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There has been longstanding interest in understanding 
the reactivity of radical cations.1,2 The motivation for these 
studies ranges from fundamental interest in organic 
synthesis3,4 to biological chemistry.5,6 Among the studies, 
sulfur-containing radical cations such as the phenoxathiin 
radical cation (1•+, Scheme 1)7,8 gained much attention from 
chemists. It was found that the radical cation of 1•+ had 
an impressive reactivity toward various small molecular 
compounds, such as amines,9,10 ketones,11 alkenes,12,13 
alkines,14 anisole15,16 and so on.17 Moreover, Everitt and 
co-workers18 found that 1•+ can interact with DNA and 
showed marked bacteriostatic action on Streptococcus. All 
these findings motivated chemists to study the reaction 
characteristics of the radical cation 1•+ towards diverse 
organic compounds.

Early investigations of 1•+ were carried out in solution. 1•+ 
could be prepared and stored as phenoxathiin radical cation 
perchlorate (1•+ ClO4

−),9 which was synthesized by perchloric 
acid oxidation of phenoxathiin solution in anhydrous benzene.7 
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However, the reactant of 1•+ ClO4
− was extremely hazardous 

and explosive when initiated by the friction of transfer, which 
restricted the proper studies of 1•+.15 As a consequence, it 
is necessary to develop a feasible method to prepare fresh 
phenoxathiin radical cations, as well as for the following 
studies of its reaction.

Our primary studies showed that phenoxathiin could easily 
give its radical cation 1•+ in electrospray ionization conditions, 
which made it possible to perform a study on the reactivity 
of 1•+. Fused-droplet electrospray ionization mass spectrom-
etry (FD-ESI/MS),19,20 which was also defined as extractive 
electrospray ionization mass spectrometry (EESI-MS),21 
based on liquid–liquid extraction between the colliding 
microdroplets,20,22 is an important technology for performing 
studies on organic reactions in ambient conditions.23–25 The 
FD-ESI set-up consists of two independent spray tips: one 
is an electrospray to generate the ionic substance, and the 
other is a neutral spray to provide neutral reactant. The 
present paper describes the application of FD-ESI-tandem 
mass spectrometry (MS/MS) for studying the reactivity of 1•+ 
in ambient conditions with various compounds, including 
aliphatic alcohols, phenol and phenyl halides. Our studies 
showed the unique reactivity of radical cation 1•+ towards 
diverse neutral organic compounds in ambient conditions, 
which has not been studied previously.

Experimental
Chemicals and reagents
Phenoxathiin (1) and D5-phenol were purchased from 
Sigma (St Louis, MO, USA). Phenol (C6H5OH), n-butyl 
alcohol (n-C4H9OH), isoamylol ((CH3)2CHCH2CH2OH) 
cyclohexanol (C6H11OH), chlorobenzene (C6H5Cl), bromo
benzene (C6H5Br) and iodobenzene (C6H5I) were of analytical 
grade and purchased from Sinopharm Chemical Reagent 
Co. Ltd (Shanghai, China). Methanol (CH3OH, HPLC grade), 
acetonitrile (CH3CN, HPLC grade), ethanol (CH3CH2OH, HPLC 
grade) and isopropanol [(CH3)2CHOH, HPLC grade] were from 
Dima Technology Inc. (Richmond Hill, VA, USA). The solution 
of 1 for ESI and FD-ESI analysis was prepared by dissolving 
0.5 mg 1 in 1.0 mL solvent. The solution was fed into the ESI 
ion source through an infusion syringe pump with a flow 
rate at 10 µL min−1. Aliphatic alcohols, phenol D5-phenol, 
and phenyl halides (C6H5X, X = Cl, Br, I) were dissolved in 
acetonitrile.

Mass spectrometry experiments
The ESI mass spectrometric experiments were carried out 
on a Finnigan TSQ (Thermo Finnigan, Quantum Access) triple 
quadrupole mass spectrometer fitted with an ESI source 
(ESI-TSQ-MS). The mass spectrometric conditions were used 
as follows: ionization voltage at +4.0 kV, capillary offset at 37 V, 
capillary voltage at 10.24 V, spray current at 2.44 µA and capil-
lary temperature at 275°C. The stainless steel spray needle is 
143.5 mm (length) × 0.10 mm (ID) H0.23 mm (OD). Nitrogen gas 

was used as the nebulizing gas which was set at 20 psi.The 
nebulizing gas for the neutral spray tip was also nitrogen with 
a pressure of about 15 psi.

The fused-droplet electrospray ionization (FD-ESI) source 
was constructed on the basis of the ESI-TSQ-MS. As shown in 
Figure 1, 1 mmol L−1 acetonitrile solution of phenoxathiin was 
introduced from the electrospray tip, while the neutral reac-
tants (such as methanol, ethanol and so on) or their acetonitrile 
solutions were fed through the neutral spray tip. Collision-
induced dissociation (CID) experiments were performed with 
argon at various collision energies (Elab = 0–30 eV) and collision 
gas pressure of 1.0 mTorr.

Computational details
Density functional calculations were performed by using 
Becke’s three-parameter hybrid exchange-correlation func-
tional26 containing the non-local gradient correction of Lee, 
Yang and Parr (B3LYP) within the Gaussian03 program.27 The 
basis set used for the remaining atomic species was 6-31G 
with the important addition of the polarization functions (d) for 
all atoms, including the hydrogen atoms.28

Results and discussions
Formation of 1•+ by electrospray ionization
The experiment for generating 1•+ was achieved by analysis 
of acetonitrile solution of 1 (phenoxathiin) with electrospray 
ionization mass spectrometry. Generally, the neutral analytes 
in ESI are charged by acid/base chemistry or by adduct forma-
tion (such as [M + H]+, [M + Na]+ and so on).29,30 However, those 
aromatic compounds31 with low ionization energy can generate 
M•+ in the positive ion mode due to single-electron transfer 
(SET) process within the charge-transfer complexation32 or 
at the metal–solution interface of the ESI needle.33,34 This 
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Figure 1. The diagram of FD-ESI source setup used in the experiments. 
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Figure 1. Diagram of the FD-ESI source set-up used in the 
experiments.
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provides an alternative approach35,36 to generate 1•+ other 
than the organic synthesis method.37

The ESI mass spectrum of acetonitrile solution of 1 showed 
the clean signal of 1•+ at m/z 200 [Figure 2(a)], which allowed 
the further investigation on the reactivity of 1•+ by FD-ESI-MS. 
Moreover, as phenoxathiin can be easily oxidized to form 
phenoxathiin S-oxide,38 the S-hydroxyl phenoxathiinium cation 
2+ at m/z 21733 [Figure 2(b)] could be detected when we analyzed 
the phenoxathiin sample which was stored for about 1 week 
after the first experiment. The CID experiment of 1•+ indicates 
the losses of S, CO and HCO• to form the ions of m/z 168, m/z 
172 and m/z 171, respectively [Figure 2(c)]. In the MS/MS for 
CID of the ion 2+ at m/z 217 [Figure 2(d)], 2+ gives the product 
ion 1•+ of m/z 200 by the loss of an AOH radical.

Ambient reactions of 1•+ with aliphatic 
alcohols
The ambient reactions between 1•+ and aliphatic alcohols were 
monitored by FD-ESI-MS. In the FD-ESI-MS experiments, the 
solution of 1 in acetonitrile was fed into the ion source through 

the electrospray tip A to give 1•+. Meanwhile, the reactant 
of methanol was imported into the ion source through the 
neutral spray tip B. Such an experimental set-up allowed the 
reaction of 1•+ with methanol under conditions of colliding 
microdroplets (shown in Figure 1). The product ions subse-
quently experienced the desolvation39 and then were further 
detected using a mass spectrometer.

Figure 3 shows the reaction results of 1•+ with methanol 
[Figure 3(a)] and ethanol [Figure 3(b)]. Besides the ion of m/z 
217, the spectra show the S-methoxyl phenoxathiinium cation 
(3+ at m/z 231) and the S-ethoxyl phenoxathiinium cation (4+ at 
m/z 245) as the major products, respectively. Scheme 2 shows 
the possible reaction pathway of 1•+ with neutral aliphatic 
alcohols40,41 in ambient conditions.

The MS/MS spectrum of 3+ (m/z 231) gave the major product 
ion of 1•+ (m/z 200) and the minor product ion of m/z 216 
[Figure 4(a)]. The generation of 1•+ at m/z 200 from 3+ at m/z 
231 indicated the homolytic cleavage of the sulfur–oxygen 
bond15 in 3+ to form 1•+ by loss of an •OCH3 radical. This 
phenomenon can be attributed to those weak S–X (X = N, O, C, 
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Figure 2.�(a) ESI mass spectrum for 1 in CH3CN, (b) ESI mass spectrum for 1 (stored

for one week after the first experiment) in CH3CN, (c) ESI-MS/MS spectrum for CID 

of the ion 1•+ at m/z 200, (d) ESI-MS/MS spectrum for CID of the ion 2+ at m/z 217. 

Ambient-reactions of 1•+ with aliphatic alcohols 

The ambient reactions between 1•+ and aliphatic alcohols were monitored by 

FD-ESI-MS. In the FD-ESI-MS experiments, the solution of 1 in acetonitrile was fed 

into the ion source through the electrospray tip A to give 1•+. Meanwhile, the reactant 

of methanol was imported into the ion source through the neutral spray tip B. Such 

experimental set-up allowed that the reaction of 1•+ with methanol in the condition of 

colliding microdroplets (shown in Figure 1Figure 1). The product ions subsequently 

experienced the desolvation39 and then were further detected by mass spectrometer. 

Figure 3. FD-ESI-MS spectra of droplet reactions of 1•+ with alcohols: (a) 
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Figure 2. (a) ESI mass spectrum for 1 in CH3CN, (b) ESI mass spectrum for 1 (stored for 1 week after the first experiment) in CH3CN, (c) 
ESI-MS/MS spectrum for CID of the ion 1•+ at m/z 200, (d) ESI-MS/MS spectrum for CID of the ion 2+ at m/z 217.
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Figure 3. FD-ESI-MS spectra of droplet reactions of 1•+ with alcohols: (a) methanol, (b) ethanol.
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S) bonds.42 The fragment ion at m/z 216 corresponding to the 
S-oxide phenoxathiin radical cation was formed through the 
carbon–oxygen bond homolysis of 3+ (Scheme 3) with the loss 
of a •CH3 radical. However, the CID mass spectrum [Figure 
4(b)] of 4+ gave the fragment ion 1•+ of m/z 200 and the frag-
ment ion 2+ of m/z 217. It is interesting that the generation 
of m/z 217 from 4+ at m/z 245 suggested a b-H abstraction 
process via loss of neutral ethylene, which proved to be one 
of the main products in the solution of condensed phase 
reactions between 1•+ and aliphatic alcohols43,44 (Scheme 
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Figure 3Figure 3 shows the reaction results of 1•+ with methanol (Figure 3Figure 3a)
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S-methoxyl phenoxathiinium cation (3+ at m/z 231) and the S-ethoxyl 

phenoxathiinium cation (4+ at m/z 245) as the major products, respectively. Scheme

2Scheme 2 shows the possible reaction pathway of 1•+ with neutral aliphatic 
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Scheme 2. Reactions of 1•+ at m/z 200 with water and alcohols (methanol and ethanol), 

giving 2+ (m/z 217), 3+ (m/z 231) and 4+ (m/z 245) in FD-ESI-MS condition. 

The MS/MS spectrum of 3+ (m/z 231) gave the major product ion of 1•+ (m/z 200) 

and the minor product ion of m/z 216 (Figure 4Figure 4a). The generation of 1•+ at m/z

200 from 3+ at m/z 231 indicated the homolytic cleavage of sulfur-oxygen bond15 in 3+

to form 1•+ by loss of an ·OCH3 radical. This phenomenon can be attributed to those 

weak S-X (X=N, O, C, S) bonds42. The fragment ion at m/z 216 corresponding to the 
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Scheme 2. Reactions of 1•+ at m/z 200 with water and alcohols 
(methanol and ethanol), giving 2+ (m/z 217), 3+ (m/z 231) and 4+ 
(m/z 245) in the FD-ESI-MS condition.
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Scheme 3. Proposed fragmentation pathways for S-alkoxyl phenoxathiinium cations 
3+-8+. 

 

Meanwhile, similar results were obtained from the reaction of 1•+ with isopropanol, 

n-butanol, isopropanol and cyclohexanol. They gave the S-alkoxyl phenoxathiinium 

cations of 5+ at m/z 259, 6+ at m/z 273, 7+ at m/z 287 and 8+ at m/z 299 as the major 

product ions in the ambient reactions with 1•+, respectively. The CID mass spectra of 

5+-8+ (Figure 4Figure 4) showed that the ion of 1•+ at m/z 200 by homolytic cleavage 

of sulfur-oxygen bond and the ion of 2+ at m/z 217 by loss of olefin Y (Scheme 3) via 

β-H abstraction are the major products. These experiment results clearly demonstrated 

the reactivity of 1•+ towards alcohols in ambient condition45. These results suggested 

that the S-alkoxyl phenoxathiinium cations (shown in Scheme 3Scheme 3) might be 

Formatted: Font: Not Bold

Formatted: Font: Not Bold

Formatted: Font: Not Bold, (no
proofing), Check spelling and grammar

Scheme 3. Proposed fragmentation pathways for S-alkoxyl 
phenoxathiinium cations 3+–8+.
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3). DFT calculations for the two possible gas-phase disso-
ciations of 4+ at m/z 245 were shown in Figure 5: (1) b-H 
abstraction to form 2+ of m/z 217 via the transition state with 
an energy barrier of 311.9 kJ mol−1 and the relative energy 
of products with 117.6 kJ mol−1; (2) C–O band homolysis to 
form ion of m/z 216 via the transition state with an energy 
barrier of 343.3 kJ mol−1 and relative energy of products with 
333.2 kJ mol−1. The calculations indicated that the fragment 
pathway of b-H abstraction to form 2+ at m/z 217 is ther-

modynamically favored by 215.6 kJ mol−1 to the pathway of 
the carbon–oxygen bond homolysis to the ion at m/z 216. 
Meanwhile the energy barrier of b-H abstraction to form 2+ 
at m/z 217 is lower by 31.4 kJ mol−1 than the pathway of the 
carbon–oxygen bond homolysis to form the ion at m/z 216. 
These results supported the proposed dissociation pathway 
of 4+ at m/z 245 to form 2+ at m/z 217 by b-H abstraction 
process.
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Ambient-reaction of 1•+ with phenol 

The ambient reaction of 1•+ with phenol49 was performed and the FD-ESI mass 

spectrum gave a strong signal at m/z 293 (Figure 6Figure 6). Two possible structures 

as 9+ and 10+ were proposed for the ion at m/z 293 and they were shown in Scheme

4Scheme 4. To further confirm the structure of ion at m/z 293, D5-phenol (C6D5OH)

was employed as the reactant. Figure 7Figure 7a shows the reaction result of 1•+ and 

C6D5OH, which gives two product signals at m/z 297 and m/z 298. Based on such 

results, we deduced that the ion at m/z 297 is isotope peak A of D4-9+ (Scheme

5Scheme 5), generated through the electrophilic substitution of 1•+ toward the 

aromatic ring of D5-phenol50,51,52. According to Scheme 5, ion at m/z 298 might come 

from the contribution of D5-10+ (A isotope peak, 12C18
1H8

2D5
16O2

32S+, formed through 

the phenolic hydroxylation of 1•+ by phenol), or the contribution of (A+1) isotopic 

peak of D4-9+ (13C12C17
1H9

2D4
16O2

32S+, formed through the electrophilic substitution 

of 1•+ toward the aromatic ring of D5-phenol. The experimental ratio (shown in Table 

1) of m/z 200 to m/z 201 obtained from the MS/MS spectrum of m/z 298 (Figure 7b, 

Scheme 6Scheme 6) indicates that the ion at m/z 298 is a mixture of isotopic peak A 

of D5-10+ (12C18
1H8

2D5
16O2

32S+, m/z 298) and isotopic peak (A+1) of D4-9+

(13C12C17
1H9

2D4
16O2

32S+, m/z 298). The experiment results showed the unique 

reactivity of 1•+ towards phenol in ambient condition. 

Figure 6. (a) FD-ESI-MS spectrum of the reaction between 1•+ and phenol, (b) 

FD-ESI-MS/MS spectrum of the ion at m/z 293. 
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Figure 6. (a) FD-ESI-MS spectrum of the reaction between 1•+ and phenol, (b) FD-ESI-MS/MS spectrum of the ion at m/z 293.
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Scheme 4. Possible products of the reaction between 1•+ and phenol to give isomers 
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Meanwhile, similar results were obtained from the reaction 
of 1•+ with isopropanol, n-butanol, isopropanol and cyclo
hexanol. They gave the S-alkoxyl phenoxathiinium cations of 
5+ at m/z 259, 6+ at m/z 273, 7+ at m/z 287 and 8+ at m/z 299 
as the major product ions in the ambient reactions with 1•+, 
respectively. The CID mass spectra of 5+–8+ (Figure 4) showed 
that the ion of 1•+ at m/z 200 by homolytic cleavage of sulfur–
oxygen bond and the ion of 2+ at m/z 217 by loss of olefin Y 
(Scheme 3) via b-H abstraction are the major products. These 
experimental results clearly demonstrated the reactivity of 
1•+ towards alcohols in ambient conditions.45 These results 
suggested that the S-alkoxyl phenoxathiinium cations (shown 
in Scheme 3) might be the reactive intermediates of solution 
reactions of 1•+ with aliphatic alcohols.46–48

Ambient reaction of 1•+ with phenol
The ambient reaction of 1•+ with phenol49 was performed and 
the FD-ESI mass spectrum gave a strong signal at m/z 293 
(Figure 6). Two possible structures, 9+ and 10+, were proposed 
for the ion at m/z 293 and they were shown in Scheme 4. To 
further confirm the structure of the ion at m/z 293, D5-phenol 
(C6D5OH) was employed as the reactant. Figure 7(a) shows the 

reaction result of 1•+ and C6D5OH, which gives two product 
signals at m/z 297 and m/z 298. Based on such results, we 
deduced that the ion at m/z 297 is isotope peak A of D4–9+ 
(Scheme 5), generated through the electrophilic substitution of 
1•+ toward the aromatic ring of the D5-phenol.50–52 According to 
Scheme 5, the ion at m/z 298 might come from the contribution 
of D5–10+ (A isotope peak, 12C18

1H8
2D5

16O2
32S+, formed through 

the phenolic hydroxylation of 1•+ by phenol), or the contribu-
tion of (A+1) isotopic peak of D4–9+ (13C12C17

1H9
2D4

16O2
32S+, 

formed through the electrophilic substitution of 1•+ toward the 
aromatic ring of D5-phenol. The experimental ratio (shown 
in Table 1) of m/z 200 to m/z 201 obtained from the MS/MS 
spectrum of m/z 298 [Figure 7(b) and Scheme 6] indicates that 
the ion at m/z 298 is a mixture of isotopic peak A of D5–10+ 
(12C18

1H8
2D5

16O2
32S+, m/z 298) and isotopic peak (A + 1) of D4–9+ 

(13C12C17
1H9

2D4
16O2

32S+, m/z 298). The experimental results 
showed the unique reactivity of 1•+ towards phenol in ambient 
conditions.

Ambient reactions of 1•+ with phenyl halides
In solution condition at room temperature, 1•+ had been 
found not to react with phenyl halides or at least too slowly 
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to observe.7,53 However, the FD-ESI mass spectra [Figures 
8(a)–(c)] of the ambient reactions of 1•+ with phenyl halides 
clearly showed a product ion at m/z 277.54–56 The corre-
sponding possible structure of 11+ is shown in Scheme 7. This 
experiment indicates that 1•+ has significant reactivity towards 

phenyl halides directly (Scheme 5) in FD-ESI condition. The 
CID experiment of the ion 11+ at m/z 277 [Figure 8(d)] indicated 
1•+ at m/z 200 as the major fragment ion, which confirmed the 
possible structure of 11+.

Conclusions
This study showed the reactivity of phenoxathiin radical 
cation with alcohols, phenol and phenyl halides in ambient 
reactions and these reactions were monitored by an simply 
FD-ESI-MS(/MS) experimental set-up. The experimental 
results showed that the S-alkoxyl phenoxathiinium cations 
are the key intermediates of the reactions between phenox-
athiin radical cation and alcohols. The phenol can react 
with phenoxathiin radical cation to produce isomer product 
ions in ambient condition. In addition, it has been proved 
that phenyl halides react with phenoxathiin radical cations 
in ambient conditions. The reaction of phenoxathiin radical 
cations with phenyl halides generated electrophilic aromatic 
substitution product ions which had not been observed in 
the solution before. All these findings not only provided an 
alternative approach to studying organic reactions of highly 

Copyright IM Publications LLP 
Cite as S.-J. Yao, H.-Y. Wang, L. Zhang and Y.-L. Guo, Eur. J. Mass Spectrom. (2011) doi: 10.1255/ejms.1136 
 

 13

Formatted: Left, Border: Bottom: (No
border) 

S+

O

D

D

D

D
OH

A+1 of D4-9+

13C12C17
1H9

2D4
16O2

32S+

m/z 298

A of D5-10+

12C18
1H8

2D5
16O2

32S+

S

O

13C12C11
1H8

16O32S

12C12
1H8

16O32S m/z 200

m/z 201

S+

O

O
D

D
D

D

D
S

O
12C12

1H8
16O32S m/z 200

 

Scheme 6. Possible fragmentation pathways for the ion at m/z 298. 

 

Table 1. Calculations for the product ratio of I200 to I201 get from m/z 298 

 Precursor ions The ratio of product ions 

theoretical ratio 

theoretical ratio 

Experimental ratio 

A+1 peak of D4-9+ at m/z 298 

A of D5-10+ at m/z 298 

signal at m/z 298 

I200: I201≈ 1:2 

I200: I201= 1:0 

I200: I201≈ 9:10 

I: Relative abundance of the ion. 

 

Ambient-reactions of 1•+ with phenyl halides 

 

Scheme 6. Possible fragmentation pathways for the ion at m/z 298.

Ratio Precursor ions Ratio of product ions
Theoretical ratio A + 1 peak of D4-9+ at m/z 298 I200: I201 ≈ 1:2
Theoretical ratio A of D5-10+ at m/z 298 I200: I201 = 1:0
Experimental ratio Signal at m/z 298 I200: I201 ≈ 9:10

I is the relative abundance of the ion.

Table 1. Calculations for the product ratio of I200 to I201 obtained from m/z 298.
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Conclusions 

This study showed the reactivity of phenoxathiin radical cation with alcohols, phenol 

and phenyl halides in ambient reactions and these reactions were monitored by an 

simply FD-ESI-MS(/MS) experimental setup. The experimental results showed that 

the S-alkoxyl phenoxathiinium cations are the key intermediates of the reactions 

between phenoxathiin radical cation and alcohols. The phenol can react with 

phenoxathiin radical cation to produce isomer product ions in ambient condition. In 

addition, phenyl halides are proved to react with phenoxathiin radical cation in

ambient condition. The reaction of phenoxathiin radical cation with phenyl halides 

generated electrophilic aromatic substitution product ion which had not been observed 

in the solution before. All of these findings not only provided an alternative approach 

to study organic reactions of highly reactive phenoxathiin radical cation with diverse 

organic compounds, but also showed the remarkable convenience of FD-ESI-MS(/MS) 

for probing organic reactions in ambient reactions.
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reactive phenoxathiin radical cations with diverse organic 
compounds, but also showed the remarkable convenience 
of FD-ESI-MS/MS for probing organic reactions in ambient 
reactions.
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