
(dichloromethane) as the solvent choice in the presence of 
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Rh2(oct)4 as catalyst, affording the target product 3a in 39% yield 
(Table 1, entries 1-7). No reaction occurred in the absence of 
transition metal catalyst (Table 1, entry 8). To our delight, increasing 
the catalyst loading to 5 mol% resulted in a significantly higher yield 
(75%, Table 1, entry 9). However, the desired product 3a was 
isolated in 28% yield in DCE as solvent with the same catalyst 
loading (Table 1, entry 3). Subsequently, changing the catalyst to 
other metal catalysts and rhodium catalysts did not improve the 
efficiency (Table 1, entries 11-16). In addition, the effects of the 
temperature and reaction time were also investigated. It was found 
that neither increasing nor decreasing the reaction 
temperature/time could improve the yield (Table 1, entries 17-20). 
Taken together, 5 mol% Rh2(oct)4 as catalyst, DCM as solvent at 
110 °C for 24 h were selected as the optimized reaction conditions 
(Table 1, entry 9). 

Table 1  Optimization of the reaction conditions.a 

N
NN

Ts
Ph N

+
1a 2a

catalyst (4 mol%)
solvent, 110 oC, 24 h O

N

Ph NOHC 3a
 

Entry Catalyst Solvent Yield/% 
1 Rh2(oct)4 DCM 39 

2 Rh2(oct)4 toluene 24 

3 Rh2(oct)4 DCE 14 (28c) 

4 Rh2(oct)4 PhCl 30 

5 Rh2(oct)4 MeNO2 trace 

6 Rh2(oct)4 CHCl3 trace 

7 Rh2(oct)4 THF trace 

8 / DCM nr 

9c Rh2(oct)4 DCM 75 

10d Rh2(oct)4 DCM 54 

11c CuI DCM 17 

12c [Cp*RhCl2]2 DCM nd 

13c [(PPh)3P]3RhCl DCM 45 

14c Co2(CO)8 DCM 32 

15c Ni(acac)2 DCM 50 

16c Rh2(OAc)4 DCM 27 

17c,e Rh2(oct)4 DCM 17 

18c,f Rh2(oct)4 DCM 29 

19c,g Rh2(oct)4 DCM 56 

20c,h Rh2(oct)4 DCM 75 
a Reaction conditions: 4-phenyl-1-tosyl-1H-1,2,3-triazole 1a (0.2 mmol), 
quinoline-2-carbaldehyde 2a (0.2 mmol), catalyst (4 mol%), and solvent (2 
mL) under argon atmosphere at 110 °C for 24 h. c The catalyst loading was 
5 mol%. d The catalyst loading was 6 mol%. e 90 °C. f 120 °C. g For 12 h. h For 
30 h. 

With the optimized conditions established, the substrate scope 
of this formal [3+2] cyclization was evaluated as shown in Table 2. 
The yield of 3a was relatively moderate (48%, 30%, and 28%, 

respectively) changing the p-tosyl group to (4-fluorophenyl)sulfonyl, 
(4-methoxyphenyl)sulfonyl, and (2,4,6-triisopropylphenyl)sulfonyl 
groups of the substrate 1,2,3-triazoles. Similarly, the substrates 1 
with electron-donating group (e.g., Me, Et, OMe) on the para-
position of aryl group were well suitable for this reaction, affording 
the corresponding products 3b, 3c, and 3d in 65%, 62%, and 76% 
yields, respectively. While the same position was replaced by 
moderate electron-withdrawing groups (e.g., F, Br), the reactivity 
of the process was hampered and the yield was lightly reduced (3e, 
3f). These results indicated that electronic effect of the 
substituents on the phenyl ring had a certain effect on the Rh-
carbene intermediate derived from 1,2,3-triazoles in the presence 
of Rh-catalyst. Though the electron-withdrawing group (e.g. F, Br) 
could improve the activity of Rh-carbene intermediate, which also 
was easily decomposed in the reaction conditions to decrease the 
yield of the desired product. To our surprise, trifluoromethyl as 
strong electron-withdrawing substituent afforded the desired 
product 3g in 76% yield. Similarly, the yield of compound 3l was 
decreased to 49% when the Rh-carbene intermediate bearing with 
two CF3 groups for its higher reactivity and easily decomposed. The 
reaction also effectively for meta- and ortho-substituted 1,2,3-
triazoles on the aryl group, generating the corresponding products 
3h-3k in 71%-82% yields. In addition, 1,2,3-triazoles bearing with 
ditrifluoromethyl group at the meta-position of phenyl ring was 
also compatible. Noteworthy was the ability to incorporate an 
extend π structure into the product (3m), providing potential 
applications in photochemical properties and chemosensors. 

The optimized reaction conditions were then challenged with a 
diversity of substituted quinoline-2-carbaldehydes to probe its 
scope, by taking 1a as the reaction partner. Satisfactorily, 
substituents including electron-rich (e.g., Me) groups and electron-
deficient (e.g., F, Cl, and Br) groups at the 6-, 7-, and 8-positons of 
the quinolyl rings were well-tolerated. The corresponding products 
3n-3r were obtained in 66%-78% yields. In addition to quinoline-2-
carbaldehydes, 2-naphthaldehydes and benzofuran-2-
carbaldehyde were examined. The desired products 3s, 3t, and 3u 
were successfully obtained in 71%, 64%, and 70% yields, 
respectively. Unfortunately, when other heteroaromatic aldehydes, 
such as benzo[b]thiophene-2-carbaldehyde, 1-methyl-1H-indole-2-
carbaldehyde, benzo[d]thiazole-2-carbaldehyde, and quinoxaline-
2-carbaldehyde were employed, the reaction system became 
sluggish and the corresponding products 3v-3y were hardly 
observed, which trouble the [3+2] cyclization process. 
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Table 2  Substrate scope.a,b  
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a Reaction conditions: 4-aryl-1-tosyl-1H-1,2,3-triazoles 1 (0.2 mmol), 
aromatic aldehydes 2 (0.2 mmol), and Rh2(OAc)4 (5 mol%) in DCM (2 mL) 
under argon atmosphere at 110 °C for 24 h. b Isolated yields. c (4-
Fluorophenyl)sulfonyl was used instead of p-tosyl group. 

To demenstrate the efficiency and utility of this strategy, a 
gram-scale synthesis was performed by using 4-phenyl-1-tosyl-1H-
1,2,3-triazole (1a, 5 mmol) and 8-bromoquinoline-2-carbaldehyde 
(2f, 5 mmol) as substrates under the standard conditions (Scheme 
2a). Gratifyingly, the desired product 3r was afforded in 60% yield 
(1.05 g). In addition, the halo-substituted product 3r and 3f were 
used for late-stage transformation, affording the Sonogashira 
coupling products 4 and 5 in 92% and 93% yields, respectively 
(Scheme 2b). This fantastic outcome indicates that this method is a 
prospectively powerful tool for late-stage modification of π extend 

molecules, which has potential applications in material science as 
ligands and chemosensors. 
Scheme 2  Further studies 
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On the basis of the previously described experimental finding 
and the literature precedence,14,16 a proposed mechanism is 
illustrated in Scheme 3. Initially, 1,2,3-triazoles 1 reacted with Rh-
catalyst extruding nitrogen and generated Rh(II)-azavinyl carbine 
species A. Subsequently, interaction of the carbene center with the 
carbonyl group of substrate 2 formed the intermediate ylide B, 
which underwent cyclization, leading to the intermediate C. Finally, 
removal of the p-toluenesulfonic acid (detected by GC-MS) 
followed by affording the desired 2,5-aryloxazoles 3. 
Scheme 3  Proposed mechanism 
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We previously reported a novel ferrocenyl-isoxazoles as a 
multiple signal probe for highly selective recognition of Cu2+ ions.17 
This class of compounds have rarely been reported in the field of 
molecular sensing and might have a potential significance for the 
application of the π extent isoxazole derivatives in molecular 
recognition. During the preparation of 5-aryl-2-(quinolin-2-
yl)oxazoles, we found that these compound were strongly emissive 
under UV light and this skeleton was indeed a new fluorophore. 
Therefore, we selectively investigated the photophysical properties 
of compounds 3a, 3d, 3g, 3m, 3s, 3u, 4 and 5 (see the ESI). These 
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compounds have good fluorescence properties in mixed methanol 
under 365 nm irradiation with a hand-held UV lamp (Figure 1). 

 

Figure 1  The fluorescence colours of 2-(quinolin-2-yl)oxazoles in MeOH 
(2.5 ×10-5 M) under UV irradiation (365 nm). 

We next studied the impact of the different substituents on the 
absorbance and fluorescent properties of the selected 2,5-
aryloxazoles (Table 3). 2-(quinolin-2-yl)oxazole 3a absorbs light at 
348 nm (ε = 2.08 × 104). When 2-quinolinyl changed to 2-
naphthalenyl and 2-benzofuranyl, we found that the maximum 
absorption wavelength of compounds 3s (λmax = 323 nm, ε = 3.12 × 
104) and 3u (λmax = 336 nm, ε = 2.27 × 104) had a light blue shift. On 
the other hand, the presence of electron-donating (3d) and π 
extend groups (3m) on the phenyl ring showed a light red shift of 
the maximum absorption wavelength. Also the emission spectra of 
these selective compounds were evaluated (see ESI, Figure S2). 
Similarly, the compounds 3d and 3m showed intense emission 
spectra (492 nm and 476 nm) with an excellent Stokes shifts (136 
nm and 117 nm). 

Table 3  Photophysical properties of the selected compounds in MeOH 
(2.5 ×10-5 M).  

Compound λabsa/nm ε(M−1cm-1) λemb/nm Stokes shift (nm) 
3a 348 20840 435 87 

3d 356 3520 492, 594 136, 211 

3g 343 23640 415 72 

3m 359 19560 476 117 

3s 323 31200 399 76 

3u 336 22760 392 56 

4 290 29560 482 192 

5 383 3360 459, 594 76, 211 
a Absorption maxima. b Fluorescent emission maxima. 

Subsequently, the metal-recognition properties of receptor 3a 
as ligand (L) were evaluated by UV-Vis spectroscopy (Figure 2a). A 
very strong high-energy (HE) absorption peak at 348 nm (ε = 2.26 × 
104) and a weak low-energy (LE) waveless peak at 287nm can be 
observed for compound 3a in MeOH (c = 2.5 ×10-5 M). To our 
delight, we found that a red shift of the HE absorption wavelength 
to 353 nm and no LE absorption wavelength can be observed upon 
the addition of 2.5 ×10-5 M Hg2+ cations to the solution of 
compound 3a, compared to other metal ions which increased 
either HE absorption peak or LE absorption peak at 294 nm and 349 
nm to 362 nm. On the other hand, the fluorescence character of 

compound 3a and the response towards K+, Na+, Ni2+, Mg2+, Ca2+, 
Pb2+ and Hg2+metal ions were investigated (Figure 2b). To our 
delight, dramatic fluorescence quenching of compound 3a was 
observed upon the addition of Hg2+ ion to the solution and a new 
emission peak appeared at 594 nm. By contrast, a gradually 
decreased fluorescent intensity was observed when gradually 
addition of other metal ions including Na+, K+, Mg2+, Ca2+, Pb2+, and 
Ni2+. These results indicated that compound 3a showed highly 
selective sensing toward Hg2+ ion over the other metal ions 
investigated. 

 
Figure 2  (a) absorption spectra of compound 3a (c = 2.5 × 10-5 M) in 
MeOH-H2O (v/v = 1:1) upon addition of several cations. (b) fluorescence 
emission spectra of 3a (c = 2.5 × 10-5 M) in MeOH-H2O (v/v = 1:1) upon 
addition of several cations. 

Conclusions 
In summary, the synthesis of novel 5-aryl-2-(quinolin-2-

yl)oxazole derivatives as a new chemosensor in metal ion 
recognition has been achieved via Rh-catalyzed formal [3+2] 
cyclization of 4-aryl-1-tosyl-1H-1,2,3-triazoles with quinoline-2-
carbaldehydes. This highly efficient protocol constructs two new 
carbon-heteroatom bonds and one new five-membered ring 
through sequential denitrogenation/1,3-dipolar 
cycloaddition/elimination process. This process does not require 
additive/base in the presence lower catalyst loadings under mild 
conditions, thus, this protocol is complementary to the inherent 
shortcomings of the existing cross-dehydrogenative coupling of 
quinoline N-oxides with 1,3-azoles. In addition, this work not only 
provided a simple and efficient one-pot reaction for the 
construction of multifunctional oxazole derivatives that are not 
easy accessible by other approaches but also demonstrated their 
application in metal ion probes. 

Experimental 
General procedure for the synthesis of 2,5-aryloxazoles 3. 

A mixture of 4-aryl-1-sulfonyl-1H-1,2,3-triazoles 1 (0.2 mmol), 
quinoline-2-carbaldehydes 2 (0.2 mmol) or 2-naphthaldehydes (0.2 
mmol) or benzofuran-2-carbaldehyde (0.2 mmol), and Rh2(oct)4 
(0.01 mmol) in DCM (2 mL) was heated to 110 °C in an oil bath for 
24 h. After the reaction was complete (as determined using TLC), 
the reaction mixture was cooled to room temperature, extracted 
with CH2Cl2 (3 × 10 mL), and washed with brine. The organic layers 
were combined, dried over Na2SO4, filtered, and then evaporated 
under vacuum. The residue was purified using flash column 
chromatography with a silica gel (200-300 mesh), using ethyl 
acetate and petroleum ether (1:10, v/v) as the elution solvent to 
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give desired products 3. 
General procedure for the synthesis of compounds 4 and 5. A 

mixture of 2-(8-bromoquinolin-2-yl)-5-phenyloxazole 3r (0.2 mmol) 
or 5-(4-bromophenyl)-2-(quinolin-2-yl)oxazole 3f (0.2 mmol), 1-
ethynyl-4-methylbenzene (0.2 mmol), Pd(PPh3)2Cl2 (4 mol%), and 
CuI (4 mol%) in triethylamine (2 mL) was stirred under argon 
atmosphere at 100 ºC in an oil bath for 24 h. After the reaction was 
complete (as determined using TLC), the reaction mixture was 
cooled to room temperature, extracted with CH2Cl2 (3 × 10 mL), and 
washed with brine. The organic layers were combined, dried over 
Na2SO4, filtered, and then evaporated under vacuum. The residue 
was purified using flash column chromatography with a silica gel 
(200-300 mesh), using ethyl acetate and petroleum ether (1:12, v/v) 
as the elution solvent to give the Sonogashira products 4 or 5. 
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