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ABSTRACT

We describe a synthesis of ketones 3 (X ) O−R or CN; Y ) H or alkyl), which are useful building blocks for the preparation of analogs of
the potent antifungal agent sordarin, 1. Congeners of 1 constructed from 3 should permit detailed SAR investigations of the terpenoid core
of the natural product.

Fungal organisms are the etiologic agents of a number of
human pathologies, which become especially problematic in
immunocompromised individuals such as AIDS and cancer
patients.1 Fungal infections are also of major concern in
agriculture, where they can significantly reduce yields and
diminish profitability.2 The search for new antifungal agents
thus remains a key objective both in medicine and in
agricultural science.

Substances that exert antifungal action by novel mecha-
nisms are of special interest, and noteworthy in such a context
is a family of natural products known as the sordarins3

(Figure 1), which block protein synthesis by inhibiting the

fungal elongation factor 2.4 Sordarin,1, has been the focus
of considerable structure-activity research, but efforts have
concentrated on modification of the glycosyl unit.5 It is
known that the aglycone of sordarins, which is termed
sordaricin,2, may be O-alkylated to yield congeners that
are endowed with activity comparable to that of the natural
product;6 however, except for the fact that bioactivity is
retained upon replacement of the CHO group in1 with a
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§ UniversitéClaude Bernard Lyon 1 and Ecole Supe´rieure de Chimie,

Physique, Electronique de Lyon.
¶ Bayer CropScience SA.
(1) (a) Rupp, S.Fut. Microbiol. 2007, 2, 141. (b) Klepser, M. E.

Pharmacotherapy2006, 26, 68. (c) Onyewu, C.; Heitman, J.Anti-Infect.
Agents Med. Chem.2007, 6, 3. (d) Richardson, M. D.; Warnock, D. W.
Fungal Infection: Diagnosis and Management, 3rd ed.; Blackwell Publish-
ing: Malden, MA, 2003.

(2) Modern Crop Protection Compounds; Kraemer, W., Schirmer, U.,
Eds.; Wiley-VCH: Weinheim, Germany, 2007.

(3) Hauser, D.; Sigg, H. P.HelV. Chim Acta 1971, 54, 1178 and
references cited therein.

Figure 1. Sordarin (1), sordaricin (2), and ketones3 targeted in
the present study.
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CN substituent,6 no information is in the public domain with
respect to the role of the subunits that adorn the terpenoid
core (the COOH group, the isopropyl substituent, the
cyclopentane ring).

A resurgence of interest in sordarins has occurred in the
past few years, as attested by recent synthetic activity7 that
nicely complements early work dating from 1993.8 The
chemistry developed during these important efforts could
surely be harnessed to furnish analogs that may clarify the
function of the various segments of the sordarin core. A more
practical alternative might be to focus on ketones3, which,
arguably, could be expeditiously elaborated to sordarin
analogs displaying variously modified terpenoid units. A
concise avenue to3 is presented herein, together with a
discussion of unusual chemical properties observed for
various synthetic intermediates.

Our approach to3 emphasizes low cost and ease of
execution, while regarding issues of absolute stereocontrol
as secondary, at least at this stage. The retrosynthetic
considerations adumbrated in Figure 2 identified enones5

and6 as suitable starting points for our effort. The preparation
of these educts proceeded from 1,3-diones7 and8 (Scheme
1). Thus,7 was converted into9 with MeOH/TiCl4,9 while
10was best prepared by O-methylation of810 with Me2SO4/
K2CO3. Deprotonation of 2-unsubstituted enone9 with
LHMDS produced a kinetic enolate, which reacted with the
Mander reagent11 to yield the known12 11 (Scheme 1). In
accord with Koreeda,13 however, the 2-substituted analog,

10, reacted under identical conditions to give12, via a
thermodynamic enolate. Michael reaction of ketoesters11
and 12 with acrolein in the presence of 2 mol % of DBU
proceeded in quantitative yield (Scheme 2). Larger quantities

of DBU promoted incomplete conversion, seemingly due to
the acceleration of a competing retro-Michael expulsion of
acrolein from the products. Aldehydes13and15are sensitive
materials that degrade easily on silica gel. Fortunately, they
emerged in a state of high purity and were utilized in the
subsequent Baylis-Hillman14 step without purification. The
kinetics of the latter reaction are notoriously slow. In neat
acrylonitrile,13 reacted at a reasonable rate, but15 required
more than 4 days to advance to16 (68% chromatographed).
The reasons behind the poor reactivity of15 remain unclear.
A 9-fold rate acceleration was achieved under Aggarwal
conditions (La(OTf)3 and triethanolamine as cocatalysts),15

but to the slight detriment of yield (50% chromatographed).
In either case, the reaction furnished14 and16 as a mixture
of alcohol diastereomers. However, this was inconsequential,
because the alcohol in question is destined to undergo
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Figure 2. Retrosynthetic analysis of ketones3.

Scheme 1. Preparation of the Requisite Cyclopentenones

Scheme 2. Michael-Baylis-Hillman Avenue to Enones
14-16
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ultimate oxidation to a ketone, thereby removing stereo-
genicity at the level of the associated C atom. The diaster-
eomeric mixtures of14 and16 were thus advanced through
the synthesis without separation.

Sordaricin-like scaffolds displaying a bridgehead oxygen
functionality were reached upon exposure of14 and16 to
excess trialkylsilyl triflate/Et3N at room temperature. This
induced formation of a presumed bis-trialkylsilyl derivative
such as17 (not isolated), which underwent a spontaneous
intramolecular Diels-Alder reaction to furnish the expected
adducts as mixtures of diastereomers. The transformation
proceeded best when TIPS-OTf was used as the silylating
agent, resulting in formation of18 and21 in 72% and 61%
chromatographed yield, respectively. As exemplified in
Scheme 3 with19, the use of TES-OTf in the same reaction

afforded a lower 52% yield. Complete regioselectivity (500
MHz 1H NMR) was observed in all such reactions, as
expected on the basis of bond polarization in both diene and
dienophile units. In particular, diagnostic1H coupling
constants were observed for the bridgehead, exo, and endo
protons (cf. Hb, Hx, and He in 18-21) situated on the
emerging bicyclo[2.2.1]heptane system.16 The conversion of
19 to diketone 23 (mixture of i-Pr epimers) served to
demonstrate a critical desilylation-oxidation step.

Educts suitable for the synthesis of congeners of3 that
exhibit a bridgehead CN group were obtained from16 upon
protection of the secondary alcohol as a TBS ether17 and
reaction with diethylaluminum cyanide18 (Scheme 4). The
resultant25 was then advanced to27, which we wished to
convert to28 by an intramolecular Diels-Alder reaction.
The presence of an electron-withdrawing CN group on both
diene and dienophile units of27 was not a concernper se:
an electronically similar cycloaddition proceeds easily19 and
with the correct regioselectivity.20 A potentially more serious
obstacle was the notoriously poor Diels-Alder reactivity of

cyanodienes.21 In spite of our hope that the intramolecular
nature of the reaction would overcome kinetic barriers,27
proved to be stable up to 160°C, above which temperature
it decomposed.

The reluctance of27 to cyclize to28 contrasts with the
facile reaction of the corresponding ester-substituted cyclo-
pentadiene,19 suggesting that the HOMO energy of27 must
be significantly lower than that of its ester-substituted
relative. Semiempirical methods detected no appreciable
differences in energies between the frontier molecular orbitals
(FMOs) of the COOMe- and CN-substituted cyclopenta-
dienes shown in Table 1,22 even though the Hammettσ

values for a CN group are more positive than those of a
COOMe group.23 However, DFT calculations (6-31G*)
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Scheme 3. Assembly of a Sordarin Core with Bridgehead
Oxygen Functionalities

Scheme 4. Chemistry of Cyanoenones

Table 1. Calculated Orbital Energies (eV)
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carried out on MM+-optimized structures revealed a much
lower HOMO energy for the cyano compound relative to
its ester analog (∆E ≈ 1 eV), thereby accounting for the
problematic reaction of27.

A plausible cure for the above problem was to induce
Diels-Alder cyclization of a more reactive enol silyl ether
derivative of25, as seen earlier in Scheme 3. But in sharp
contrast to14-16, cyanoenone25 proved to be fiercely
resistant to enol silylation,24 even under Corey-Gross25

conditions. Such a reluctance to form a silyl enol ether was
mystifying in light of the reportedly uneventful O-silylation
of 4-oxo-2-pentene-carbonitrile.26 In order to determine
whether inherent barriers exist to the enolization of25, the
compound was treated with NaH in THF. This led to a
product29of intramolecular Michael reaction (29%; Scheme
4), signaling that the enolate in question is, after all,
accessible, and that the failure of the foregoing silylation
reactions was attributable to an insufficient kinetic reactivity
of the base employed for the deprotonation of the substrate.27

Accordingly, 25 was exposed to the action of LHMDS
(excess)28 and LiCl29 in THF-HMPA, in the presence of
TBSCl. Compound30 thus emerged in 82% yield30 (Scheme
5). In yet another manifestation of the HOMO-lowering

influence of the CN substituent, siloxy diene30 exhibited
no proclivity whatsoever to undergo intramolecular Diels-
Alder reaction at room temperature. This behavior contrasts
with that of its congeners of the type17. Indeed, cyclization
required heating at 140°C for 12 h (toluene, pressure tube,
77% chromatographed). Fortunately, product31emerged as
a single regioisomer (1H NMR).31 The target ketone,33, was
easily reached from31 upon treatment with pyridine-HF
complex, which induced selective release of the TBS group
from the secondary alcohol and uneventful Dess-Martin
oxidation of the emerging32. This achieved the construction
of a sordarin precursor in which a CN group substitutes for
the bridgehead carboxy functionality of1.

We believe that ketones of the type23 and33 are quite
valuable for a study of the structure-activity relationship
of the terpenoid segment of sordarin. The straightforward
approach to these intermediates presented herein should
facilitate the search for new antifungal agents of interest in
human medicine as well as in agrochemical technology.
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Scheme 5. Assembly of a Sordarin Core with a Bridgehead
Cyano Functionality
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