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Abstract  

The intramolecular carbocyclization of difluorinated enol acetals has been achieved for the 

first time using gold(I) catalysis. Difluorinated enol acetals bearing a pendant alkene group 

can be cyclized and reduced in one pot to form fluorinated diol motifs. Alternatively, the 

cyclization of terminal alkynes allows for the synthesis of fluorinated pyran scaffolds. Both 

cyclization processes can be performed under mild conditions allowing access to complex 

products rich in functionality. The cyclic systems are synthesized concisely (maximum four 

steps) from trifluoroethanol, an inexpensive fluorinated feedstock. 

Introduction 

The design and synthesis of geminal difluoro compounds is an extremely important 

objective in medicinal chemistry owing to their unique biological properties, such as enzyme 
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inhibition, pKa modulation and improving metabolic stability.1 However, efficient methods, 

starting from sustainable low cost starting materials, for the introduction of the gem-

difluoromethylene group into cyclic molecules are still scarce. One of the most commonly 

implemented methods involves fluorination of a cyclic  ketone with a nucleophilic 

fluorinating agent such as diethylaminosulfur trifluoride (DAST).1b An alternative method 

recently reported independently by the groups of Amii and Dilman utilizes a 

difluorocyclopropanation/ring expansion strategy to effectively introduce the –CF2 moiety 

(Scheme 1).2,3 

 

Scheme 1. Selection of methods for preparing difluorinated carbocycles. 

 

Annulation chemistry based on difluorinated building blocks is much less well established.4 

In our efforts towards the development of new methods for the synthesis of selectively 

difluorinated carbocycles we recently reported the Saegusa-Ito cyclization as a concise and 

efficient protocol for the construction of selectively difluorinated cyclohexenones (Scheme 

2).5  
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Scheme 2. Context of the current study. 

 

Whilst this method represented a novel and exciting synthetic development, it is limited by 

poor atom economy arising from the use of two protecting groups, including the very robust 

carbamate. A more atom efficient cyclization based on difluorinated enol acetal nucleophiles 

would therefore be an attractive approach. While such species have proved effective 

substrates in sigmatropic rearrangements, their reactivity as nucleophiles has not been 

exploited in synthesis.6 We envisioned that these species could be utilized in a divergent 

synthetic strategy to afford either difluorinated diols or pyrans through a gold(I) catalyzed 

cyclization (Scheme 2).7  

Results and Discussion 

Investigation into alkene cyclization. Following protection of trifluoroethanol, the 

requisite enol acetal species could be accessed from acetal 1 using our previously established 

one-pot dehydrofluorination/metalation procedure (Scheme 3).8  
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Scheme 3. Allylic alcohol synthesis 

Treatment of 1 with lithium diisopropylamide generates the stabilized organolithium 

intermediate 2. Addition of a γ,δ-unsaturated aldehyde or ketone followed by quenching with 

aqueous ammonium chloride delivers the desired allylic alcohols 3. This procedure was 

typically performed on a > 10 mmol scale and, where possible, the products were purified by 

Kugelrohr distillation. A range of allylic alcohols were synthesized including, heterocyclic, 

geminally disubstituted and alicyclic analogues (Table 1).  
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Table 1: Difluorinated allylic alcohols 3 prepared from 1. 
 

 

 

 

 

 

 

Electrophile Product Yield (%)a drb 

 
 

69c 
19:1 

trans-3a/cis-3a 

 
 

32c, d 
32:1 

trans-3b 

 
 

56c 
3.5:1 

trans-3c/cis-3c 

  

42c, e 
4.9:1 

trans-3d/cis-3d 

 
F

F

MEMO

OH 3e  

73 
- 

  

64 
- 

  

61f - 

  

31g - 

  

30f - 

 

 

19c, e 
32:1 

trans-3j/cis-3j 

a Isolated yields. All reactions were carried out with 12 mmol of 1 unless otherwise stated. b 

Diastereomeric ratio determined by 19F NMR spectroscopy; for mixtures the major isomer is shown. c 

Isolated as a mixture of cis- and trans- diastereoisomers, major isomer shown. d At 9.5 mmol scale. e 

At 5 mmol scale.  f At 10 mmol scale. g At 8 mmol scale. 
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These allylic alcohols were indefinitely stable when stored at 0 °C. With access to the 

requisite substrates secured, the allylic alcohol 3a was chosen as a model substrate to 

investigate the proposed novel cyclization.5 We began our studies using cyclization 

conditions similar to those reported by Toste for the carbocyclization of silyl enol ethers onto 

gold activated alkynes (Table 2).9  

Table 2: Optimization of the one-pot cyclization reduction. 

 

 Au cat. 
Au cat. 
(mol%) 

AgSbF6 
(mol%) 

time 
(h) 

reducing 
agent 

yield 
(%)a 

1 IPrAuCl 5 5 5 NaBH4 42 

2 IPrAuCl 5 5 5 TBAB 70 

3 IPrAuCl 2.5 2.5 5 TBAB 68 

4 IPrAuCl 1 1 22 TBAB 51 

5 Ph3PAuCl 5 5 - - 0b 

6 IPrAuCl 5 - - - 0b 

7 None - 5 - - 0b 

aIsolated Yield. Product was isolated as a mixture of 1,3-trans, 1,8a-trans and 1,3-

cis, 1,8a-trans diastereoisomers (2.6:1), Major isomer shown. bNo cyclized product 

could be detected by 19F NMR.   

Using silver hexafluoroantimonate(V) as a chloride abstractor (generating  the catalytically 

active cationic gold species in situ) in conjunction with 5 mol% 1,3-bis(2,6-

diisopropylphenyl-imidazol-2-ylidene)gold(I) chloride (IPrAuCl)10
 ensured a successful 
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cyclization and  the difluoroketone intermediate was reduced in situ using  

tetrabutylammonium borohydride (TBAB).  

The improved solubility of TBAB over sodium borohydride in the reaction media may have 

accounted for the higher yield of 4a (Entry 2, 70%, 2.6:1 dr).  

Lower catalyst loadings resulted in diminished yields and more protracted purification 

procedures, whilst application of a phosphine based catalyst yielded no cyclized product. The 

necessary control reactions in the absence of both silver and gold catalyst were also 

performed. In both cases no cyclized product could be detected  from the reaction indicating 

that both silver and gold components must be present in order for the cyclization to proceed 

smoothly.  It is possible that the α-hydroxy functionality may also provide some stereocontrol 

during the reduction process through dihydrogen bonding as no cis-diol was observed in the 

reaction mixture (Scheme 4).11  

 

 

Scheme 4: Selective reduction affording 1,3-trans, 1,8a-trans 4a (left) and 1,3-cis, 1,8a-

trans 4a (right). 

With optimized conditions in hand, we next investigated the scope of the one pot 

cyclization/reduction reaction (Table 3). 
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Table 3: Scope of one-pot cyclization/reduction method. 

 

 Allylic Alcohol Product Yield(%)a drb 

1 19:1 
trans-3a/cis-3a 

 

70 
2.6:1 

1, 3-trans, 1, 8a-trans: 

1, 3-cis, 1, 8a-trans 

2 32:1 
trans-3b/cis-3b 

 

69 

4.9:1  

1, 3-trans, 1, 9a-trans: 

1, 3-cis, 1, 9a-trans 

3 3.5:1 
trans-3c/cis-3c 

 

48 

6.7:1.4:1  

4a, 5-trans, 5, 7-trans: 

4a, 5-trans, 5, 7-cis: 

4a, 5-cis, 5, 7-cis 

4 4.9:1 
trans-3d/cis-3d 

 

50c 

3.4:0.9:1  

4a, 5-trans, 5, 7-trans: 

4a, 5-trans, 5, 7-cis: 

4a, 5-cis, 5, 7-cis 

5 3e 

 

25d >20:1 

1, 2-trans, 2, 4-trans 

6 3e 

 

16d 
>20:1 

1, 2-trans, 2, 4-cis 

7 3f 

 

11 
>20:1 

1, 2-cis, 2, 4-trans 

8 3g 

 

63 
>20:1 

1, 2-cis, 2, 4-trans 

9 3h 

 

29d 

1.3:1:0.1  

4, 5-trans, 5, 7-cis: 

4, 5-trans, 5, 7-trans: 

4, 5-cis, 5, 7-cis 

10 3i 

 

44 

3.8:1  

6, 7-trans, 7, 9-trans: 

6, 7-cis, 7, 9-trans 
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11 32:1 
trans-3j/cis-3j 

 

29e 

7.3:1  

3, 4a-cis: 

3, 4a-trans 
aIsolated yield. bDiastereomeric ratio determined by 19F NMR spectroscopy; for mixtures the major 

isomer is shown. c10 days reaction time. dDiastereoisomers could be separated by normal phase 

chromatography. e From corresponding alkyne. 15 minutes reaction time and TBAB not added. 

 

Cyclizations were typically performed on 1 mmol scale. Annelations afforded a range of 

fused bicyclic difluorinated diols 4a-4d and the reaction also tolerated the formation of 

heterocycles 4c-4d. More challenging annulations could also be performed on both 

unsubstituted and substituted cyclization precursors. It was possible to isolate the single 

trans, trans diastereoisomers of 4a and 4b by recrystallization of the mixtures by vapor 

diffusion using chloroform/pentane.  We were able to isolate diastereoisomerically pure trans, 

trans 4ea and trans, cis 4eb as well as a mixture of both the cis,cis and trans, trans 

diastereoisomers (1.2:1 respectively, 15%) representing an overall yield of 56%. Annulations 

generally required a minimum level of substitution on the chain and a lower yield was 

obtained for the least substituted system 4f (11 %). Gem-dimethyl 4g was isolated in good 

yield and diastereoselectivity. In this case the selectivity of the reduction can be rationalized 

from consideration of the bulky borohydride reagent preferentially attacking the pro-

equatorial face of the ketone, avoiding an unfavorable steric interaction with the axial C-3 

methyl substituent of the ring.12 Consequently, the carbon center which is reduced now bears 

an S configuration. Spirocycles 4h and 4i were both isolated as mixtures of diastereoisomers 

in moderate yield and for the spiro-cyclopropyl analogue, it was also possible to isolate small 

quantities of both trans, trans 4h (5%) and trans, cis 4h (6%) as single diastereoisomers 

(representing an overall yield of 40%). The stereochemical outcome of the reduction of spiro-

cyclopentyl 4i is equivalent to gem-dimethyl 4g and the two diastereoisomers formed both 

have S configuration at the reduced carbon center. Conversely, the three diastereoisomers 
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isolated for 4h have the opposite R configuration. This can be rationalized by consideration 

of the position of the ‘axial’ methylene group in 4h. The strained cyclopropane ring requires 

bond angles to be smaller than those of typical sp3 hybridized carbons; therefore, the 

methylene is not adopting a defined axial position, allowing the borohydride reagent to attack 

the pro-axial face of the ketone.  The three-dimensional nature of such spirocyclic derivatives 

are of particular interest in medicinal chemistry and drug discovery.13 In reactions where 

multiple diastereoisomers were formed there structures were elucidated through a 

combination of X-ray crystallographic analysis, 2D NMR and 19F-1H HOESY spectroscopic 

experiments.14  

Attempted cyclization of a terminal alkyne substrate did not yield the desired product and 

instead afforded non-fluorinated pyran 5. A working hypothesis as to how this product may 

be obtained is outlined in Scheme 5. We believe that initial attack of methanol onto the gold 

activated alkyne followed by a cyclization/elimination cascade is responsible for the 

formation of 5. 

 

 

Scheme 5. Proposed mechanism for formation of 5. 
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Although unexpected this result was encouraging and we hypothesized that we could utilize 

the enhanced reactivity of the alkyne functionality to synthesize alternative difluorinated 

scaffolds. 

Investigation into alkyne cyclization. Pyrans are becoming an increasingly important 

heterocyclic scaffold in medicinal chemistry and can be found in a variety of bioactive 

compounds.15 Only slight modification of the current synthetic route would enable access to 

structurally unique difluorinated pyran variants (Scheme 6) 

 

Scheme 6. Retrosynthetic route to difluorinated pyrans. 

A small palette of propargyl ethers 6 were synthesized from difluoroallylic alcohols 3 using 

our published propargylation procedure (Table 4).(6a)  
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Table 4 – Propargyl ethers 6 synthesized from allylic alcohols 3. 

 

Allyl Alcohol Propargyl Ether  Isolated Yield (%) 

 
 

6a 71 

 
 

6b 68 

 
 

6c 88 

 
 

6d 79 

 
 

6e 74 

 
 

6f 88 
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Simply treating difluoroallylic alcohols 3 with slight excess of propargyl bromide in a 50% 

aqueous solution of sodium hydroxide and a phase transfer catalyst afforded the desired 

propargyl ethers in good yield.  Alkyne 6a was chosen as a model substrate to investigate the 

proposed cyclization. Knowing that the alkyne moiety was susceptible to attack from 

methanol, the previously established cyclization conditions were employed in the absence of 

this solvent (Table 5).  

Table 5: Optimisation of alkyne cyclization.  

 

 Au catalyst Temp (°C) Solvent 
Time 
(h) 

Isolated Yield (%)a 

1 IPrAuCl rt DCM 4 21 
2 IPrAuCl rt Toluene 5 61 
3 IPrAuCl rt THF 3 0b 
4 IPrAuCl rt 2-MeTHF 21 65 
5 IPrAuCl rt CPME 5 61 
6 IPrAuCl 40 2-MeTHF 2 49 
7 Ph3PAuCl rt 2-MeTHF 24 54 

aYield calculated based on the molecular weight of the  hydrate component. b Polymerisation 

observed.  

Using dichloromethane in a single solvent system it was possible to isolate the desired 

cyclized product, albeit in low yield.   Given that α,α-difluoroketones are known to readily 

hydrate the products were often isolated as a mixture of the ketone 7a and corresponding 

hydrate 8a.17 Upon switching to toluene the reaction was complete after 5 hours, and a 

significant increase in yield was observed. Whilst toluene appeared suitable for this particular 

substrate we found it to be incompatible with others and instead formed complex mixtures. 

As the objective was to identify a generic solvent which was not just substrate specific we 

decided to continue with further solvent screening. Polymerization of the reaction mixture 

Page 13 of 60

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



was observed when tetrahydrofuran was used. Tetrahydrofuran is known to undergo 

polymerization in the presence of catalytic quantities of metal halide salts, therefore the 

AgSbF6 used in the reaction is likely to be the trigger for this process.17 This unwanted 

polymerization could be avoided by switching to 2-methyltetrahydrofuran (2-MeTHF). 

Pleasingly, this solvent was not substrate specific and was compatible with other cyclizations. 

The ability to conduct the reaction in this inexpensive, sustainable solvent at room 

temperature is an attractive feature of the methodology.18 Using cyclopentyl methyl ether 

(CPME) as an alternative ethereal solvent gave similar results to those obtained in toluene 

and also proved ineffective with other substrates screened. Following this screen we decided 

to use 2-MeTHF as the solvent of choice for moving forward with the investigation. 

Increasing the reaction temperature significantly decreased the reaction time; however, this 

was accompanied by a lower product yield. Ph3PAuCl could also be used as a catalyst for the 

reaction; however, the best results were achieved by using IPrAuCl.  

The reaction tolerated a variety of substituents. Carbocyclic analogue 8b was isolated in 

comparable yield to the model substrate and, in this case, the ketone existed as the major 

component in the mixture. In contrast heterocycle 8c was isolated exclusively as the hydrate. 

This material was recrystallized by vapor diffusion using tetrahydrofuran/pentane and its 

structure confirmed by single crystal X-ray diffraction. It was also pleasing to note that the 

reaction tolerated aromatic substituents. Phenyl analogue 8d and electron withdrawing 

(trifluoromethyl) phenyl 8e were isolated in good yield. This result was encouraging as we 

had previously been unable to access such cyclic difluorinated systems bearing aromatic 

substituents.5 Electron withdrawing aromatic substituents were tolerated; however, we were 

unable to isolate electron rich aromatic 8f and the reaction yielded only a complex mixture 

(Table 6). 
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Table 6 – Scope of Alkyne Cyclization. 

 

 Alkyne Product Isolated Yielda Ketone:Hydrateb 

1 6a 

 

65c 1:1 

2 6b 

 

63d 7.3:1 

3 6c 

 

62c 0:1 

4 6d 

 

52c 1:3.8 

5 6e 

 

52c 1:6.1 

6 6f 

 

0 - 

aIsolated yield. Yield is based upon major component. bRatio determined by 19F NMR spectroscopy; 

in each example the hydrate component is shown. cYield calculated based on the molecular weight of 

the  hydrate component. dYield calculated based on the molecular weight of the ketone component.  

Conclusion 

The methodology described allows for the concise synthesis of either difluorinated diol or 

difluorinated pyran scaffolds (3 steps and 4 steps respectively from trifluoroethanol, an 
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inexpensive commercial feedstock). Cyclizations are simple to perform and complex diol 

fragments can be synthesized via a one pot cyclization/reduction method under mild 

conditions in reactions vessels open to air. Alkyne cyclizations can be performed under 

similarly mild conditions at room temperature in 2-Methyltetrahydrofuran to afford products 

rich in functionality and sp3 character and inaccessible by concise methods. 

Experimental Section 

General Methods. NMR spectra were recorded on Bruker DPX-400, AV-500 and Avance-

II+ 600 spectrometers. 1H, 19F and 13C NMR spectra were recorded using the deuterated 

solvent as the lock and the residual solvent as the internal reference. The multiplicities of the 

spectroscopic data are presented in the following manner: s = singlet, d = doublet, dd = 

double doublet, dt = doublet of triplets, dq = doublet of quartets, dquint = doublet of quintets, 

ds = doublet of sextets, qd = quartet of doublets, qt = quartet of triplets, ddt = doublet of 

double triplets, ddd= doublet of doublet of doublets, dddd = doublet of double doublet of 

doublets, dddt = doublet of double doublet of triplets, tdd = triplet of doublet of doublets, td = 

triplet of doublets, t = triplet, q = quartet, m = multiplet and br. = broad. Unless stated 

otherwise, all couplings refer to 3
J  homocouplings. IR spectra were recorded on an ATR IR 

spectrometer. GC/MS spectra were obtained on an instrument fitted with a DB5-type column 

(30 m × 0.25 µm) running a 40−320 °C temperature program, ramp rate 20 °C min −1 with 

helium carrier gas flow at 1 cm3 min−1. Chemical ionisation (CI) (methane/ammonia) and 

Electron Ionisation (EI) mass spectra were recorded on either an Agilent Technologies 5975C 

mass spectrometer or a FINNIGAN MAT 95 high resolution double focussing (BE) mass 

spectrometer (EPSRC National Mass Spectrometry Service Centre, Swansea). HRMS 

measurements were obtained from a Waters GCT Premier MS (CI), Finnigan Mat 95 XP (EI-

MS and/or APCI-MS), Thermo Scientific LTQ Orbitrap XL via Advion TriVersa NanoMate 

infusion (ESI) or Waters Xevo G2-S  Atmospheric Solids Analysis Probe (APCI, Positive 
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mode, Xevo) spectrometers (EPSRC National Mass Spectrometry Service Centre, Swansea). 

Thin layer chromatography was performed on pre-coated aluminium-backed silica gel plates 

(E. Merck AG, Darmstadt, Germany. Silica gel 60 F254, thickness 0.2 mm). Visualisation 

was achieved using potassium permanganate dip or UV detection at 254 nm. Column 

chromatography was performed on silica gel (Zeochem, Zeoprep 60 HYD, 40-63 µm) using a 

Büchi Sepacore system. Hexane was distilled before chromatography. [(IPr)AuCl] (IPr =  

1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene, 95%) and AgSbF6 (98%) were purchased 

from Strem Chemicals and used as received. THF was dried using a PureSolv system from 

Innovative Technology, Inc.. Diisopropylamine was distilled from 4Å molecular sieves (30 

°C/140 mbar) and stored under nitrogen over 4Å molecular sieves. All other chemicals were 

purchased from Sigma Aldrich, Alfa Aesar, or Fluorochem. All compounds were named 

according to the ChemDraw Professional 15.0 package and checked against Scifinder® 

chemical database. Single-crystal data were measured at with Oxford Diffraction CCD 

Diffractometers and with sealed-tube generated, graphite monochromated radiation. The 

exception was 7c for which data was measured by the UK National Crysallography Service 

using a Rigaku FRE+ rotating anode.19 The structures were solved by direct methods (SIR92, 

SHELXS) and refined to convergence on F2 and against all independent reflections by full-

matrix least-squares using SHELXL programs.20,21 All non-hydrogen atoms were refined 

anisotropically and hydrogen atoms were geometrically placed and allowed to ride on their 

parent atoms. For compound trans, trans-4a, crystals grew as stacked plates. Reprocessing 

the raw data for this compound as a twinned sample gave a hklf 5 format reflection file. 

Refinement with this gave significantly better R factors and residual electron density features 

with BASF = 0.265(23). Table S1 contains selected crystallographic and refinement data. 

CCDC-1582563 to CCDC-1582570 contain the supplementary crystallographic data for this 

paper. These data can be obtained free of charge from the Cambridge Crystallographic Data 
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Centre via www.ccdc.cam.ac.uk/data_request/cif. LDA and n-Butyllithium (2.5 M solution in 

hexanes) was titrated according to the method of Duhamel and Plaquevent.22 The data for 

products 3f, 3g, 3n, and 3p have previously been reported.6c,8,23  

General Procedure A: Allylic Alcohol Preparation. Trans-2-allyl-1-(2,2-difluoro-1 ((2-

methoxyethoxy)methoxy)ethenyl) cyclohexan-1-ol (trans-3a) and cis-2-allyl-1-(2,2-difluoro-

1’ ((2-methoxyethoxy)methoxy)ethenyl) cyclohexan-1-ol (cis-3a). Prepared according to the 

method of Percy and co-workers.8 n-Butyllithium (12.9 mL of a 1.94 M solution in hexanes, 

25 mmol) was added dropwise to a solution of diisopropylamine (3.70 mL, 26 mmol) in THF 

(12 mL) at -78 °C. Following addition the reaction vessel was transferred to an ice bath and 

allowed to warm to 0 °C and stirred at this temperature for 45 minutes. The flask was then re-

cooled to -78 °C and acetal 18 (1.90 mL, 12 mmol) was added dropwise over 15 minutes. The 

dark orange suspension was stirred at -78 °C for 30 minutes, then allylcyclohexanone (1.97 

mL, 13.2 mmol) was added. The reaction mixture was allowed to warm to rt overnight; the 

reaction mixture turned homogeneous and darkened over this time. The mixture was 

quenched with saturated aqueous ammonium chloride (30 mL) and extracted with ethyl 

acetate (4 x 60mL). The combined organic extracts were dried (MgSO4), filtered and 

concentrated to afford crude allylic alcohols trans-3a and cis-3a (3.23 g) as a dark brown oil. 

The material was taken up in dichloromethane and transferred by pipette to a glass sinter 

funnel (diameter 7.5 cm) containing a pad of silica (54 g). The product was then eluted from 

the plug with 70% diethyl ether/hexane (600 mL). The solvent was evaporated under reduced 

pressure to afford the product as a pale orange oil (2.93 g). The crude allylic alcohol was 

purified by Kugelrohr distillation to afford an inseparable mixture of trans-3a and cis-3a as a 

pale yellow oil (2.53 g, 69 %, 95:5). b.p. = 97 °C / 0.04 mmHg; Rf = 0.27 (40 % diethyl ether 

in hexane); 1H NMR (400 MHz, CDCl3): δ = 5.77 (dddd, J = 17.0, 10.1, 8.5, 5.8 Hz, 1H), 

5.06-4.95 (m, 2H), 4.93 (app. s, 2H), 3.94-3.81 (m, 2H), 3.62-3.54 (m, 2H), 3.40 (s, 3H), 2.62 
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(br. s, 1H), 2.29-2.16 (m, 1H), 1.98-1.88 (m, 1H), 1.86-1.08 (envelope, 9H) ppm; 13C NMR 

(100 MHz, CDCl3): δ = 154.4 (t, 1JC-F = 287.1 Hz), 137.6, 121.5 (dd, 2JC-F = 33.1, 10.3 Hz), 

115.8, 98.7 (t, 4JC-F = 4.2 Hz), 73.7 (d, 3JC-F =  5.6 Hz), 71.6, 68.9, 58.9, 41.9 (d, 4JC-F = 4.8 

Hz), 37.1 (t, 4JC-F = 2.9 Hz), 35.2, 26.4, 25.3, 21.2 ppm; Major trans-diastereoisomer 3a 

(assigned on the basis of δ and intensity) 19F NMR (376 MHz, CDCl3): δ = -98.8 (d, 2J = 73.4 

Hz, 1F), -103.6 (d, 2J = 73.4 Hz, 1F) ppm;* Minor cis-diastereoisomer 3a (assigned on the 

basis of δ and intensity) 19F NMR (376 MHz, CDCl3): δ = -97.5 (d, 2J = 68.6 Hz, 1F), 104.4 

(d, 2J = 68.6 Hz, 1F) ppm; ν�/(neat) = 3450, 2934, 1738, 1450, 1104, 1059 cm-1; HRMS (NSI): 

calcd for C15H28F2O4N, 324.1981 [M+NH4]
+, found: 324.1983; MS (CI): m/z (%): 201 (14) 

[M-C4H9O3]
+, 89 (100) [C4H9O2]

+, 59 (85) [C3H7O]+; tR (GC) = 13.17 minutes**. *this is by 

comparison with compounds from the Saegusa-Ito series.5 ** the cis- and trans-stereoisomers 

appeared as one peak by GC. 

 trans-2-allyl-1-(2,2-difluoro-1-((2-methoxyethoxy)methoxy)vinyl)cycloheptan-1-ol 

(trans-3b) and cis-2-allyl-1-(2,2-difluoro-1-((2-methoxyethoxy)methoxy)vinyl)cycloheptan-

1-ol  (cis-3b). Prepared as for trans-3a and cis-3a from acetal (1.50 mL, 9 mmol), n-

butyllithium (12.8 mL of a 1.48 M solution in hexanes, 19 mmol), diisopropylamine (2.85 

mL, 20 mmol) and allylcycloheptanone5 (1.45 g, 9.5 mmol) in THF (12 mL). The crude 

allylic alcohol (3.13 g) was purified by Kugelrohr distillation to afford an inseparable mixture 

of trans-3b and cis-3b as a pale yellow oil (0.99 g, 32 %, 97:3). b.p. = 93 °C / 0.04 mmHg; Rf 

= 0.27 (40 % diethyl ether in hexane); 1H NMR (400 MHz, CDCl3): δ = 5.79 (dddd, J = 16.9, 

10.2, 8.6, 5.2 Hz, 1H), 5.08-4.98 (m, 2H), 4.96, 4.92 (ABq, JAB = 6.1 Hz, 2H), 3.94-3.84 (m, 

2H), 3.62-3.52 (m, 2H), 3.40 (s, 3H), 2.79 (br. s, 1H), 2.27-2.15 (m, 1H), 2.09-1.99 (m, 1H), 

1.99-1.89 (m, 1H), 1.87-1.20 (envelope, 10H) ppm; 13C NMR (100 MHz, CDCl3): δ = 154.1 

(t, 1JC-F = 287.5 Hz), 137.6, 121.9 (dd, 2JC-F = 32.2, 10.2 Hz), 115.5, 98.3 (t, 4JC-F = 4.2 Hz), 

76.3 (d, 3JC-F =  6.0 Hz), 71.1, 68.5, 58.5, 45.1 (d, 4JC-F = 5.2 Hz), 39.4, 35.8, 27.7, 26.8, 24.9, 
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20.0 ppm; Major trans-diastereoisomer 3b (assigned on the basis of δ and intensity) 19F NMR 

(376 MHz, CDCl3): δ = -98.6 (d, 2J = 74.1 Hz, 1F), -103.9 (d, 2J = 74.1 Hz, 1F) ppm;* Minor 

cis-diastereoisomer 3b (assigned on the basis of δ and intensity) 19F NMR (376 MHz, 

CDCl3): δ = -97.7 (d, 2J = 72.6 Hz, 1F), 103.0 (d, 2J = 72.6 Hz, 1F) ppm; ν�/(neat) = 3464, 

2921, 1733, 1262, 1050, 952 cm-1; HRMS (APCI): calcd for C16H30F2O4N1, 338.2137 

[M+NH4]
+, found: 338.2140; MS (CI): m/z (%): 338 (100) [M+NH4]

+; tR (GC) = 14.17 

minutes.** *this is by comparison with compounds from the Saegusa-Ito series.5 ** the cis- 

and trans-stereoisomers appeared as one peak by GC. 

trans-3-allyl-4-(2,2-difluoro-1-((2-methoxyethoxy)methoxy)vinyl)tetrahydro-2H-

pyran-4-ol (trans-3c) and cis-3-allyl-4-(2,2-difluoro-1-((2-

methoxyethoxy)methoxy)vinyl)tetrahydro-2H-pyran-4-ol  (cis-3c). Prepared as for trans-3a 

and cis-3a   from acetal (1.90 mL, 12 mmol), n-butyllithium (12.9 mL of a 1.94 M solution in 

hexanes, 25 mmol), diisopropylamine (3.70 mL, 26 mmol) and 2-allyltetrahydropyranone5 

(1.68 g, 12 mmol) in THF (12 mL). The crude allylic alcohol (3.13 g) was purified by 

Kugelrohr distillation to afford an inseparable mixture of trans-3c and cis-3c as a pale yellow 

oil (2.06 g, 56 %, 78:22). b.p. = 93 °C / 0.04 mmHg; Rf = 0.25 (30 % ethyl acetate in hexane); 

Major trans-diastereoisomer 3c (assigned on the basis of δ and intensity) 1H NMR (400 MHz, 

CDCl3): δ = 5.90-5.65 (m, 1H), 5.21-4.81 (m, including 4.96 (app. s, 2H) 2H), 4.03-3.67 

(envelope, 5H), 3.60 (t, J = 4.7 Hz, 2H), 3.57-3.49 (m, 1H), 3.41 (s, 3H), 3.16 (br. s, 1H), 

2.29-1.39 (envelope, 5H) ppm; 13C NMR (100 MHz, CDCl3): δ = 153.9 (t, 1
JC-F = 288.1 Hz), 

135.8, 120.5 (dd, 2
JC-F = 32.8, 10.4 Hz), 115.9, 98.6 (t, 4

JC-F = 4.4 Hz), 71.0, 70.5 (d, 3
JC-F = 

5.7 Hz), 68.6, 66.7, 62.9, 58.4, 40.5 (d, 4
JC-F = 5.1 Hz), 36.6, 30.4 ppm; 19F NMR (376 MHz, 

CDCl3): δ = -98.0 (d, 2
J = 71.8 Hz, 1F), -103.3 (d, 2

J = 71.8 Hz, 1F) ppm;* Minor cis-

diastereoisomer 3c (assigned on the basis of δ and intensity) 1H NMR (400 MHz, CDCl3): δ = 

3.41 (s, OCH3, 3H) ppm; 13C NMR (100 MHz, CDCl3): δ = 155.0 (t, 1JC-F = 290.7 Hz), 136.4, 
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121.4 (dd, 2
JC-F = 31.2, 12.0 Hz), 116.0, 70.9, 68.2, 63.6, 62.5 (d, 3

JC-F = 4.8 Hz), 41.7, 40.0, 

31.7 ppm; 19F NMR (376 MHz, CDCl3): δ = -96.7 (d, 2
J = 66.4 Hz, 1F), 104.5 (dt, 2

J = 68.6, 

5
JF-H = 4.9  Hz, 1F) ppm; ν�/(neat) = 3443, 2928, 1736, 1100, 1056 cm-1; HRMS (APCI): 

calcd for C14H26F2O5N, 326.1774 [M+NH4]
+, found: 326.1772; MS (CI): m/z (%): 326 (100) 

[M+NH4]
+; tR (GC) = 13.73 minutes (major trans-diastereoisomer), 13.66 minutes (minor cis-

diastereoisomer). *this is by comparison with compounds from the Saegusa-Ito series.5 

trans-tert-butyl -3-allyl-4-(2,2-difluoro-1-((2-methoxyethoxy)methoxy)vinyl)-4-

hydroxypiperidine-1-carboxylate (trans-3d) and cis-tert-butyl -3-allyl-4-(2,2-difluoro-1-((2-

methoxyethoxy)methoxy)vinyl)-4-hydroxypiperidine-1-carboxylate (cis-3d). Prepared as for 

trans-3a and cis-3a  from acetal (0.79 mL, 5mmol), commercial LDA (5.9 mL of a 1.70 M 

solution in THF/heptane/ethylbenzene, 24 mmol) and tert-butyl 3-allyl-4-oxopiperidine-1-

carboxylate5 (1.19 g, 5 mmol) in THF (5 mL). The crude allylic alcohol was purified by flash 

column chromatography (90 g cartridge, 45% ethyl acetate in hexane) to afford an 

inseparable mixture of trans-3d and cis-3d as a pale orange oil (0.86 g, 42 %, 83:17). Rf = 

0.59 (50 % ethyl acetate in hexane); 1H NMR (400 MHz, CDCl3): δ = 5.79 (dddd, J = 17.3, 

10.1, 8.5, 5.7 Hz, 1H), 5.14-4.99 (m, 2H), 4.94 (s, 2H), 4.17-3.71 (m, 4H), 3.70-3.51 (m, 2H), 

3.41 (s, 3H), 3.31-3.04 (m, 2H), 2.87 (br. s, 1H), 2.34-2.18 (m, 1H), 2.06-1.73 (m, 4H), 1.47 

(s, 9H) ppm (the 1H NMR gave a clear well resolved spectrum at RT and did not require 

heating). Major trans-diastereoisomer 3d (assigned on the basis of δ and intensity) 13C NMR 

(150 MHz, toluene-d8, 373 K): δ = 154.7 (t, 1
JC-F = 288.1 Hz), 154.2,  137.0,  121.2 (dd, 2JC-F 

= 32.4. 10.7 Hz), 115.5, 98.8 (dd, 4
JC-F = 5.8, 3.4 Hz), 78.4, 72.1 (d, 3

JC-F = 5.2 Hz), 71.5, 

69.0, 58.0, 44.0,  41.3 (d, 4
JC-F = 4.2 Hz), 39.6, 36.5 (t, 4

JC-F = 3.2 Hz), 31.9, 28.1 ppm; 19F 

(376 MHz, toluene-d8, 373 K):  δ = -98.6 (d, 2
J = 74.3 Hz, 1F), -104.6 (d, 2

J = 74.3 Hz, 1F) 

ppm;* Minor cis-diastereoisomer 3d (assigned on the basis of δ and intensity) 13C NMR (150 

MHz, toluene-d8, 373 K): δ = 155.7 (t, 1
JC-F = 289.3 Hz), 154.6, 136.4, 115.8, 78.3, 72.4 (dd, 

Page 21 of 60

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



3
JC-F = 4.6, 2.3 Hz), 71.4, 68.8, 50.1, 42.9, 40.9, 39.7, 32.1, 28.1 ppm; 19F (376 MHz, toluene-

d8, 373 K):  δ = -97.5 (d, 2J = 69.1 Hz, 1F), -104.8 (d, 2J = 69.1 Hz, 1F) ppm; ν�/(neat) = 3430, 

2926, 1736, 1666, 1426, 1158, 1056, 989 cm-1; HRMS (NSI-ES): calcd for C19H32F2NO6, 

408.2192 [M+H]+, found: 408.2189; MS (CI): m/z (%): 408 (100) [M+H]+; tR (GC) = 14.91 

minutes.** *this is by comparison with compounds from the Saegusa-Ito series.5 ** the cis- 

and trans-stereoisomers appeared as one peak by GC.  

1,1-difluoro-2-((2-methoxyethoxy)methoxy)-3-methylhepta-1,6-dien-3-ol (3e). 

Prepared as for trans-3a and cis-3a from acetal (1.90 mL, 12 mmol), n-butyllithium (12.9 mL 

of a 1.94 M solution in hexanes, 25 mmol), diisopropylamine (3.70 mL, 26 mmol) and 5-

hexen-2-one (1.39 mL, 12 mmol) in THF (12 mL). The crude product (2.54 g) was purified 

by Kugelrohr distillation to afford 3e (2.33 g, 73 %) as a pale yellow oil. b.p. = 78 °C / 0.04 

mmHg; Rf = 0.27 (50 % diethyl ether in hexane); 1H NMR (400 MHz, CDCl3): δ = 5.85 (ddt, 

J = 16.9, 10.1, 6.5 Hz, 1H), 5.06 (dq, J  = 16.9, 4
J = 2

J = 1.9 Hz, 1H), 5.00 (d, 2
J = 6.4 Hz, 

1H), 4.97 (dq, J  = 10.1, 4
J = 2

J = 1.9 Hz, 1H), 4.93 (d, 2
J = 6.4 Hz, 1H), 3.98-3.81 (m, 2H), 

3.59 (br. t, J =  4.8 Hz, 2H), 3.41 (s, 3H), 3.39 (br. s, 1H), 2.10 (app. qt,  J = 7.6, 4J = 1.9 Hz, 

2H), 1.87-1.68 (m, 2H), 1.42 (d, 5
JH-F = 4.8 Hz, 3H) ppm; 13C (100 MHz, CDCl3): δ = 154.2 

(t, 1
JC-F = 288.6 Hz), 137.8, 121.0 (dd, 2

JC-F = 32.7, 10.5 Hz), 114.0, 98.5 (t, 4
JC-F = 4.1 Hz), 

71.1 (d, 3
JC-F = 3.7 Hz), 71.0, 68.5, 58.5, 39.3, 28.1, 24.5 (d, 4

JC-F = 7.1 Hz) ppm; 19F (376 

MHz, CDCl3):  δ = -98.4 (d, 2
J = 70.9 Hz, 1F), -103.9 (app. dq, 2

J = 70.9 Hz, 5
JF-H = 4.8 Hz, 

1F) ppm; ν�/(neat) = 3447, 2928, 1736, 1102, 1024 cm-1; HRMS (NSI-ES): calcd for 

C12H20F2O4Na, 289.1222 [M+Na]+, found: 289.1221; MS (CI): m/z (%): 161 (4) [M-

C4H9O3]
+, 89 (73) [C4H9O2]

+, 59 (100) [C3H7O]+; tR (GC) = 11.38 minutes. 

1,1-Difluoro-2-((methoxyethoxy)methoxy)-3-methyl-4-cyclopropyl-hepta-1,6-dien-3-ol 

(3h). Prepared as for trans-3a and cis-3a from acetal (1.26 mL, 8 mmol), n-butyllithium (8.3 
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mL of a 1.98 M solution in hexanes, 16 mmol), diisopropylamine (2.38 mL, 17 mmol) and 1-

(1-allylcyclopropyl)ethan-1-one5 (1.00 g, 8 mmol) in THF (8 mL). The crude product (1.41 

g) was purified by Kugelrohr distillation to afford 3h (0.730 g, 31 %) as a pale yellow oil. 

b.p. = 93 °C / 0.06 mmHg; Rf = 0.54 (40 % ethyl acetate in hexane); 1H NMR (400 MHz, 

CDCl3): δ = 5.70 (ddt, J = 17.3, 10.2, 7.3 Hz, 1H), 5.11-4.96 (m, including 5.05 (d, 2
J = 6.4 

Hz, 1H), 2H),  4.91 (d, 2J = 6.4 Hz, 1H), 4.00-3.80 (m, 2H), 3.59 (t, J =  4.8 Hz, 2H), 3.41 (s, 

3H), 3.12 (br. s, 1H), 2.34-2.13 (m, 2H), 1.42 (d, 5JH-F = 5.8 Hz, 3H), 0.84-0.75 (m, 1H), 0.63 

(ddd, 2
J = 9.9, J = 5.8, 4.3 Hz, 1H) 0.45-0.35 (m, 1H), 0.29 (ddd, 2

J = 9.9, J = 5.5, 4.3 Hz, 

1H) ppm; 13C (100 MHz, CDCl3): δ = 154.6 (t, 1
JC-F = 288.8 Hz), 135.6, 120.3 (dd, 2

JC-F = 

32.6, 11.5 Hz), 116.0, 98.4 (t, 4JC-F = 4.2 Hz), 72.1 (d, 3
JC-F = 6.3 Hz), 71.1, 68.6, 58.5, 37.1, 

25.6, 22.9 (d, 4
JC-F = 8.5 Hz), 7.0, 5.1 ppm; 19F (376 MHz, CDCl3):  δ = -97.7 (d, 2

J = 68.4 

Hz, 1F), -102.7 (dq, 2
J = 68.4 Hz, 5

JF-H = 5.8 Hz, 1F) ppm; ν�/(neat) = 3465, 2887, 1736, 

1022, 937 cm-1; HRMS (ESI): calcd for C14H26F2O4N, 310.1824 [M+NH4]
+, found: 310.1826; 

MS (EI): m/z (%): 161 (2) [M-C6H9F2O3]
+, 89 (69) [C4H9O2]

+, 59 (100) [C3H7O]+; tR (GC) = 

12.75 minutes. 

1,1-Difluoro-2-((methoxyethoxy)methoxy)-3-methyl-4-cyclopentyl-hepta-1,6-dien-3-ol 

(3i). Prepared as for trans-3a and cis-3a from acetal (1.58 mL, 10 mmol), n-butyllithium (9.8 

mL of a 2.04 M solution in hexanes, 20 mmol), diisopropylamine (3.38 mL, 24 mmol) and 1-

(1-allylcyclopentyl)ethan-1-one5 (1.52 g, 10 mmol) in THF (11 mL). The crude product (2.13 

g) was purified by Kugelrohr distillation to afford 3i (0.965 g, 30%) as a pale yellow oil. b.p. 

= 100 °C / 0.04 mmHg; Rf = 0.30 (40 % diethyl ether in hexane); 1H NMR (400 MHz, 

CDCl3): δ = 5.70 (ddt, J = 17.3, 10.1, 7.3 Hz, 1H), 5.11-4.99 (m, including 5.04 (d, 2
J = 6.3 

Hz, 1H), 2H),  4.88 (dt, 2
J = 6.4, 5

JH-F = 1 Hz, 1H), 3.94-3.80 (m, 2H), 3.58 (t, J =  4.8 Hz, 

2H), 3.40 (s, 3H), 3.12 (br. s, 1H), 2.19 (d, J = 7.3 Hz, 2H), 1.88-1.74 (m, 2H),  1.68-1.35 (m, 

including 1.41 (d, 5JH-F = 5.4 Hz, 3H), 6H) ppm; 13C (100 MHz, CDCl3): δ = 155.0 (t, 1JC-F = 
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288.3 Hz), 136.2, 120.3 (dd, 2
JC-F = 32.1, 11.3 Hz), 116.3, 99.0 (t, 4

JC-F = 4.7 Hz), 75.9 (d, 

3
JC-F = 4.8 Hz), 71.1, 68.9, 58.5, 54.1, 41.1, 32.1, 31.6, 25.9, 25.2, 22.3 (d, 4

JC-F = 8.6 Hz) 

ppm; 19F (376 MHz, CDCl3):  δ = -97.7 (d, 2J = 71.0 Hz, 1F), -101.33 (dq, 2J = 71.0 Hz, 5JF-H 

= 5.4 Hz, 1F) ppm; the 1.0 Hz 5
JH-F = splitting could not be resolved in the 376 MHz 19F 

NMR spectrum; ν�/(neat) = 3494, 2944, 1731, 1266, 1065, 909 cm-1; HRMS (APCI): calcd for 

C16H30F2O4N, 338.2137 [M+NH4]
+, found: 338.2143; MS (CI): m/z (%): 338 (100) 

[M+NH4]
+; tR (GC) = 13.78 minutes. 

Trans-1-(2,2-difluoro-1-((2-methoxyethoxy)methoxy)vinyl)-2-(prop-2-yn-1-yl)cyclohexan-

1-ol (trans-3j) and cis-1-(2,2-difluoro-1-((2-methoxyethoxy)methoxy)vinyl)-2-(prop-2-yn-1-

yl)cyclohexan-1-ol (cis-3j). Prepared as for trans-3a and cis-3a from acetal (0.79 mL, 5 mmol), 

n-butyllithium (5.4 mL of a 1.84 M solution in hexanes, 10 mmol), diisopropylamine (1.69 

mL, 12 mmol) and 2-(prop-2-ynyl)cyclohexanone23 (0.68 g, 5 mmol) in THF (5 mL). The 

crude allylic alcohol was purified by flash column chromatography using a Thompson Single 

Step cartridge (90 g cartridge, 20 % ethyl acetate in hexane) to afford an inseparable mixture 

of trans-3j and cis-3j as a pale orange oil (0.291 g, 19 %, 97:3). Rf = 0.82 (50 % ethyl acetate 

in hexane); 1H NMR (400 MHz, CDCl3): δ = 4.94 (app. s, 2H), 3.94-3.81 (m, 2H), 3.59 (app. 

t, J = 4.8 Hz, 2H), 3.41 (s, 3H), 2.93 (s, 1H), 2.34 (dt, 2
J = 16.9, J = 4

J = 2.8 Hz, 1H), 2.20 

(ddd, 2J = 16.9, J = 8.9, 4J = 2.8 Hz, 1H), 1.99 (t, 4J = 2.8 Hz, 1H), 1.94-1.47 (envelope, 8H), 

1.36-1.21 (m, 1H) ppm; 13C NMR (100 MHz, CDCl3): δ = 154.0 (t, 1
JC-F = 289.2 Hz), 120.8 

(dd, 2
JC-F = 32.9. 10.0 Hz), 98.3 (t, 4

JC-F = 4.5 Hz), 83.3, 72.6 (d, 3
JC-F = 5.6 Hz), 71.1, 68.8, 

68.5, 58.5,  41.1 (d, 4JC-F = 4.7 Hz), 36.4 (t, 4JC-F = 3.1 Hz), 26.1, 24.7, 20.6, 19.7 ppm; Major 

trans-diastereoisomer 3j (assigned on the basis of δ and intensity) 19F (376 MHz, CDCl3):  δ 

= -98.0 (d, 2J = 72.3 Hz, 1F), -103.1 (d, 2J = 72.3 Hz, 1F) ppm;* Minor cis-diastereoisomer 3j 

(assigned on the basis of δ and intensity 19F (376 MHz, CDCl3):  δ = -96.7 (d, 2
J = 67.2 Hz, 

1F), -103.7 (d, 2
J = 67.2 Hz, 1F) ppm; ν�/(neat) = 3452, 3302, 2928, 1734, 1216, 1056 cm-1; 
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HRMS (ESI): calcd for C15H23F2O4, 305.1564 [M+H]+, found: 305.1557; MS (CI): m/z (%): 

305 (10) [M+H]+, 322 (15) [M+NH4]
+; tR (GC) = 12.90 minutes.** *this is by comparison 

with compounds from the Saegusa-Ito series.5 ** the cis- and trans-stereoisomers appeared as 

one peak by GC. 

1,1-difluoro-2-((2-methoxyethoxy)methoxy)non-1-en-3-ol (3k). Prepared as for trans-

3a and cis-3a from acetal (1.90 mL, 12 mmol), n-butyllithium (12.9 mL of a 1.94 M solution 

in hexanes, 25 mmol), diisopropylamine (3.70 mL, 26 mmol) and heptanal (1.37 g, 12 mmol) 

in THF (12 mL). The crude allylic alcohol (2.63 g) was purified by Kugelrohr distillation to 

afford 3k as a pale yellow oil (2.20 g, 65 %). b.p. = 102 °C / 0.05 mmHg; Rf = 0.21 (50 % 

diethyl ether in hexane); 1H NMR (400 MHz, CDCl3): δ = 5.00 (d, 2
J = 6.8 Hz, 1H), 4.88 (d, 

2
J = 6.8 Hz, 1H), 4.24 (dtdd, J = 9.3, J = 7.4, 4

JH-F = 3.6, 2.0 Hz, 1H), 3.96 (ddd, 2
J = 10.8, J 

= 6.4, 3.5 Hz, 1H), 3.78 (ddd, 2
J = 10.8, J = 5.0, 3.1 Hz, 1H), 3.66-3.53 (m, 2H), 3.40 (s, 

3H,), 3.20 (d, J = 9.3 Hz, 1H), 1.79-1.52 (m, 2H), 1.41-1.20 (m, 8H), 0.88 (t, J = 6.9 Hz, 3H) 

ppm; 13C NMR (100 MHz, CDCl3): δ = 154.7 (dd, 1JC-F = 291.6, 284.7 Hz), 118.2 (dd, 2JC-F = 

36.3. 9.8 Hz), 98.0, 71.4 , 68.4, 67.1, 58.9, 33.9, 31.7, 29.0, 25.4, 22.5, 13.9 ppm; 19F (376 

MHz, CDCl3):  δ = -100.5 (d, 2J = 63.7 Hz, 1F), -110.1 (d, 2J = 63.7 Hz, 1F) ppm; (the 19F-1H 

splitting was not resolved in the 19F NMR spectrum); ν�/(neat) = 3421, 2924, 1749, 1232, 

1054, 955 cm-1; HRMS (ESI): calcd for C13H24F2O4Na, 305.1535 [M+Na]+, found: 305.1532; 

MS (CI): m/z (%): 283 (1) [M+H]+, 265 (2) [M-OH]+, 89 (78) [C4H9O2]
+, 59 (100) [C3H7O]+;  

tR (GC) = 12.41 minutes. 

1,1 Difuoro-2-((2-methoxyethoxy)methoxy) 3-cyclohexyl prop-2-en-3-ol (3l) Prepared 

as for trans-3a and cis-3a from acetal (1.90 mL, 12 mmol), n-butyllithium (11.9 mL of a 2.10 

M solution in hexanes, 25 mmol), diisopropylamine (3.70 mL, 26 mmol) and 

cyclohexanecarboxaldehyde (1.34 g, 12 mmol) in THF (12 mL). The crude allylic alcohol 
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(3.12 g) was purified by Kugelrohr distillation to afford 3l as a pale yellow oil (2.60 g, 77 %). 

b.p. = 102 °C / 0.06 mmHg; Rf = 0.3 (50 % diethyl ether in hexane); 1H NMR (400 MHz, 

CDCl3): δ = 5.01 (d, 2J = 6.8 Hz, 1H), 4.87 (d, 2J = 6.8 Hz, 1H), 3.96 (ddd, 2J = 10.8, J = 6.0, 

3.1 Hz, 1H), 3.87 (br. d, J = 8.3 Hz, 1H),  3.78 (ddd, 2J = 10.8, J = 4.8, 3.0 Hz, 1H), 3.65-3.53 

(m, 2H), 3.40 (s, 3H), 3.18 (br. s, 1H), 2.10 (br. d, 2
J = 13.7 Hz, 1H), 1.86-1.52 (m, 5H), 

1.34-1.10 (m, 3H), 1.08-0.94 (m, 1H), 0.94-0.79 (m, 1H) ppm; 13C NMR (100 MHz, CDCl3): 

δ = 154.6 (dd, 1
JC-F = 292.2, 285.2 Hz), 117.0 (dd, 2

JC-F = 37.7. 10.0 Hz), 97.5 (t, 4
JC-F = 3.6 

Hz), 71.2, 70.9, 68.0, 58.4, 40.2, 29.0, 28.3, 25.9, 25.3, 25.2 ppm; 19F (376 MHz, CDCl3):  δ 

= -100.6 (d, 2J = 65.5 Hz, 1F), -110.6 (d, 2J = 65.5 Hz, 1F) ppm; ν�/(neat) = 3463, 2921, 1749, 

1232, 1013, 953 cm-1; HRMS (APCI): calcd for C13H26F2O4N1, 298.1824 [M+NH4]
+, found: 

298.1819; MS (EI): m/z (%): 204 (2) [M-C4H9F]+, 89 (100) [C4H9O2]
+, 59 (100) [C3H7O]+;   

tR (GC) = 12.65 minutes. 

1,1-difluoro-2-((2-methoxyethoxy)methoxy)-3-(tetrahydro-2H-pyran-4-yl)prop-2-en-

3-ol (3m). Prepared as for trans-3a and cis-3a from acetal (1.90 mL, 12 mmol), n-

butyllithium (11.9 mL of a 2.10 M solution in hexanes, 25 mmol), diisopropylamine (3.70 

mL, 26 mmol) and 4-formyltetrahydropyran (1.37 g, 12 mmol) in THF (12 mL). The crude 

allylic alcohol (2.71 g) was purified by flash column chromatography (90 g cartridge, 90 % 

diethyl ether in hexane) to afford 3m as a pale yellow oil (1.94 g, 57 %). Rf = 0.30 (90 % 

diethyl ether in hexane); 1H NMR (400 MHz, CDCl3): δ = 5.00 (d, J = 6.6 Hz,  1H), 4.88 (d, 

J = 6.6 Hz, 1H), 4.09-3.84 (m, 4H), 3.77 (ddd, 2
J = 10.8, J = 4.5, 3.1 Hz, 1H), 3.65-3.52 (m, 

2H), 3.45-3.30 (m, 6H), 2.03-1.92 (m, 1H), 1.91-1.75 (m, 1H), 1.52-1.31 (m, 2H),1.23 (qd, J 

= 11.9, 4.4 Hz, 1H) ppm; 13C NMR (100 MHz, CDCl3): δ = 154.7 (dd, 1
JC-F = 292.8, 285.6 

Hz), 116.5 (dd, 2
JC-F = 37.2, 11.0 Hz), 97.4 (t, 4

JC-F = 3.8 Hz), 70.9, 70.8 (t, 3
JC-F = 3.0 Hz), 

68.0, 67.2, 66.9, 58.5, 37.6, 29.3, 28.2 ppm; 19F NMR (376 MHz, CDCl3): δ = -99.7 (d, 2
J = 

Page 26 of 60

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



64.0 Hz, 1F), -109.9 (d, 2J = 64.0 Hz, 1F) ppm; ν�/(neat) = 3404, 2915, 1749, 1230, 1026, 955 

cm-1; HRMS (ESI): calcd for C12H24F2O5N1, 300.1617 [M+NH4]
+, found: 300.1620; 

MS (EI): m/z (%): 281 (1) [M-H]+, 89 (92) [C4H9O2]
+, 59 (100) [C3H7O]+; tR (GC) = 12.88 

minutes. 

1,1-difluoro-2-((2-methoxyethoxy)methoxy)-3-(4-(trifluoromethyl)phenyl)prop-2-en-

3-ol (3o). Prepared as for trans-3a and cis-3a from acetal (1.90 mL, 12 mmol), n-butyllithium 

(11.9 mL of a 2.10 M solution in hexanes, 25 mmol), diisopropylamine (3.70 mL, 26 mmol) 

and p-trifluoromethylbenzaldehyde (2.09 g, 12 mmol) in THF (12 mL). The crude allylic 

alcohol (4.99 g) was purified by Kugelrohr distillation followed by flash column 

chromatography (90 g cartridge, 60 % diethyl ether in petroleum ether) to afford 3o as a 

colourless oil (0.87 g, 21 %). b.p. = 113 °C / 0.05 mmHg; Rf = 0.62 (5 % acetone in 

dichloromethane); 1H NMR (400 MHz, CDCl3): δ = 7.64 (d, J = 8.4 Hz, 2H), 7.57 (d, J = 8.4 

Hz, 2H),  5.53 (br. d, J = 8.7 Hz, 1H),  4.93 (d, 2
J = 6.7 Hz, 1H), 4.87 (d, 2

J = 6.7 Hz, 1H), 

3.85 (d, J = 8.7 Hz, 1H), 3.76 (ddd, 2J = 10.8, J = 5.9, 3.8 Hz,  1H), 3.64 (ddd, 2J = 10.8, J = 

4.9, 3.1 Hz, 1H), 3.58-3.48 (m, 2H), 3.39 (s, 3H) ppm; 13C NMR (100 MHz, CDCl3): δ = 

154.5 (dd, 1
JC-F = 293.4, 287.4 Hz), 143.9, 129.3 (q, 2

JC-F = 32.3 Hz), 125.8, 124.7 (q, 3
JC-F = 

3.5 Hz), 123.6 (q, 1JC-F = 271.8 Hz), 117.3 (dd, 2JC-F = 36.0, 11.3 Hz), 97.3 (t, 4JC-F = 3.9 Hz), 

70.7, 68.0, 67.5 (d, 3JC-F = 3.4 Hz), 58.4 ppm; 19F NMR (376 MHz, CDCl3): δ = -62.5 (s, 3F), 

-98.5 (dd, 2
J = 60.1, 4

JF-H = 2.0  Hz, 1F), -108.5 (dd, 2
J = 60.1, 4

JF-H = 3.2  Hz, 1F) ppm; 

ν�/(neat) = 3419, 2930, 1751, 1325, 1112, 1067, 1017 cm-1; HRMS (APCI): calcd for 

C14H19F5O4N1, 360.1229 [M+NH4]
+, found: 360.1231; MS (EI): m/z (%): 323 (1) [M-F]+, 175 

(9) [C8H6F3O]+, 89 (63) [C4H9O2]
+, 59 (100) [C3H7O]+; tR (GC) = 12.49 minutes. 

 

General Procedure B: Difluorinated Diol Preparation. (1R*,3R*,4aS*,8aS*)-2,2-

difluoro-3-methyloctahydronaphthalene-1,8a(1H)-diol (1, 3-trans, 1, 8a-trans-4a) and 
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(1R*,3S*,4aS*,8aS*)-2,2-difluoro-3-methyloctahydronaphthalene-1,8a(1H)-diol (1, 3-cis, 1, 

8a-trans-4a).1,3-Bis(2,6-diisopropylphenyl-imidazol-2-ylidene)gold(I) chloride (5 mol %, 

0.031 g) was taken up in dichloromethane (1 mL) and added via syringe to dichloromethane 

(3.4 mL). The solution was stirred at room temperature then a solution of silver 

hexafluoroantimonate(V) (5 mol %, 0.017 g) in methanol (0.6 mL) was added as a stream via 

syringe. An off-white precipitate formed after the addition was complete. The flask was fitted 

with an air condenser (open to the atmosphere), and the suspension was heated to 40 °C. A 

solution of allyl alcohol trans-3a and cis-3a (0.306 g, 1 mmol) in dichloromethane (1 mL) 

was added in a stream via syringe. After stirring for 5 hours at 40 °C the reaction was allowed 

to cool to room temperature. Solid tetrabutylammonium borohydride (0.258 g, 1 mmol) was 

added to the flask in small portions. A slight effervescence was observed as the reducing 

agent was added and the reaction mixture darkened from colourless to dark brown. The 

reaction mixture was then allowed to stir at room temperature for 18 hours, then was 

quenched with hydrogen peroxide (10 mL of a 3wt % aqueous solution), followed by sodium 

hydroxide (5 mL of a 10wt% aqueous solution). The mixture was transferred to a separating 

funnel and the organic layer was removed. The aqueous layer was extracted with 

dichloromethane (4 x 40 mL). The combined organic extracts were then washed with sodium 

sulfite (10 mL of a saturated aqueous solution). The organic layer was separated, dried 

(MgSO4) and concentrated under reduced pressure to afford the crude product as aviscous 

pale yellow oil (0.280 g). The crude material was purified by flash column chromatography 

(40 g silica, 2 % acetone in dichloromethane) to afford an inseparable mixture of 1, 3-trans, 

1, 8a-trans-4a and 1, 3-cis, 1, 8a-trans-4a as a colourless solid (0.154 g, 70 %, 2.6:1). Rf = 

0.47 (5 % acetone in dichloromethane); The following signals were attributed to both the 

minor 1, 3-cis, 1, 8a-trans-diastereoisomer 4a and major 1, 3-trans, 1, 8a-trans -

diastereoisomer 4a 1H NMR (400 MHz, CDCl3): δ =  3.60-3.47 (m, 1H), 2.42-2.17 (m, 1H), 
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1.97-1.27 (envelope, 17H) ppm; The following signals were attributed to the major 1, 3-trans, 

1, 8a-trans-diastereoisomer 4a (assigned on the basis of δ and intensity); 1H NMR (400 MHz, 

CDCl3): δ = 2.14 (t, J = 2.8 Hz, 1H), 1.06 (d, J = 6.9 Hz, 3H) ppm; 13C NMR (100 MHz, 

CDCl3): δ = 124.0 (t, 1
JC-F = 248.2 Hz), 74.2 (dd, 2

JC-F = 27.7, 21.4 Hz), 72.7 (d, 3
JC-F = 5.2 

Hz), 36.6, 33.7, 32.8 (t, 2
JC-F = 21.4 Hz), 32.6 (d, 3

JC-F = 8.5 Hz), 26.6, 25.1, 19.8, 11.2 (d, 

3
JC-F = 5.6 Hz) ppm; 19F NMR (376 MHz, CDCl3): δ = -105.9 (dq, 2

J = 256.5, 3
JF-H = 4

JF-H = 

4.8 Hz, 1F), -116.6 (ddt, 2
J = 256.5, 3

JF-H = 30.3, 3
JF-H = 4

JF-H = 7.6 Hz, 1F) ppm; The 

following signals were attributed to the minor 1, 3-cis, 1, 8a-trans--diastereoisomer 4a 

(assigned on the basis of δ and intensity); 1H NMR (400 MHz, CDCl3): δ = 2.11 (t, J = 2.7 

Hz, 1H) ppm; 13C NMR (100 MHz, CDCl3): δ = 123.4 (dd, 1
JC-F = 253.8, 242.5 Hz), 75.3 

(dd, 2
JC-F = 28.9, 21.7 Hz), 72.3 (d, 3

JC-F = 5.8 Hz), 35.1 (dd, 2
JC-F = 23.4, 21.0 Hz), 31.1, 

30.8 (d, 3
JC-F = 7.3 Hz), 26.8, 25.3, 19.9, 14.2 (dd, 3

JC-F = 9.4, 3.7 Hz) ppm; 19F NMR (376 

MHz, CDCl3): δ = -93.6 (ddt, 2
J = 261.3, 3

JF-H = 17.6, 3
JF-H = 4

JF-H = 8.0 Hz), -104.5 (d, 2
J = 

261.3 Hz) ppm; ν�/(neat) = 3608, 3450, 2919, 1446, 1069, 985 cm-1; HRMS (ASAP): calcd 

for C11H17F2O2, 219.1197 [M-H]+, found: 219.1194; MS (EI): m/z (%): 220 (3) [M]+, 182 

(13) [M-2F]+; tR (GC) = 11.27 minutes;* elemental analysis calcd (%) for C11H18F2O2: C, 

59.98; H, 8.24;  found: C, 59.75; H, 8.17. This analysis was obtained for the amorphous solid 

obtained following chromatography so no melting point was recorded.* the individual 

diastereoisomers appeared as one peak by GC. Diastereomerically pure 1, 3-trans, 1, 8a-

trans-4a could be obtained by performing three vapour diffusion recrystallizations 

(chloroform/pentane) of the mixed solid diol (0.024g, 11%). m.p. = 84-86 °C (recrystallized 

from chloroform/pentane vapour diffusion as a colourless plate); Rf = 0.47 (5 % acetone in 

dichloromethane); 1H NMR (400 MHz, CDCl3): δ = 3.54 (td, JH-F = 6.0, J = 3.2 Hz, 1H), 

2.38-2.16 (m, 1H), 2.14 (td, J = 4
JH-F = 3.0, 4

JH-F = 1.0 Hz, 1H), 1.85 (tdd, 2
J = J = 13.3, J = 

4.9, 4
J = 1.2 Hz, 1H), 1.80-1.19 (envelope, 11H),  1.08 (d, J = 6.9 Hz, 3H) ppm; 13C NMR 
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(100 MHz, CDCl3): δ = 124.0 (t, 1
JC-F = 248.2 Hz), 74.2 (dd, 2

JC-F = 27.7, 21.4 Hz), 72.7 (d, 

3
JC-F = 5.2 Hz), 36.6, 33.7, 32.8 (t, 2

JC-F = 21.4 Hz), 32.6 (d, 3
JC-F = 8.5 Hz), 26.6, 25.1, 19.8, 

11.2 (d, 3
JC-F = 5.6 Hz)  ppm; 19F NMR (376 MHz, CDCl3): δ = -105.9 (dq, 2

J = 256.5, 3
JF-H 

= 4
JF-H = 4.8 Hz), -116.6 (ddt, 2

J = 256.5, 3
JF-H = 30.3, 3

JF-H = 4
JF-H = 7.6 Hz) ppm; ν�/(neat) = 

3617, 3450, 2922, 1446, 1068, 985, 957 cm-1; MS (EI): m/z (%): 220 (2) [M]+, 182 (19) [M-

2F]+; tR (GC) = 11.27 minutes; elemental analysis calcd (%) for C11H18F2O2: C, 59.98; H, 

8.24;  found: C, 60.12; H, 8.48. 

(2R*,4R*,4aS*,9aS*)-3,3-Difluoro-2-methyldecahydro-4aH-benzo[7]annulene-4,4a-diol 

(1, 3-trans, 1, 9a-trans-4b) and (2S*,4R*,4aS*,9aS*)-3,3-difluoro-2-methyldecahydro-4aH-

benzo[7]annulene-4,4a-diol (1, 3-cis, 1, 9a-trans-4b). Prepared according to general procedure 

B from trans-3b and cis-3b (0.320 g, 1.00 mmol) with 1,3-bis(2,6-diisopropylphenyl-

imidazol-2-ylidene)gold(I) chloride (5 mol %, 0.031 g) and silver hexafluoroantimonate(V) 

(5 mol %, 0.017 g) in dichloromethane (5.4 mL) and methanol (0.6 mL). After stirring for 5 

hours at 40 °C the reaction was allowed to cool to room temperature and reduced with 

tetrabutylammonium borohydride (0.258 g, 1 mmol). The usual work up afforded a viscous 

pale yellow oil (0.323 g) which was purified by flash column chromatography (40 g silica, 1 

% acetone in dichloromethane) to afford an inseparable mixture of 1, 3-trans, 1, 9a-trans-4b 

and 1, 3-cis, 1, 9a-trans-4b as a colourless solid (0.162 g, 69 %, 4.9:1). Rf = 0.34 (1 % acetone 

in dichloromethane); The following signals were attributed to both the minor 1, 3-cis, 1, 9a-

trans-diastereoisomer 4b and major 1, 3-trans, 1, 9a-trans-diastereoisomer 4b 1H NMR (400 

MHz, CDCl3): δ =  3.52 (td, JH-F = 5.9, J = 3.2 Hz, 1H), 1.99-1.17 (envelope, 15H) ppm; The 

following signals were attributed to the major 1, 3-trans, 1, 9a-trans-diastereoisomer 4b 

(assigned on the basis of δ and intensity); 1H NMR (400 MHz, CDCl3): δ = 2.35-2.14 (m, 

including 2.29 (t, J = 4
JH-F = 3.2 Hz, 1H), 1H), 2.09-1.99 (m, 1H), 1.04 (d, J = 6.8 Hz, 3H) 

ppm; 13C NMR (100 MHz, MeOD): δ = 123.1 (t, 1
JC-F = 248.3 Hz), 75.5 (dd, 2

JC-F = 27.6, 
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20.5 Hz), 74.6 (d, 3
JC-F = 5.5 Hz), 40.2, 39.2, 34.3 (d, 3

JC-F = 8.5 Hz), 32.6 (t, 2
JC-F = 22.0 

Hz), 28.0, 27.0, 26.1, 19.8, 10.2 (d, 3
JC-F = 5.7 Hz) ppm; 19F NMR (376 MHz, CDCl3): δ = -

107.6 (app. ds, 2
J = 256.3, 3

JF-H = 4
JF-H = 3.2 Hz, 1F), -117.1 (dddd, 2

J = 256.3, 3
JF-H = 30.2, 

3
JF-H = 8.9, 4

JF-H = 6.0 Hz, 1F) ppm; The following signals were attributed to the minor 1, 3-

cis, 1, 9a-trans-diastereoisomer 4b (assigned on the basis of δ and intensity); 13C NMR (100 

MHz, MeOD): δ = 122.7 (dd, 1
JC-F = 251.0, 243.2 Hz), 76.6 (dd, 2

JC-F = 28.7, 20.5 Hz), 74.3 

(d, 3
JC-F = 5.4 Hz), 39.0, 35.0, 34.9 (dd, 2

JC-F = 23.8, 21.1 Hz), 32.6 (d, 3
JC-F = 6.4 Hz), 28.2, 

27.1, 26.3, 13.4 (dd, 3JC-F = 9.7, 4.0 Hz) ppm; 19F NMR (376 MHz, CDCl3): δ = -93.7 (ddt, 2J 

= 261.3, 3
JF-H = 18.3, 3

JF-H = 4
JF-H = 8.1 Hz), -106.5 (d, 2

J = 261.3 Hz) ppm; ν�/(neat) = 3601, 

3333, 2908, 1463, 1084, 979 cm-1; HRMS (APCI): calcd for C12H20F2O2, 234.1431 [M]+, 

found: 234.1432; MS (EI): m/z (%): 234 (1) [M]+, 196 (9) [M-2F]+; tR (GC) = 12.80 

minutes.* elemental analysis calcd (%) for C12H20F2O2: C, 61.52; H, 8.60;  found: C, 61.40; 

H, 8.38. This analysis was obtained for the amorphous solid obtained following 

chromatography so no melting point was recorded.* the individual diastereoisomers appeared 

as one peak by GC. Diastereomerically pure 1, 3-trans, 1, 9a-trans-4b could be obtained by 

performing three vapour diffusion recrystallizations (chloroform/pentane) of the mixed solid 

diol (0.018g, 7%). m.p. = 96-98 °C (recrystallized from chloroform/pentane vapour diffusion 

as a colourless plate); Rf = 0.34 (1 % acetone in dichloromethane); 1H NMR (400 MHz, 

CDCl3): δ = 3.54 (td, JH-F = 5.9, J = 3.2 Hz, 1H), 2.36-2.15 (m, 2H), 2.12-1.99 (m, 1H), 1.90-

1.23 (envelope, 13H), 1.06 (d, J = 6.8 Hz, 3H) ppm;  13C NMR (100 MHz, CDCl3): δ = 124.0 

(t, 1JC-F = 247.8 Hz), 76.1 (dd, 2JC-F = 27.4, 20.8 Hz), 74.8 (d, 3JC-F = 5.1 Hz), 40.2, 39.2, 34.3 

(d, 3
JC-F = 8.6 Hz), 32.5 (t, 2

JC-F = 21.7 Hz), 28.1, 27.2, 26.3, 20.0, 11.0 (d, 3
JC-F = 5.2 Hz) 

ppm; 19F NMR (376 MHz, CDCl3): δ = = -107.6 (app. ds, 2
J = 256.3, 3

JF-H = 4
JF-H = 3.2 Hz, 

1F), -117.1 (dddd, 2
J = 256.3, 3

JF-H = 30.2, 3
JF-H = 8.9, 4

JF-H = 6.0 Hz, 1F) ppm; ν�/(neat) = 

3601, 3333, 2908, 1463, 1084, 979 cm-1; MS (EI): m/z (%): 234 (1) [M]+, 196 (9) [M-2F]+; tR 

Page 31 of 60

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(GC) = 12.80 minutes. elemental analysis calcd (%) for C12H20F2O2: C, 61.52; H, 8.60;  

found: C, 61.37; H, 8.50. 

(4aS*,5R*,7R*,8aR*)-6,6-Difluoro-7-methyloctahydro-4aH-isochromene-4a,5-diol 

(4a, 5-trans, 5, 7-trans-4c), (4aS*,5R*,7S*,8aR*)-6,6-difluoro-7-methyloctahydro-4aH-

isochromene-4a,5-diol (4a, 5-trans, 5, 7-cis-4c) and (4aS*,5S*,7R*,8aR*)-6,6-difluoro-7-

methyloctahydro-4aH-isochromene-4a,5-diol (4a, 5-cis, 5, 7-cis-4c). Prepared according to 

general procedure B from trans-3c and cis-3c (0.308 g, 1.00 mmol) with 1,3-bis(2,6-

diisopropylphenyl-imidazol-2-ylidene)gold(I) chloride (5 mol %, 0.031 g) and silver 

hexafluoroantimonate(V) (5 mol %, 0.017 g) in dichloromethane (5.4 mL) and methanol (0.6 

mL). After stirring for 6.5 hours at 40 °C the reaction was allowed to cool to room 

temperature and reduced with tetrabutylammonium borohydride (0.258 g, 1 mmol). The usual 

work up afforded a viscous pale yellow oil (0.300 g) which was purified by flash column 

chromatography (40 g silica, 10 % acetone in dichloromethane) to afford an inseparable 

mixture of 4a, 5-trans, 5, 7-trans-4c, 4a, 5-trans, 5, 7-cis-4c and 4a, 5-cis, 5, 7-cis-4c as a 

colourless solid (0.107 g, 48 %, 6.7:1.4:1). Rf = 0.39 (20 % acetone in dichloromethane); The 

following signals were attributed to the minor 4a, 5-trans, 5, 7-cis -4c and 4a, 5-cis, 5, 7-cis -

4c diastereoisomers and the major 4a, 5-trans, 5, 7-trans- diastereoisomer 4c 1H NMR (400 

MHz, CDCl3): δ =  3.93-3.78 (m,  3H), 3.65-3.46 (m, 4H), 2.47-1.47 (envelope, 6H), 1.43-

1.15 (envelope, 4H) ppm; The following signals were attributed to the major 4a, 5-trans, 5, 7-

trans diastereoisomer 4c (assigned on the basis of δ and intensity); 1H NMR (400 MHz, 

CDCl3): δ = 2.70 (t, J = 4
JH-F = 3.0 Hz, 1H), 1.09 (d, J = 6.9 Hz, 3H) ppm; 13C NMR (100 

MHz, CDCl3): δ = 123.7 (dd, 1
JC-F = 250.5, 246.7 Hz), 73.2 (dd, 2

JC-F = 27.7, 21.6 Hz), 70.6 

(d, 3
JC-F = 5.7 Hz), 66.1, 62.1, 36.5, 33.6, 32.7 (t, 2

JC-F = 22.1 Hz), 27.1 (d, 3
JC-F = 8.3 Hz), 

11.2 (dd, 3
JC-F = 6.2, 2.8 Hz) ppm; 19F NMR (376 MHz, CDCl3): δ = -105.8 (dq, 2

J = 258.4, 

3
JF-H = 4

JF-H = 4.2 Hz, 1F), -117.1 (dddd, 2
J = 258.4, 3

JF-H = 30.5, 3JF-H = 10.7, 4JF-H = 5.9 Hz, 
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1F) ppm; The following signals were attributed to the 4a, 5-trans, 5, 7-cis -diastereoisomer 4c 

(assigned on the basis of   δ and intensity); 1H NMR (400 MHz, CDCl3): δ = 2.65 (t, J = 4JH-F 

= 2.9 Hz, 1H), 1.12 (d, J = 6.9 Hz, 3H) ppm; 13C NMR (100 MHz, CDCl3): δ = 123.1 (dd, 

1
JC-F = 254.8, 241.6 Hz), 74.3 (dd, 2

JC-F = 29.0, 21.9 Hz), 70.4 (d, 3JC-F = 7.7 Hz), 66.5, 62.2, 

41.1, 34.8 (t, 2
JC-F = 22.5 Hz), 31.3, 27.0 (d, 3

JC-F = 8.3 Hz), 14.1 (dd, 3
JC-F = 9.9, 4.0 Hz) 

ppm; 19F NMR (376 MHz, CDCl3): δ = -93.7 (dddd, 2J = 263.9, 3JF-H = 18.0, 10.4, 4JF-H = 6.7 

Hz, 1F), -104.3 (d, 2
J = 263.9 Hz, 1F) ppm; The following signals were attributed to the 4a, 

5-cis, 5, 7-cis-diastereoisomer 4c (assigned on the basis of δ and intensity); 1H NMR (400 

MHz, CDCl3): δ = 2.84 (d, J = 6.5 Hz, 1H) ppm; 13C NMR (100 MHz, CDCl3): δ = 75.0 (t, 

2
JC-F = 19.3 Hz), 70.2 (d, 3

JC-F = 5.4 Hz), 65.6, 62.7, 36.8 (dd, 2
JC-F = 23.3, 21.2 Hz), 34.9, 

29.2, 25.3 (d, 3
JC-F = 7.0 Hz), 11.3 (dd, 3

JC-F = 6.2, 2.9 Hz) ppm; 19F NMR (376 MHz, 

CDCl3): δ = (-106.7) – (-107.6) (m, including -107.1 (app. d, 2
J = 243.7 Hz, 1F)), -104.4 

(dddd, 2
J = 243.7, 3

JF-H = 28.2, 20.1, 4
JF-H = 4.6 Hz, 1F) ppm; ν�/(neat) = 3331, 2878, 2908, 

1472, 1091, 966 cm-1; HRMS (APCI): calcd for C10H17F2O3, 223.1146 [M+H]+, found: 

223.1142; MS (EI): m/z (%): 222 (1) [M]+ (major 4a, 5-trans, 5, 7-trans diastereoisomer, 

minor 4a, 5-trans, 5, 7-cis diastereoisomer and minor 4a, 5-cis, 5, 7-cis diastereoisomer); tR 

(GC) = 12.27 minutes (major 4a, 5-trans, 5, 7-trans diastereoisomer), 12.34 minutes (minor 

4a, 5-trans, 5, 7-cis diastereoisomer), 12.69 (minor 4a, 5-cis, 5, 7-cis diastereoisomer); 

elemental analysis calcd (%) for C10H16F2O3: C, 54.05; H, 7.26;  found: C, 54.05; H, 6.93. 

This analysis was obtained for the amorphous solid obtained following chromatography so no 

melting point was recorded.  

tert-Butyl (4aS*,5R*,7R*,8aR*)-6,6-difluoro-4a,5-dihydroxy-7-

methyloctahydroisoquinoline-2(1H)-carboxylate (4a, 5-trans, 5, 7-trans-4d), tert-butyl 

(4aS*,5R*,7S*,8aR*)-6,6-difluoro-4a,5-dihydroxy-7-methyloctahydroisoquinoline-2(1H)-

carboxylate (4a, 5-trans, 5, 7-cis-4d)  and tert-butyl (4aS*,5S*,7R*,8aR*)-6,6-difluoro-4a,5-
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dihydroxy-7-methyloctahydroisoquinoline-2(1H)-carboxylate (4a, 5-cis, 5, 7-cis-4d). 

Prepared according to general procedure B from trans-3d and cis-3d (0.407 g, 1.00 mmol) 

with 1,3-bis(2,6-diisopropylphenyl-imidazol-2-ylidene)gold(I) chloride (5 mol %, 0.031 g) 

and silver hexafluoroantimonate(V) (5 mol %, 0.017 g) in dichloromethane (5.4 mL) and 

methanol (0.6 mL). After stirring for 240 hours at 40 °C the reaction was allowed to cool to 

room temperature and reduced with tetrabutylammonium borohydride (0.258 g, 1 mmol). The 

usual work up afforded a viscous pale yellow oil (0.434 g) which was purified by flash 

column chromatography (40 g silica, 5-8 % acetone in dichloromethane) to afford an 

inseparable mixture of 4a, 5-trans, 5, 7-trans-4d, 4a, 5-trans, 5, 7-cis-4d and 4a, 5-cis, 5, 7-

cis-4d as a colourless solid (0.160 g, 50 %, 3.4:0.9:1). Rf = 0.31 (10 % acetone in 

dichloromethane); The following signals were attributed to the minor 4a, 5-trans, 5, 7-cis-4d 

and 4a, 5-cis, 5, 7-cis-4d diastereoisomers  and the major 4a, 5-trans, 5, 7-trans-

diastereoisomer 4d 1H NMR (600 MHz, pyridine-d5, 373 K): δ =  4.35-4.21 (m, 1H), 4.20-

4.05 (m, 1H), 3.69-3.27 (m, 2H),  3.28-3.06 (m, 1H), 2.63-2.35 (m, 2H), 2.33-2.14 (m, 1H), 

2.14-1.77 (m, 1H), 1.77-1.51 (m, including 1.60 (s, 9H), 15H), 1.39-1.22 (m, 2H) ppm; The 

following signals were attributed to the major 4a, 5-trans, 5, 7-trans-diastereoisomer 4d 

(assigned on the basis of δ and intensity); 1H NMR (600 MHz, pyridine-d5, 373 K): δ = 6.97 

(br. s, 1H), 4.59 (br. s, 1H), 3.95 (t, J = 4
JH-F = 6.2 Hz, 1H), 1.17 (d, J = 7.0 Hz, 3H) ppm;  

13C NMR (100 MHz, CDCl3): δ = 154.3, 123.8 (dd, 1
JC-F = 251.5, 246.5 Hz), 79.1, 73.3 (dd, 

2
JC-F = 27.8, 21.9 Hz), 71.2 (d, 3

JC-F = 5.7 Hz), 11.1 (d, 3
JC-F = 5.1Hz) ppm; The 13C NMR 

spectral region ranging from 46-26 ppm was poorly resolved at 298 K. The 13C NMR 

spectrum was recorded in pyridine-d5 at 373 K to resolve this region; 13C NMR (150 MHz, 

pyridine-d5, 373 K): δ = 44.2, 39.3, 37.4, 34.8, 33.6 (t, 2
JC-F = 22.5 Hz), 30.0 (d, 3

JC-F = 8.4 

Hz), 28.4 ppm; 19F NMR (376 MHz, CDCl3): δ = -106.2 (dq, 2
J = 258.2, 3

JF-H = 4
JF-H = 4.7 

Hz, 1F), -117.1 (br. ddt, 2
J = 258.2, 3

JF-H = 30.0, 3
JF-H = 4

JF-H = 6.5 Hz, 1F) ppm (the 19F 
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NMR spectrum was well resolved at 273 K and did not require heating. 1H and 13C NMR 

resolved slightly better when heated to 373 K); The following signals were attributed to the 

4a, 5-trans, 5, 7-cis-diastereoisomer 4d (assigned on the basis of δ and intensity); 1H NMR 

(600 MHz, pyridine-d5, 373 K ): δ = 1.41 (d, J = 7.4 Hz, 1H) ppm; 13C NMR (100 MHz, 

CDCl3): δ = 79.2, 74.4 (dd, 2
JC-F = 28.9, 21.7 Hz), 71.1 (d, 3

JC-F = 7.9 Hz), 14.2 (dd, 3
JC-F = 

9.9, 3.4 Hz) ppm; The 13C NMR spectral region ranging from 46-26 ppm was poorly resolved 

at 298 K. The 13C NMR spectrum was recorded in pyridine-d5 at 373 K to resolve this region; 

13C NMR (150 MHz, pyridine-d5, 373 K): δ = 44.7, 39.7, 37.7 (t, 2
JC-F = 22.1 Hz), 35.5, 29.8 

(d, 3
JC-F = 7.8 Hz) ppm; 19F NMR (376 MHz, CDCl3): δ = -93.1 (dddd, 2

J = 263.9, 3
JF-H = 

18.0, 10.4, 4JF-H = 6.8 Hz, 1F), -104.7 (d, 2J = 263.9 Hz, 1F) ppm; The following signals were 

attributed to the 4a, 5-cis, 5, 7-cis-diastereoisomer 4d (assigned on the basis of δ and 

intensity); 1H NMR (600 MHz, pyridine-d5, 373 K): δ = 4.63 (br. s, 1H), 3.99 (t, J = 4
JH-F = 

6.3 Hz, 1H), 3.76 (dd, JH-F = 20.2, J = 6.3 Hz, 1H), 1.16 (d, J = 6.8 Hz, 3H) ppm; 13C NMR 

(100 MHz, CDCl3): δ = 79.1, 74.9 (t, 2JC-F = 20.4 Hz), 70.8 (d, 3JC-F = 5.8 Hz), 11.3 (dd, 3JC-F 

= 5.6, 2.9 Hz) ppm; The 13C NMR spectral region ranging from 46-26 ppm was poorly 

resolved at 298 K. The 13C NMR spectrum was recorded in pyridine-d5 at 373 K to resolve 

this region; 13C NMR (150 MHz, pyridine-d5, 373 K): δ = 43.9, 41.7, 39.3, 36.1 (t, 2
JC-F = 

23.2 Hz), 32.3, 28.5 (d, 3JC-F = 7.1 Hz) ppm; 19F NMR (376 MHz, CDCl3): δ = -107.6 (d, 2J = 

243.7 Hz, 1F), -116.1 (ddd, 2J = 243.7, 3JF-H = 27.4, 20.2 Hz, 1F) ppm; ν�/(neat) = 3274, 2924, 

1656, 1158, 870 cm-1;  HRMS (APCI): calcd for C15H26F2O4N1, 322.1830 [M+H]+, found: 

322.1831; MS (EI): m/z (%): 321 (3) [M]+
, 247 (23) [M-C4H10O]+ (major 4a, 5-trans, 5, 7-

trans diastereoisomer), 321 (1) [M]+
, 247 (24) [M-C4H10O]+ (minor 4a, 5-trans, 5, 7-cis 

diastereoisomer), 321 (2) [M]+
, 247 (22) [M-C4H10O] (minor 4a, 5-cis, 5, 7-cis 

diastereoisomer); tR (GC) = 15.06 minutes (major 4a, 5-trans, 5, 7-trans diastereoisomer), 

15.15 minutes (minor 4a, 5-trans, 5, 7-cis diastereoisomer), 14.99 (minor 4a, 5-cis, 5, 7-cis 
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diastereoisomer); elemental analysis calcd (%) for C15H25F2NO4: C, 56.06; H, 7.84; N, 4.36; 

found: C, 56.37; H, 7.86; N, 4.34. This analysis was obtained for the amorphous solid 

obtained following chromatography so no melting point was recorded. 

(1R*,2S*,4S*)-3,3-Difluoro-1,4-dimethylcyclohexane-1,2-diol (1, 2-trans, 2, 4-trans -

4ea), (1S*,2R*,4S*)-3,3-difluoro-1,4-dimethylcyclohexane-1,2-diol (1, 2-trans, 2, 4-cis-4eb) 

and (1R*,2R*,4S*)-3,3-difluoro-1,4-dimethylcyclohexane-1,2-diol (1, 2-cis, 2, 4-cis-4ec). 

Prepared according to general procedure B from 3e (0.327 g, 1.23 mmol) with 1,3-bis(2,6-

diisopropylphenyl-imidazol-2-ylidene)gold(I) chloride (5 mol %, 0.038 g) and silver 

hexafluoroantimonate(V) (5 mol %, 0.021 g) in dichloromethane (6.6 mL) and methanol (0.7 

mL). After stirring for 18 hours at 40 °C the reaction was allowed to cool to room 

temperature and reduced with tetrabutylammonium borohydride (0.317 g, 1.23 mmol). The 

usual work up afforded a viscous pale yellow oil (0.320 g) which was purified by flash 

column chromatography (40 g silica, 30 % ethyl acetate in hexane) to afford a mixture of 1, 

2-cis, 2, 4-cis-4ec and 1, 2-trans, 2, 4-trans-4ea as a pale yellow oil (33.7 mg, 15 %, 1.2:1), 

1, 2-trans, 2, 4-trans-4ea as a pale yellow oil (55.5 mg, 25 %) and 1, 2-trans, 2, 4-cis-4eb as 

a colourless solid  (35.6 mg, 16 %). Rf  1, 2-trans, 2, 4-trans-4ea = 0.31 (10 % acetone in 

dichloromethane); Rf  1, 2-cis, 2, 4-cis-4ec = 0.25 (10 % acetone in dichloromethane); The 

following signals were attributed to both the major 1, 2-cis, 2, 4-cis-diastereoisomer 4ec and 

minor 1, 2-trans, 2, 4-trans-diastereoisomer 4ea 1H NMR (400 MHz, CDCl3): δ =  2.35-1.97 

(m, 3H), 1.95-1.68 (m, 3H), 1.68-1.42 (m, 5H) ppm; The following signals were attributed to 

the major 1, 2-cis, 2, 4-cis-diastereoisomer 4ec (assigned on the basis of δ and intensity);  1H 

NMR (400 MHz, CDCl3): δ = 3.48 (dd, JH-F = 20.3, 6.0 Hz, 1H), 1.34 (s, 3H), 1.11 (d, J = 6.7 

Hz, 3H) ppm; 13C NMR (150 MHz, CDCl3): δ = 121.9 (t, 1
JC-F = 246.8 Hz), 74.3 (t, 2

JC-F = 

20.3 Hz), 71.9 (d, 3JC-F = 6.9 Hz), 36.7 (dd, 2JC-F = 23.3, 20.5 Hz), 35.3, 25.9, 24.8 (d, 4JC-F = 

7.8 Hz), 11.0 (d, 3JC-F = 4.3 Hz) ppm; 19F NMR (376 MHz, DMSO-d6, 373 K): δ = -104.6 (d, 
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2
J = 238.7 Hz, 1F), -127.9 (dt, 2

J = 238.7, 3
JF-H = 20.3 Hz, 1F) ppm (the 1H and 13C NMR 

gave clear well resolved spectra at RT and did not require heating. 19F NMR resolved better 

when heated to 373 K); The following signals were attributed to the minor 1, 2-trans, 2, 4-

trans-diastereoisomer 4ea (assigned on the basis of δ and intensity); 1H NMR (400 MHz, 

CDCl3): δ = 3.63 (dd, JH-F = 8.1, 6.7 Hz, 1H), 1.33 (s, 3H), 1.08 (d, J = 6.9 Hz, 3H) ppm; 13C 

NMR (150 MHz, CDCl3): δ =  123.4 (t, 1
JC-F = 248.1 Hz), 73.4 (dd, 2

JC-F = 26.8, 21.6 Hz), 

72.3 (d, 3
JC-F = 4.3 Hz), 31.9 (t, 2

JC-F = 21.4 Hz), 31.5, 24.7 (d, 3
JC-F = 7.4 Hz), 24.7 (d, 4

JC-F 

= 7.4 Hz), 10.9 (d, 3
JC-F = 4.5 Hz) ppm; 19F NMR (376 MHz, DMSO-d6, 373 K): δ = -104.2 

(d, 2
J = 243.2 Hz, 1F), -114.0 (dd, 2

J = 243.2, 3
JF-H = 25.8 Hz, 1F) ppm; ν�/(neat) = 3392, 

2941, 1461, 1066, 994 cm-1; HRMS (ESI): calcd for C8H18F2O2N1, 198.1300 [M+NH4]
+, 

found: 198.1300; MS (EI): m/z (%): 142 (8) [M-2F]+ (major 1, 2-cis, 2, 4-cis 

diastereoisomer), 142 (7) [M-2F]+ (minor 1, 2-trans, 2, 4-trans diastereoisomer); tR (GC) = 

8.77 minutes (major 1, 2-cis, 2, 4-cis diastereoisomer), 8.54 minutes (minor 1, 2-trans, 2, 4-

trans diastereoisomer). Diastereomerically pure 1, 2-trans, 2, 4-trans-4ea: Rf = 0.31 (10 % 

acetone in dichloromethane); 1H NMR (400 MHz, CDCl3): δ = 3.62 (dd, JH-F = 8.1, 6.7 Hz, 

1H), 2.81 (br. s, 1H), 2.40-1.97 (m, 2H), 1.81-1.69 (m, 1H), 1.67-1.45 (m, 3H), 1.33 (s, 3H), 

1.07 (d, J = 6.9 Hz, 3H) ppm;  13C NMR (100 MHz, CDCl3): δ = 123.9 (t, 1
JC-F = 247.0 Hz), 

73.9 (dd, 2
JC-F = 26.9, 21.7 Hz), 72.8 (d, 3

JC-F = 4.2 Hz), 32.4 (t, 2
JC-F = 21.8 Hz), 32.0, 25.2 

(d, 3JC-F = 7.3 Hz), 25.2 (d, 4JC-F = 7.3 Hz), 11.5 (t, 3JC-F = 4.1 Hz) ppm; 19F NMR (376 MHz, 

DMSO-d6, 373 K): δ = -104.2 (d, 2J = 243.2 Hz, 1F), -114.0 (dd, 2
J = 243.2, 3

JF-H = 25.8 Hz, 

1F) ppm; ν�/(neat) = 3392, 2941, 1461, 1066, 994 cm-1;  MS (EI): m/z (%): 142 (7) [M-2F]+; 

tR (GC) = 8.54 minutes; Diastereomerically pure 1, 2-trans, 2, 4-cis-4eb: m.p. = 58-60 °C 

(recrystallized from chloroform/pentane vapour diffusion as a colourless plate); Rf = 0.33 (20 

% acetone in dichloromethane); 1H NMR (400 MHz, CDCl3): δ = 3.71 (dd, JH-F = 22.5, 4.6 

Hz, 1H), 2.81 (br. s, 1H), 2.64 (s, 1H), 1.99-1.76 (m, 2H), 1.74-1.54 (m, 2H), 1.34 (td,  2J = J 
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= 13.7, J = 4.9 Hz, 1H)  1.27 (d, 5JH-F = 2.3 Hz, 3H), 1.09 (d, J = 6.9 Hz, 3H) ppm; 13C NMR 

(100 MHz, CDCl3): δ = 121.9 (dd, 1JC-F = 249.0, 245.2 Hz), 77.9 (t, 2JC-F = 20.5 Hz), 73.4 (d, 

3
JC-F = 7.8 Hz), 37.1 (t, 2

JC-F = 21.8 Hz), 36.2, 26.5 (d, 3
JC-F = 8.5 Hz), 19.7 (d, 4

JC-F = 6.7 

Hz), 11.3 (dd, 3
JC-F = 5.5, 2.4 Hz) ppm; 19F NMR (376 MHz, CDCl3): δ = -108.6 (d, 2

J = 

239.9 Hz, 1F), -131.5 (dt, 2
J = 239.9, 3

JF-H = 22.5 Hz, 1F) ppm; ν�/(neat) = 3382, 2945, 1455, 

1031, 988 cm-1;  HRMS (ESI): calcd for C8H18F2O2N1, 198.1300 [M+NH4]
+, found: 

198.1300; MS (EI): m/z (%): 142 (7) [M-2F]+; tR (GC) = 8.96 minutes. 

(1S*,2S*,4S*)-3,3-difluoro-4-methylcyclohexane-1,2-diol (1, 2-cis, 2, 4-trans-4f). 

Prepared according to general procedure B from 3f (0.252 g, 1.00 mmol) with 1,3-bis(2,6-

diisopropylphenyl-imidazol-2-ylidene)gold(I) chloride (5 mol %, 0.031 g) and silver 

hexafluoroantimonate(V) (5 mol %, 0.017 g) in dichloromethane (5.4 mL) and methanol (0.6 

mL). After stirring for 21 hours at 40 °C the reaction was allowed to cool to room 

temperature and reduced with tetrabutylammonium borohydride (0.258 g, 1.00 mmol). The 

usual work up afforded a viscous pale yellow oil (0.294 g) which was purified by flash 

column chromatography (40 g silica, 15-25 % acetone in dichloromethane) to afford 1, 2-cis, 

2, 4-trans-4f as a colourless solid (0.039 g). This material was purified further by 

recrystallization by vapour diffusion (methanol/pentane) to afford 1, 2-cis, 2, 4-trans-4f as a 

colourless plate (0.021 g, 11 %). m.p. = 118-120 °C; Rf = 0.42 (20 % acetone in 

dichloromethane); 1H NMR (600 MHz, MeOD): δ = 3.84 (dt, J = 8.3, JH-F = 3.7 Hz, 1H), 

3.71-3.61 (m, 1H), 2.22-2.06 (m, 1H), 1.77-1.68 (m, 1H), 1.68-1.59 (m, 2H), 1.18 (qd, 2J = J 

= 13.5, J = 3.9 Hz, 1H), 1.01 (d, J = 6.9 Hz, 3H) ppm; 13C NMR (150 MHz, MeOD): δ = 

123.5 (dd, 1
JC-F = 252.8, 242.5 Hz), 71.5 (dd, 2

JC-F = 33.8, 21.6 Hz), 69.2 (d, 3
JC-F = 7.6 Hz), 

31.8 (t, 2JC-F = 22.0 Hz), 26.7 (d, 3JC-F = 8.4 Hz), 26.5, 10.4 (t, 3JC-F = 3.9 Hz) ppm; 19F NMR 

(376 MHz, MeOD): δ =  (-108.9) – (-109.9) (m, including -109.3 (app. d, 2J = 250.3 Hz, 1F)), 

-124.5 (dd, 2
J = 250.3, 3

JF-H = 29.6 Hz, 1F) ppm; ν�/(neat) = 3400 (broad), 2963, 1457, 1046, 
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957 cm-1; HRMS (APCI): calcd for C7H16F2O2N, 184.1144 [M+NH4]
+, found: 184.1141; MS 

(CI): m/z (%): 184 (100) [M+NH4]
+; tR (GC) = 9.44 minutes. 

(1S*,2S*,4S*)-3,3-difluoro-4,6,6-trimethylcyclohexane-1,2-diol (1, 2-cis, 2, 4-trans-

4g). Prepared according to general procedure B from 3g (0.280 g, 1.00 mmol) with 1,3-

bis(2,6-diisopropylphenyl-imidazol-2-ylidene)gold(I) chloride (5 mol %, 0.031 g) and silver 

hexafluoroantimonate(V) (5 mol %, 0.017 g) in dichloromethane (5.4 mL) and methanol (0.6 

mL). After stirring for 21 hours at 40 °C the reaction was allowed to cool to room 

temperature and reduced with tetrabutylammonium borohydride (0.258 g, 1.00 mmol). The 

usual work up afforded a viscous pale yellow oil (0.586 g) which was purified by flash 

column chromatography (40 g silica, 5 % acetone in dichloromethane) to afford 1, 2-cis, 2, 4-

trans-4g as a colourless solid (0.123 g, 63 %). Rf = 0.25 (5 % acetone in dichloromethane); 

1H NMR (400 MHz, CDCl3): δ = 4.04 (tt, JH-F = 6.6, J = 3.5 Hz, 1H), 3.49-3.38 (m, 1H), 

2.46-2.24 (m, (including 2.39 (app. d, J =3.5 Hz, 1H) and 2.29 (d, J =9.6 Hz, 1H)), 1H), 1.43 

(ddd, 2
J = 14.1, 4

JH-F = 6.2, J = 4.2 Hz, 1H), 1.26 (br. t, 2
J = J = 14.1 Hz, 1H), 1.07 (s, 3H), 

1.06 (d, J = 6.2 Hz, 3H), 1.03 (s, 3H) ppm;  13C NMR (150 MHz, CDCl3): δ = 122.8 (dd, 1JC-F 

= 251.1, 243.3 Hz), 74.2 (d, 3
JC-F = 6.7 Hz), 71.5 (dd, 2

JC-F = 36.3, 22.2 Hz), 41.6 (d, 3
JC-F = 

8.8 Hz), 34.8, 29.2, 28.8 (t, 2
JC-F = 21.5 Hz), 19.9, 10.9 (t, 3

JC-F = 3.7 Hz) ppm; 19F NMR 

(376 MHz, CDCl3): δ =  (-109.0) – (-109.9) (m, including -109.4 (app. d, 2J = 253.0 Hz, 1F)), 

-124.5 (dddd, 2
J = 253.0, 3

JF-H = 28.9, 6.2, 4
JF-H = 4.2 Hz, 1F) ppm; ν�/(neat) = 3350, 2926, 

1465,1371, 1005 cm-1; HRMS (NSI-ES): calcd for C9H16F2O2Na, 217.1011 [M+Na]+, found: 

217.1012; MS (EI): m/z (%): 161(3) [M-CH3F]+, 102 (61) [M-C4H6F2]
+, 72(100) [M-

C6H12F2]
+; tR (GC) = 9.64 minutes; elemental analysis calcd (%) for C9H16F2O2: C, 55.66; H, 

8.30;  found: C, 55.35; H, 8.23. 

(4S*,5R*,7S*)-6,6-Difluoro-4,7-dimethylspiro[2.5]octane-4,5-diol (4, 5-trans, 5, 7-

cis-4h), (4S*,5R*,7R*)-6,6-difluoro-4,7-dimethylspiro[2.5]octane-4,5-diol (4, 5-trans, 5, 7-
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trans-4h)  and (4R*,5R*,7S*)-6,6-difluoro-4,7-dimethylspiro[2.5]octane-4,5-diol (4, 5-cis, 5, 

7-cis-4h). Prepared according to general procedure B from 3h (0.352 g, 1.21 mmol) with 1,3-

bis(2,6-diisopropylphenyl-imidazol-2-ylidene)gold(I) chloride (5 mol %, 0.037 g) and silver 

hexafluoroantimonate(V) (5 mol %, 0.021 g) in dichloromethane (6.5 mL) and methanol (0.7 

mL). After stirring for 18 hours at 40 °C the reaction was allowed to cool to room 

temperature and reduced with tetrabutylammonium borohydride (0.311 g, 1.21 mmol). The 

usual work up afforded a viscous pale yellow oil (0.564 g) which was purified by flash 

column chromatography (40 g silica, 6 % acetone in dichloromethane) to afford a mixture of 

4, 5-trans, 5, 7-cis-4h, 4, 5-trans, 5, 7-trans-4h and 4, 5-cis, 5, 7-cis-4h (0.125 g). The 

material was further purified by flash column chromatography (40 g silica, 38 % ethyl acetate 

in hexane) to afford a mixture of 4, 5-trans, 5, 7-cis-4h, 4, 5-trans, 5, 7-trans-4h and 4, 5-cis, 

5, 7-cis-4h (73.4 mg, 29 %, 1.3:1:0.1) as a pale yellow oil, 4, 5-trans, 5, 7-cis -4h as a pale 

yellow oil (13.8 mg, 6 %) and 4, 5-trans, 5, 7-trans-4h as a colourless solid  (12.8 mg, 5 %). 

Rf  4, 5-trans, 5, 7-cis-4h = 0.52 (10 % acetone in dichloromethane); Rf  4, 5-trans, 5, 7-trans-

4h = 0.61 (10 % acetone in dichloromethane); 4, 5-cis, 5, 7-cis-4h co eluted with the 4, 5-

trans, 5, 7-trans diastereoisomer; The following signals were attributed to the major 4, 5-

trans, 5, 7-cis-diastereoisomer 4h and minor 4, 5-trans, 5, 7-trans-4h and 4, 5-cis, 5, 7-cis-

diastereoisomers 4h 1H NMR (600 MHz, DMSO-d6, 373 K): δ = 3.63-3.48 (m, 1H),  0.84-

0.74 (m, 2H), 0.22-0.06 (m, 3H) ppm; 

The following signals were attributed to the major 4, 5-trans, 5, 7-cis-diastereoisomer 4h 

(assigned on the basis of δ and intensity); 1H NMR (600 MHz, DMSO-d6, 373 K): δ = 4.81 

(br. s, 1H), 3.78 (br. s, 1H), 2.09-1.91 (m, 1H), 1.75 (br. t, 2J = J = 13.4 Hz, 1H), 1.16 (d, 5JH-

F = 2.2 Hz, 3H), 0.97 (d, J = 6.8 Hz, 3H), 0.91-0.84 (m, 1H), 0.59 (ddd, 2
J = 9.3, J = 5.7, 3.8 

Hz, 1H) ppm;  13C NMR (150 MHz, DMSO-d6, 373 K): δ = 123.8 (t, 1
JC-F = 247.0 Hz), 77.5 

(t, 2JC-F = 19.1 Hz), 72.2 (d, 3JC-F = 8.3 Hz), 37.8 (d, 3JC-F = 8.7 Hz), 36.7 (t, 2JC-F = 22.3 Hz), 
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25.6, 20.0 (d, 4JC-F = 5.6 Hz), 11.8, 8.5, 6.6 ppm; 19F NMR (376 MHz, DMSO-d6, 373 K): δ = 

-104.7 (dq, 2J = 240.6, 3JF-H = 4JF-H = 4.9 Hz, 1F), -127.9 (dt, 2J = 240.6, 3JF-H = 24.2 Hz, 1F) 

ppm; 

The following signals were attributed to the minor 4, 5-trans, 5, 7-trans-diastereoisomer 4h 

(assigned on the basis of δ and intensity); 1H NMR (600 MHz, DMSO-d6, 373 K): δ 4.90 (br. 

s, 1H), 3.75 (br. s, 1H), 2.37-2.21 (m, 1H), 1.57 (br. dd, 2J = 13.9 , J = 8.0 Hz, 1H), 1.34-1.25 

(m, 1H), 1.04 (d, J = 7.1 Hz, 3H), 1.02 (s, 3H), 0.55-0.48 (m, 1H) ppm; 13C NMR (150 MHz, 

DMSO-d6, 373 K): δ = 125.0 (t, 1
JC-F = 248.1 Hz), 74.7 (t, 2

JC-F = 22.5 Hz), 73.6, 36.8, 35.0 

(t, 2
JC-F = 22.2 Hz), 22.5, 21.0 (d, 4

JC-F = 5.6 Hz), 13.4, 8.5, 7.9 ppm; 19F NMR (376 MHz, 

DMSO-d6, 373 K): δ = -106.7 (br. d, 2J = 243.4 Hz, 1F), -110.1 (d, 2J = 243.4 Hz, 1F) ppm; 

The following signals were attributed to the minor 4, 5-cis, 5, 7-cis-diastereoisomer 4h 

(assigned on the basis of δ and intensity); 1H NMR (600 MHz, DMSO-d6, 373 K): δ 0.99 (d, 

J = 6.7 Hz, 3H) ppm; 13C NMR (150 MHz, DMSO-d6, 373 K): δ = 37.4 (d, 3
JC-F = 8.0 Hz), 

29.3, 12.1, 9.9, 8.2 ppm; 19F NMR (376 MHz, DMSO-d6, 373 K): δ = -103.2 (d, 2
J = 238.9 

Hz, 1F), -127.0 (dt, 2
J = 238.9, 3

JF-H = 26.5 Hz, 1F) ppm; ν�/(neat) = 3427, 2933, 1465, 1026, 

991 cm-1;  HRMS (APCI): calcd for C10H15F2O1, 189.1091 [M-H2O+H]+, found: 189.1089; 

MS (EI): m/z (%): 168 (12) [M-2F]+ (major 4, 5-trans, 5, 7-cis diastereoisomer), 168 (21) 

[M-2F]+ (minor 4, 5-trans, 5, 7-trans diastereoisomer), 168 (30) [M-2F]+ (minor 4, 5-cis, 5, 

7-cis diastereoisomer); tR (GC) = 10.71 minutes (major 4, 5-trans, 5, 7-cis diastereoisomer), 

10.84 minutes (minor 4, 5-trans, 5, 7-trans diastereoisomer), 11.00 (minor 4, 5-cis, 5, 7-cis 

diastereoisomer). Diastereomerically pure 4, 5-trans, 5, 7-cis 4h: 1H NMR (600 MHz, 

DMSO-d6, 373 K): δ = 4.84 (br. d, J = 5.5 Hz, 1H), 3.81 (br. s, 1H), 3.51 (dt, JH-F = 24.2, 5.5, 

J = 5.5 Hz, 1H), 2.09-1.92 (m, 1H), 1.74 (br. t, 2J = J = 13.6 Hz, 1H), 1.14 (d, 5
JH-F = 2.2 Hz, 

3H), 0.96 (d, J = 6.8 Hz, 3H), 0.90-0.83 (m, 1H), 0.79 (dt, 2J = 13.6, 4
JH-F = J = 4.6 Hz, 1H), 

0.58 (ddd, 2
J = 9.3, J = 5.7, 3.8 Hz, 1H), 0.21-0.13 (m, 1H), 0.13-0.03 (m, 1H) ppm; 13C 
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NMR (150 MHz, DMSO-d6, 373 K): δ = 122.7 (dd, 1
JC-F = 249.8, 244.8 Hz), 76.5 (t, 2

JC-F = 

19.4 Hz), 71.2 (d, 3JC-F = 9.0 Hz), 36.8 (d, 3JC-F = 9.0 Hz), 35.7 (t, 2JC-F = 21.9 Hz), 24.5, 19.0 

(d, 4
JC-F = 6.1 Hz), 10.8 (dd, 3

JC-F = 5.8, 2.5 Hz), 7.4, 5.5 ppm; 19F NMR (376 MHz, DMSO-

d6, 373 K): δ = -104.7 (app. dq, 2J = 240.6, 3JF-H = 4JF-H = 4.9 Hz, 1F), -127.9 (dt, 2J = 240.6, 

3
JF-H = 24.2 Hz, 1F) ppm; ν�/(neat) = 3427, 2938, 1376, 1231, 1090, 991 cm-1;  HRMS 

(APCI): calcd for C10H20F2O2N1, 224.1462 [M+NH4]
+, found: 224.1458; MS (EI): m/z (%): 

168 (12) [M-2F]+; tR (GC) = 10.71 minutes; Diastereomerically pure 4, 5-trans, 5, 7-trans 4h: 

m.p. = 66-68 °C (recrystallized from chloroform/pentane as a colourless plate); 1H NMR (600 

MHz, DMSO-d6, 373 K): δ 4.92 (br. d, J = 5.8 Hz, 1H), 3.77 (br. s, 1H), 3.51 (dt, JH-F = 15.2, 

5.9, J = 5.9 Hz, 1H), 2.34-2.22 (m, 1H), 1.56 (br. dd, 2J = 13.9 , J = 8.0 Hz, 1H), 1.29 (br. d, , 

2
J = 13.9 Hz, 1H), 1.04 (d, J = 7.2 Hz, 3H),  1.01 (s, 3H), 0.76 (br. dt, 2

J = 9.1, J = 4.1 Hz, 

1H), 0.54-0.48 (m, 1H), 0.17 (ddd, 2J = 9.1, J = 5.5, 4.3 Hz, 1H), 0.13 (ddd, 2J = 9.2, J = 5.2, 

3.6 Hz, 1H) ppm; 13C NMR (150 MHz, DMSO-d6, 373 K): δ = 124.0 (t, 1
JC-F = 248.5 Hz), 

73.6 (t, 2
JC-F = 22.3 Hz), 72.5, 35.8 (t, 3JC-F = 3.9 Hz), 33.9 (t, 2

JC-F = 21.9 Hz), 21.4, 20.0 (d, 

4
JC-F = 4.0 Hz), 12.4 (t, 3

JC-F = 5.1 Hz), 7.4, 6.9 ppm; 19F NMR (376 MHz, DMSO-d6, 373 

K): δ = -106.7 (br. d, 2
J = 243.4 Hz, 1F), -110.1 (d, 2

J = 243.4 Hz, 1F) ppm (the 19F-1H 

splitting was not resolved in the 19F NMR spectrum); ν�/(neat) = 3382, 2931, 1380, 1023, 824 

cm-1; HRMS (APCI): calcd for C10H15F2O1, 189.1091 [M-H2O+H]+, found: 189.1087; MS 

(EI): m/z (%): 168 (21) [M-2F]+; tR (GC) = 10.84 minutes. 

 

(6R*,7S*,9S*)-8,8-Difluoro-6,9-dimethylspiro[4.5]decane-6,7-diol (6, 7-trans, 7, 9-

trans-4i) and (6S*,7S*,9S*)-8,8-difluoro-6,9-dimethylspiro[4.5]decane-6,7-diol (6, 7-cis, 7, 

9-trans-4i). Prepared according to general procedure B from 3i (0.339 g, 1.06 mmol) with 

1,3-bis(2,6-diisopropylphenyl-imidazol-2-ylidene)gold(I) chloride (5 mol %, 0.033 g) and 

silver hexafluoroantimonate(V) (5 mol %, 0.018 g) in dichloromethane (5.4 mL) and 
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methanol (0.6 mL). After stirring for 2 hours at 40 °C the reaction was allowed to cool to 

room temperature and reduced with tetrabutylammonium borohydride (0.273 g, 1.06 mmol). 

The usual work up afforded a viscous pale yellow oil (0.395 g). The crude material was 

purified by flash column chromatography (40 g silica, 6% acetone in dichloromethane) to 

afford a mixture of 6, 7-trans, 7, 9-trans-4i, and 6, 7-cis, 7, 9-trans-4i (0.168 g). The material 

was further purified by flash column chromatography (40 g silica, 6 % acetone in 

dichloromethane) to afford an inseparable mixture of 6, 7-trans, 7, 9-trans-4i, and 6, 7-cis, 7, 

9-trans-4i (0.108 g, 44 %, 3.8:1). Rf = 0.7 (8 % acetone in dichloromethane); The following 

signals were attributed to both the minor 6, 7-cis, 7, 9-trans-diastereoisomer 4i and major 6, 

7-trans, 7, 9-trans-diastereoisomer 4i 1H NMR (400 MHz, CDCl3): δ =  2.48-2.13 (m, 

including 2.23 (br.s, 1H), 1H),  2.04-1.38 (envelope, 13H), 1.37-1.22 (m, including 1.33 (s, 

3H), 6H) ppm; The following signals were attributed to the major 6, 7-trans, 7, 9-trans-

diastereoisomer 4i (assigned on the basis of δ and intensity); 1H NMR (400 MHz, CDCl3): δ 

= 3.64 (t, JH-F = 5.8 Hz, 1H), 2.23 (br. s, 1H), 1.33 (s, 3H), 1.07 (d, J = 6.9 Hz, 3H) ppm; 13C 

NMR (100 MHz, MeOD): δ = 127.1 (t, 1
JC-F = 247.7 Hz), 79.8 (d, 3

JC-F = 5.3 Hz), 79.2 (dd, 

2
JC-F = 27.8, 20.7 Hz), 52.0, 43.2 (d, 3

JC-F = 8.0 Hz),  38.8, 36.8, 33.5 (t, 2
JC-F = 21.5 Hz), 

29.7, 27.4, 24.4, 14.3 (d, 3JC-F = 4.3 Hz) ppm; 19F NMR (376 MHz, CDCl3): δ = -107.6 (d, 2J 

= 253.2 Hz, 1F), -116.2 (dd, 2
J = 253.2, 3

JF-H = 28.7 Hz, 1F) ppm (the 19F-1H splitting was 

not resolved in the 19F NMR spectrum); The following signals were attributed to the minor 6, 

7-cis, 7, 9-trans-diastereoisomer 4i (assigned on the basis of δ and intensity);  1H NMR (400 

MHz, CDCl3): δ = 3.67 (t, JH-F = 6.6 Hz, 1H), 2.69 (br. s, 1H), 2.65 (br. s, 1H) 1.26 (d, 5JH-F = 

4.1 Hz, 3H), 1.05 (d, J = 6.3 Hz, 3H) ppm; 13C NMR (100 MHz, MeOD): δ = 126.9 (dd, 1JC-F 

= 248.7, 243.0 Hz), 80.5 (dd, 2
JC-F = 32.9, 20.4 Hz), 76.7 (d, 3

JC-F = 6.9 Hz), 52.9, 41.4 (d, 

3
JC-F = 8.7 Hz), 38.2, 33.6, 33.0 (t, 2

JC-F = 21.8 Hz), 28.0, 25.4, 25.3 (d, 4
JC-F = 8.4 Hz), 13.9 

(d, 3JC-F = 5.4 Hz) ppm; 19F NMR (376 MHz, CDCl3): δ -105.9 (dq, 2J = 253.7, 3JF-H = 4JF-H = 
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5.4 Hz, 1F), -117.5 (dd, 2J = 253.7, 3JF-H = 28.9 Hz, 1F) ppm ( the 6.6 Hz 19F-1H splitting was 

not resolved in the 19F NMR spectrum); ν�/(neat) = 3600, 3331, 2947, 1454, 1383, 1086, 978 

cm-1; HRMS (APCI): calcd for C12H22F2O2N1, 252.1770 [M-H]+, found: 252.1769; MS (EI): 

m/z (%): 219 (1) [M-CH3]
+; tR (GC) = 12.17 minutes;* elemental analysis calcd (%) for 

C12H20F2O2: C, 61.52; H, 8.60;  found: C, 61.76; H, 8.64. This analysis was obtained for the 

amorphous solid obtained following chromatography so no melting point was recorded. * the 

individual diastereoisomers appeared as one peak by GC-MS. 

Cis-methyl (3S*,4aR*)-3-methoxy-3-methyl-4,4a,5,6,7,8-hexahydro-3H-isochromene-

1-carboxylate (3, 4a-cis-5) and trans-methyl (3R*,4aR*)-3-methoxy-3-methyl-4,4a,5,6,7,8-

hexahydro-3H-isochromene-1-carboxylate (3, 4a-trans-5). Prepared according to general 

procedure B from trans-3j and cis-3j (0.253 g, 0.83 mmol) with 1,3-bis(2,6-

diisopropylphenyl-imidazol-2-ylidene)gold(I) chloride (5 mol %, 0.026 g) and silver 

hexafluoroantimonate(V) (5 mol %, 0.014 g) in dichloromethane (4.5 mL) and methanol (0.5 

mL). After stirring for 15 minutes at 40 °C the reaction was allowed to cool to room 

temperature. The solvent was removed under reduced pressure and the residue taken up in 

ethyl acetate (20 mL). The organics were washed with saturated aqueous sodium bicarbonate 

(15 mL). The aqueous layer was further extracted with ethyl acetate (3 x 15 mL) and the 

organics combined, dried over magnesium sulphate and concentrated under reduced pressure 

to afford the crude product as a dark orange oil (0.204 g). The crude material was purified by 

flash column chromatography using a Thomson Single Step cartridge (12 g silica, 0-5 % 

acetone in dichloromethane) to afford an inseparable mixture of 3, 4a-cis 5, and 3, 4a-trans-5 

as a pale yellow oil. After storing the material in the freezer at 0 °C for one year the material 

solidified to afford a pale yellow solid (0.057 g, 29 %, 7.3:1). m.p. = 40-42 °C (crystals were 

grown by slow evaporation from chloroform/pentane under reduced pressure as small 

colourless prisms); Rf = 0.54 (10 % ethyl acetate in hexane);The following signals were 
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attributed to both the minor 3, 4a-trans-diastereoisomer 5 and major 3, 4a-cis-diastereoisomer 

5 1H NMR (400 MHz, CDCl3): δ = 3.79 (s, 3H), 3.53-3.42 (m, 1H), 1.97-1.61 (envelope, 

5H), 1.47 (s, 3H), 1.45-1.22 (m, 4H) ppm; The following signals were attributed to the major 

3, 4a-cis-diastereoisomer 5 (assigned on the basis of δ and intensity); 1H NMR (400 MHz, 

CDCl3): δ = 3.25 (s, 3H), 2.35-2.22 (m, 1H), 2.00 (dd, 2J = 13.7, 7.0 Hz, 1H), 1.07 (dq, 2J = J 

= 12.5, J = 3.6 Hz, 1H) ppm; 13C NMR (100 MHz, CDCl3): δ = 164.2, 132.7, 128.7, 97.1, 

51.2, 48.6, 40.2, 33.3, 31.7, 27.1, 26.2, 25.1, 22.2 ppm; The following signals were attributed 

to the minor 3, 4a-trans-diastereoisomer 5 (assigned on the basis of δ and intensity); 1H NMR 

(400 MHz, CDCl3): δ = 3.31 (s, 3H) ppm; 13C NMR (100 MHz, CDCl3): δ = 164.1, 132.9, 

128.5, 98.3, 51.2, 48.4, 37.6, 34.6, 34.4, 28.1, 27.3, 26.0, 21.8 ppm; ν�/(neat) = 2921, 1719, 

1435, 1279, 1115, 1045, 881 cm-1; HRMS (APCI): calcd for C13H24O4N1, 258.1700 

[M+NH4]
+, found: 258.1701; MS (EI): m/z (%): 240 (1) [M]+ (3, 4a-cis and 3, 4a-trans 

diastereoisomers); tR (GC) = 12.19 minutes (major 3, 4a-cis diastereoisomer), 12.26 minutes 

(minor 3, 4a-trans diastereoisomer). 

General Procedure C: Propargyl Ether Preparation. 1,1-Difluoro-2-

([methoxyethoxy]- methoxy) 3-(Propargyloxy)hexane (6a). Propargyl ether 6a was prepared 

according to the procedure of Percy and co-workers.15 Propargyl bromide (0.78 mL of an 80 

wt % solution in toluene, 7.0 mmol) was added dropwise to a vigorously stirred mixture of 

allylic alcohol 3k (1.54g, 5.4 mmol) and tetra(n-butyl)ammonium hydrogen sulfate (0.085 g, 

0.25 mmol) in  aqueous sodium hydroxide (4.5 mL, 50 wt %) at 0 °C. The reaction mixture 

was allowed to warm to room temperature and stirred for 18 hours. The mixture was 

quenched with aqueous saturated ammonium chloride (20 mL) and transferred to a separating 

funnel. Water (10 mL) was added and the product was extracted with diethyl ether (4 x 50 

mL). The combined organic extracts were dried (MgSO4), filtered and concentrated under 

reduced pressure to afford the crude product as a yellow oil (1.91 g). The crude propargyl 
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ether was purified by flash column chromatography (90 g cartridge, 20 % diethyl ether in 

hexane) to afford 6a as a colourless oil (1.23 g, 71 %). Rf = 0.62 (50 % diethyl ether in 

hexane); 1H NMR (400 MHz, CDCl3): δ = 5.04 (d, 2
J = 6.2 Hz, 1H), 4.95 (d, 2

J = 6.2 Hz, 

1H), 4.28-4.18 (m, including 4.22 (dd, 2J = 15.7,  4
J = 2.2 Hz, 1H),  1H), 4.09 (dd, 2

J = 15.7,  

4
J = 2.2 Hz, 1H), 3.94-3.76 (m, 1H), 3.59 (t, J = 4.9 Hz,  2H), 3.41 (s, OCH3, 3H), 3.42 (t, 4J 

= 2.2 Hz, 1H), 1.86-1.61 (m, 2H), 1.50-1.20 (m, 8H), 0.90 (t, J = 6.9 Hz, 3H) ppm;  

13C NMR (100 MHz, CDCl3): δ = 155.7 (dd, 1JC-F = 295.0, 285.5 Hz), 111.4 (dd, 2JC-F = 36.3. 

10.5 Hz), 96.4 (t, 4
JC-F = 3.3 Hz), 78.9, 73.7, 73.6 (t, 4

JC-F = 3.0 Hz), 71.1, 67.8, 58.4, 54.9, 

31.1, 28.4, 24.8, 22.0, 13.5 ppm; 19F (376 MHz, CDCl3):  δ = -96.9 (d, 2
J = 62.3 Hz, 1F), -

109.0 (d, 2
J = 62.3 Hz, 1F) ppm; ν�/(neat) = 3309, 2924, 1747, 1236, 1074, 955 cm-1;  HRMS 

(ESI): calcd for C16H30F2O4N1, 338.2137 [M+NH4]
+, found: 338.2139; MS (CI): m/z (%): 281 

(1) [M-C3H3]
+, 265 (4) [M-C3H3O]+, 245 (6) [M-C3H7O2]

+
, 153 (4) [C10H17O]+, 89 (78) 

[C4H9O2]
+, 59 (100) [C3H7O]+;  tR (GC) = 12.76 minutes. 

 

 1,1-Difluoro-2-([methoxyethoxy]- methoxy) 3-(Propargyloxy)-cyclohexane (6b). 

Prepared as for 6a from allylic alcohol 3k (2.24 g, 8.40 mmol), propargyl bromide (1.15 mL 

of an 80 wt % solution in toluene, 9.9 mmol) and tetra(n-butyl)ammonium hydrogen sulfate 

(0.126 g, 0.34 mmol) in aqueous sodium hydroxide (6.6 mL, 50 wt %) at 0 °C. The crude 

ether (2.39 g) was purified by flash column chromatography (90 g cartridge, 15 % diethyl 

ether in hexane) to afford 6b as a colourless oil (1.72 g, 68 %). Rf = 0.42 (30 % diethyl ether 

in hexane); 1H NMR (400 MHz, CDCl3): δ = 5.02 (d, 2
J = 6.4 Hz, 1H), 4.92 (d, 2

J = 6.4 Hz, 

1H), 4.20 (dd, 2J = 15.7, 4J = 2.4 Hz, 1H), 4.05 (dd, 2J = 15.7, 4J = 2.4 Hz, 1H), 3.92-3.83 (m,   

2H), 3.82-3.73 (m, 1H), 3.57 (t, J = 4.9 Hz,  2H), 3.39 (s, 3H, ), 2.39 (t, 4J = 2.4 Hz, 1H), 2.10 

(br. d, 2
J = 13.7 Hz, 1H), 1.86-1.52 (m, 5H), 1.37-1.09 (m, 3H), 1.07-0.82 (m, 2H) ppm; 13C 

NMR (100 MHz, CDCl3): δ = 156.2 (dd, 1
JC-F = 295.5, 284.9 Hz), 110.5 (dd, 2

JC-F = 36.3. 
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10.0 Hz), 96.4 (t, 4
JC-F = 3.2 Hz), 79.1, 78.4 (t, 3

JC-F = 3.5 Hz), 73.6, 71.1, 67.8, 58.5, 55.2, 

38.2, 29.2, 28.2, 25.9, 25.2, 25.1 ppm; 19F (376 MHz, CDCl3):  δ = -96.8 (d, 2
J = 63.7 Hz, 

1F), -109.6 (d, 2
J = 63.7 Hz, 1F) ppm; ν�/(neat) = 3305, 2921, 1745, 1232, 1045, 957 cm-1;  

HRMS (APCI): calcd for C16H28F2O4N1, 336.1986 [M+NH4]
+, found: 336.1981; MS (EI): m/z 

(%): 243 (3) [M-C3H7O2]
+, 187 (25) [M-C7H15O2]

+, 89 (71) [C4H9O2]
+, 59 (100) [C3H7O]+; tR 

(GC) = 13.04 minutes. 

 1,1-Difluoro-2-([methoxyethoxy]- methoxy) 3-(Propargyloxy)- tetrahydro-2H-pyran-

4-yl (6c). Prepared as for 6a from allylic alcohol 3m (1.84 g, 6.5 mmol),  propargyl bromide 

(1.00 mL of an 80 wt % solution in toluene, 8.5 mmol)  and tetra(n-butyl)ammonium 

hydrogen sulfate (0.107 g, 0.29 mmol) in  aqueous sodium hydroxide (5.3 mL, 50 wt %) at 0 

°C. The crude ether (2.22 g) was purified by flash column chromatography (90 g cartridge, 

50 % diethyl ether in hexane) to afford 6c as a pale yellow oil (1.82 g, 88 %). Rf = 0.32 (50 % 

diethyl ether in hexane); 1H NMR (400 MHz, CDCl3): δ = 5.01 (d, 2J = 6.6 Hz,  1H), 4.93 (d, 

2
J = 6.6 Hz, 1H), 4.26-4.17 (m, 1H), 4.10-4.03 (m, 1H), 4.02-3.82 (m, 4H), 3.82-3.73 (m, 

1H), 3.56 (t, J = 5.1 Hz, 2H),  3.42-3.32 (m, 5H), 2.41 (t, 4
J = 2.3 Hz, 1H),   2.04-1.90 (m, 

2H), 1.55-1.45 (m, 1H), 1.44-1.17 (m, 2H) ppm; 13C NMR (100 MHz, CDCl3): δ = 156.3 (dd, 

1
JC-F = 294.9, 285.3 Hz), 110.0 (dd, 2JC-F = 36.5, 10.3 Hz), 96.5 (t, 4

JC-F = 3.4 Hz), 78.8, 77.8 

(t, 3
JC-F = 3.6 Hz), 73.9, 71.1, 67.8, 67.1, 66.8, 58.5, 55.2, 35.7, 29.5, 28.0 ppm; 19F NMR 

(376 MHz, CDCl3): δ = -95.9 (d, 2J = 61.6 Hz, 1F), -108.9 (d, 2J = 61.6 Hz, 1F) ppm; ν�/(neat) 

= 3263, 2915, 1745, 1229, 1046, 948 cm-1; HRMS (ESI): calcd for C15H26F2O5N1, 338.1774 

[M+NH4]
+, found: 338.1775; MS (EI): m/z (%): 281 (1) [M-C3H3]

+, 89 (100) [C4H9O2]
+, 59 

(96) [C3H7O]+; tR (GC) = 13.36 minutes.  

 1,1-difluoro-2-([methoxyethoxy]- methoxy) 3-(Propargyloxy)- phenyl  (6d). Prepared 

as for 6a from allylic alcohol 3n (1.90 g, 6.9 mmol),  propargyl bromide (1.00 mL of an 80 

wt % solution in toluene, 9.0 mmol)  and tetra(n-butyl)ammonium hydrogen sulfate (0.107 g, 
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0.31 mmol) in  aqueous sodium hydroxide (5.6 mL, 50 wt %) at 0 °C. The crude ether (2.14 

g) was purified by flash column chromatography (90 g cartridge, 25 % diethyl ether in 

hexane) to afford 6d as a pale yellow oil (1.71 g, 79 %). Rf = 0.27 (20 % diethyl ether in 

hexane); 1H NMR (400 MHz, CDCl3): δ = 7.47- 7.29 (m, 5H), 5.46 (t, 4
JH-F = 3.5 Hz, 1H),  

4.96 (d, 2
J = 6.4 Hz, 1H), 4.86 (d, 2

J = 6.4 Hz, 1H), 4.28 (t, 4
J = 2.4 Hz, 2H), 3.79-3.67 (m, 

1H),  3.53 (t, J = 4.6 Hz, 2H), 3.39 (s, 3H), 2.48 (t, 4
J = 2.4 Hz, 1H) ppm; 13C NMR (100 

MHz, CDCl3): δ = 155.6 (dd, 1JC-F = 294.3, 287.7 Hz), 136.7, 127.9, 127.6, 126.2, 112.7 (dd, 

2
JC-F = 35.4, 11.9 Hz), 96.7 (t, 4

JC-F = 3.2 Hz), 78.5, 74.5, 74.4 (app. d, 3
JC-F = 2.5 Hz), 71.0, 

67.8, 58.5, 55.2 ppm; 19F NMR (376 MHz, CDCl3): δ = -96.8 (d, 2
J = 59.8 Hz, 1F), -107.8 

(dd, 2
J = 59.8, 4

JF-H = 3.5 Hz, 1F) ppm; ν�/(neat) = 3284, 2920, 1746, 1231, 1054, 954 cm-1;  

HRMS (APCI): calcd for C16H22F2O4N1, 330.1517 [M+NH4]
+, found: 330.1520; MS (EI): m/z 

(%): 145 (3) [C10H9O]+, 89 (92) [C4H9O2]
+, 59 (100) [C3H7O]+;  tR (GC) = 13.42 minutes. 

 1,1-Difluoro-2-([methoxyethoxy]- methoxy) 3 - (Propargyloxy)- 4-

(trifluoromethyl)phenyl (6e). Prepared as for 6a from allylic alcohol 3o (0.813 g, 2.4 mmol),  

propargyl bromide (0.35 mL of an 80 wt % solution in toluene, 3.0 mmol)  and tetra(n-

butyl)ammonium hydrogen sulfate (0.037 g, 0.10 mmol) in  aqueous sodium hydroxide (3.0 

mL, 50 wt %) at 0 °C. The crude ether (0.917 g) was purified by flash column 

chromatography (90 g cartridge, 20 % diethyl ether in hexane) to afford 6e as a colourless oil 

(0.679 g, 74 %). Rf = 0.49 (5 % acetone in dichloromethane); 1H NMR (400 MHz, CDCl3): δ 

= 7.65 (d, J = 8.2 Hz, 2H), 7.56 (d, J = 8.4 Hz, 2H),  5.51 (br. t, 4JH-F = 2.7 Hz, 1H),  4.97 (d, 

2
J = 6.2 Hz, 1H), 4.79 (d, 2

J = 6.2 Hz, 1H), 4.31 (d, 4
J = 2.5 Hz, 2H), 3.75-3.69 (m, 2H), 

3.55-3.49 (m, 2H), 3.39 (s, 3H), 2.49 (t, 4J = 2.5 Hz, 1H)  ppm; 13C NMR (100 MHz, CDCl3): 

δ = 155.7 (dd, 1JC-F = 294.6, 287.0 Hz), 140.9, 129.8 (q, 2JC-F = 32.8 Hz), 126.5, 124.8 (q, 3JC-

F = 3.5 Hz), 123.7 (q, 1
JC-F = 272.7 Hz), 112.0 (dd, 2

JC-F = 36.0, 11.3 Hz), 96.7 (t, 4
JC-F = 3.3 

Hz), 78.0, 74.8, 73.9 (t, 3
JC-F = 3.2 Hz), 70.9, 67.9, 58.5, 55.4 ppm; 19F NMR (376 MHz, 
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CDCl3): δ = -62.6 (s, 3F), -95.8 (d, 2
J = 58.7 Hz, 1F), -107.3 (dd, 2

J = 58.7, 4
JF-H = 3.4 Hz, 

1F) ppm; ν�/(neat) = 3305, 2921, 1747, 1325, 1112, 1067, 1019 cm-1; HRMS (APCI): calcd 

for C17H21F5O4N1, 398.1385 [M+NH4]
+, found: 398.1383; MS (EI): m/z (%): 361 (1) [M-F]+, 

213 (4) [M-C7H10F3O]+, 89 (96) [C4H9O2]
+, 59 (100) [C3H7O]+; tR (GC) = 13.00 minutes. 

 1,1-Difluoro-2-([methoxyethoxy]- methoxy) 3-(Propargyloxy)- 4-(methoxy)phenyl  

(6f). Prepared as for 6a from allylic alcohol 3p (2.22 g, 7.3 mmol),  propargyl bromide (1.06 

mL of an 80 wt % solution in toluene, 9.0 mmol) and tetra(n-butyl)ammonium hydrogen 

sulfate (0.113 g, 0.31 mmol) in  aqueous sodium hydroxide (6.0 mL, 50 wt %) at 0 °C. The 

crude ether (2.73 g) was purified by flash column chromatography (90 g cartridge, 50 % 

diethyl ether in hexane) to afford 6f as a pale yellow oil (2.19 g, 88 %). Rf = 0.39 (50 % 

diethyl ether in hexane); 1H NMR (400 MHz, CDCl3): δ = 7.35 (d, J = 8.6 Hz, 2H), 6.90 (d, J 

= 8.6 Hz, 2H),  5.51-5.37 (t, 4
JH-F = 3.2 Hz, 1H),  4.96 (d, 2

J = 6.3 Hz, 1H), 4.76 (d, 2
J = 6.3 

Hz, 1H), 4.24, 4.21 (dABq, JAB = 15.9, 4
J  = 2.4 Hz, 2H), 3.81 (s, 3H), 3.77-3.72 (m, 2H), 

3.53 (t, J = 4.9 Hz, 2H), 3.38 (s, 3H), 2.47 (t, 4
J = 2.4 Hz, 1H) ppm; 13C NMR (100 MHz, 

CDCl3): δ = 159.0, 155.5 (dd, 1JC-F = 294.1, 286.1 Hz), 128.7, 127.5, 113.3, 112.8 (dd, 2JC-F = 

34.6, 10.7 Hz), 96.7 (t, 4
JC-F = 3.5 Hz), 78.5, 74.4, 74.1 (t, 3

JC-F = 3.2 Hz), 71.0, 67.8, 58.5, 

55.0, 54.7 ppm; 19F NMR (376 MHz, CDCl3): δ = -97.2 (d, 2
J = 60.1 Hz, 1F), -107.9 (d, 2J = 

60.1, 4
JF-H = 3.2 Hz, 1F) ppm; ν�/(neat) = 3283, 2898, 1745, 1513, 1247, 1054, 955 cm-1; 

HRMS (ESI): calcd for C17H24F2O5N1, 360.1617 [M+NH4]
+, found: 360.1620; MS (EI): m/z 

(%): 198 (19) [M-C7H12O3]
+, 89 (76) [C4H9O2]

+, 59 (100) [C3H7O]+; tR (GC) = 14.55 

minutes.  

General Procedure D: Difluorinated Pyran Preparation. 4,4-Difluoro-2-hexyl-5-

methylenedihydro-2H-pyran-3(4H)-one (7a) and 3,3-dihydroxy-4,4-difluoro-2-hexyl-5-

methylenedihydro-2H-pyran (8a). 1,3-bis(2,6-diisopropylphenyl-imidazol-2-

ylidene)gold(I) chloride (5 mol %, 0.031 g) and silver hexafluoroantimonate(V) (5 mol %, 
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0.017 g) were added to a round bottom flask. 2-Methyltetrahydrofuran (5 mL) was added and 

the solution stirred at room temperature (25 °C). During stirring, an off-white precipitate 

formed. The solution was stirred at room temperature then a solution of ether 6a (0.320 g, 1 

mmol) in 2-methyltetrahydrofuran (1 mL) was added in a stream via syringe. The mixture 

was stirred for 21 hours at room temperature then concentrated under reduced pressure to 

afford the crude product as a viscous dark brown oil (0.312 g). The crude material was 

purified by flash column chromatography (40 g silica, 3 % acetone in dichloromethane) to 

afford an inseparable mixture of ketone 7a and hydrate 8a as a colourless solid (0.163 g, 65 

%, 1:1). A small sample of crystalline hydrate 8a was prepared by recrystallization of the 

mixture by vapour diffusion using chloroform/pentane (8 mg, 3 %). m.p. = 70-72 °C 

(recrystallized from chloroform/pentane as small colourless needles); Rf = 0.57 (10 % 

acetone in dichloromethane); The following signals were attributed to both ketone 7a and 

hydrate 8a 
1H NMR (400 MHz, CDCl3): δ = 2.00-1.19 (envelope, 20H), 0.90 (t, J = 7.0 Hz, 

6H) ppm; The following signals were attributed to ketone 7a (assigned on comparison of the 

1H NMR spectrum of crystalline hydrate 8a grown from chloroform/pentane with the 1H 

NMR spectrum of the mixture and 2D NMR data); 1H NMR (400 MHz, CDCl3): δ = 5.79 (br. 

d, 4
JH-F = 4.0 Hz, 1H), 5.59 (app. q, 4

JH-F = 4
J = 1.4 Hz, 1H), 4.54 (br. d, 2

J = 13.8 Hz, 1H), 

4.42 (br. d, 2
J = 13.8 Hz, 1H), 4.17-4.10 (m, 1H) ppm; 13C NMR (100 MHz, CDCl3): δ = 

194.7 (dd, 2
JC-F = 27.9, 22.9 Hz), 138.1 (t, 2

JC-F = 18.9 Hz), 116.9 (t, 3
JC-F = 7.5 Hz), 109.9 

(dd, 1
JC-F = 261.2, 246.0 Hz), 81.3 (d, 3

JC-F = 2.9 Hz), 67.8 (d, 3
JC-F = 3.3 Hz), 31.2, 28.7, 

25.3, 24.4, 22.1, 13.5 ppm; 19F NMR (376 MHz, CDCl3): δ = -105.6 (d, 2J = 265.6 Hz, 1F), -

120.0 (d, 2
J = 265.6 Hz, 1F) ppm (the 19F-1H splittings are not resolved in the 376 MHz 19F 

NMR spectrum). The following signals were attributed to hydrate 8a (See page 162 of 

Results and Discussion);  1H NMR (400 MHz, CDCl3): δ = 5.67 (d, 4JH-F = 4.9 Hz, 1H), 5.39 

(app. q, 4JH-F = 4J = 1.8 Hz, 1H), 4.32 (dd, 2J = 12.9, 4JH-F = 4.2 Hz, 1H), 4.17 (br. d, 2J = 12.9 
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Hz, 1H), 3.65-3.50 (m, 1H), 3.13 (br. s, 1H), 3.02 (br. s, 1H) ppm;  13C NMR (100 MHz, 

CDCl3): δ = 136.4 (t, 2
JC-F = 20.5 Hz), 115.5 (dd, 1

JC-F = 261.1, 244.3 Hz), 115.2 (t, 3
JC-F = 

7.0 Hz), 92.7 (dd, 2
JC-F = 27.5, 20.1 Hz), 79.4 (d, 3

JC-F = 2.9 Hz), 68.7 (d, 3
JC-F = 4.4 Hz), 

31.1, 28.8, 28.5, 26.0, 22.0, 13.5 ppm; 19F NMR (376 MHz, CDCl3): δ = -107.7 (d, 2J = 240.6 

Hz, 1F), -138.7 (d, 2
J = 240.6 Hz, 1F) ppm; (the 19F-1H splittings are not resolved in the 376 

MHz 19F NMR spectrum); ν�/(neat) = 3387, 2922, 1470, 1242, 1085, 933 cm-1; HRMS 

(APCI): calcd for C12H19F2O2, 233.1353 [M+H]+, found: 233.1352;* MS (EI): m/z (%): 232 

(1) [M]+, 119 (32) [M-C7H13O]+,** tR (GC) = 11.22 minutes.** *accurate mass was 

calculated for the ketone component of the mixture. **the mixture appeared as one peak by 

GC-MS, masses corresponded to that of the ketone. 

2-Cyclohexyl-4,4-difluoro-5-methylenedihydro-2H-pyran-3(4H)-one (7b) and 3,3-

dihydroxy-2-cyclohexyl-4,4-difluoro-5-methylenedihydro-2H-pyran (8b). Ketone 7b and 

hydrate 8b were prepared according to general procedure D from propargyl ether 6b (0.318 g, 

1.00 mmol) with 1,3-bis(2,6-diisopropylphenyl-imidazol-2-ylidene)gold(I) chloride (5 mol 

%, 0.031 g) and silver hexafluoroantimonate(V) (5 mol %, 0.017 g) in 2-

methyltetrahydrofuran (6.0 mL). The crude material (0.369 g) was purified by flash column 

chromatography (40 g silica, 5 % acetone in dichloromethane) to afford an inseparable 

mixture of ketone 7b and hydrate 8b as a colourless solid (0.145 g, 63 %, 7.3:1). Rf = 0.46 (5 

% acetone in dichloromethane); The following signals were attributed to both ketone 7b and 

hydrate 8b 1H NMR (400 MHz, CDCl3): δ = 2.15-1.89 (m, 1H), 1.89-1.55 (m, 5H), 1.47-1.09 

(m, 5H) ppm; The following signals were attributed to ketone 7b (assigned on the basis of δ 

and intensity) 1H NMR (400 MHz, CDCl3): δ = 5.82-5.74 (m, 1H), 5.47 (br. s, 1H), 4.60 

(app. dt, 2
J = 14.0, 4

J = 1.4 Hz, 1H), 4.37 (app. dquint, 2
J = 14.0, 4

J = 4
JH-F = 1.4 Hz, 1H), 

3.91 (dt, J = 5.0, 4JH-F = 2.9 Hz, 1H) ppm; 13C NMR (100 MHz, CDCl3): δ = 195.1 (t, 2JC-F = 

25.1 Hz), 137.9 (t, 2
JC-F = 18.7 Hz), 116.8 (t, 3

JC-F = 7.5 Hz), 109.6 (dd, 1
JC-F = 257.0, 250.5 

Page 51 of 60

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Hz), 85.7, 67.5, 37.8, 28.7, 26.6, 25.6 ppm; 19F NMR (376 MHz, CDCl3): δ = -111.7 (dt, 2J = 

265.4, 4
JF-H = 2.7 Hz, 1F), -120.0 (dq, 2

J = 265.4, 4
JF-H = 2.9 Hz, 1F) ppm; The following 

signals were attributed to hydrate 8b (assigned on the basis of δ and intensity) 1H NMR (400 

MHz, CDCl3): δ = 5.65 (d, 4
JH-F = 4.9 Hz, 1H), 5.37 (app. q, 4

JH-F = 4
J = 1.9 Hz, 1H), 4.33 

(dd, 2J = 12.9, 4JH-F = 4.2 Hz, 1H), 4.13 (br. d, 2J = 12.9 Hz, 1H), 3.37-3.32 (m, 1H), 3.24 (br. 

s, 1H), 3.08 (br. s, 1H) ppm; 13C NMR (100 MHz, CDCl3): δ = 136.5 (t, 2
JC-F = 20.6 Hz), 

115.6 (dd, 1JC-F = 259.9, 244.8 Hz), 115.1 (t, 3JC-F = 7.0 Hz), 93.9 (dd, 2JC-F = 26.6, 20.1 Hz), 

82.5 (d, 3
JC-F = 1.7 Hz), 69.0 (d, 3

JC-F = 4.4 Hz), 36.2, 30.9, 27.6, 25.4 ppm; 19F NMR (376 

MHz, CDCl3): δ = -107.1 (d, 2
J = 240.6 Hz, 1F), -139.4 (d, 2

J = 240.6 Hz, 1F) ppm (the 19F-

1H splittings are not resolved in the 376 MHz 19F NMR spectrum); ν�/(neat) = 3404, 2917, 

1452, 1217, 1091, 935 cm-1; HRMS (APCI): calcd for C12H20F2O2N1, 248.1457 [M+NH4]
+, 

found: 248.1459;* MS (EI): m/z (%): 230 (2) [M]+, 202 (58) [M-C2H4]
+,** tR (GC) = 11.41 

minutes.** *accurate mass was calculated for the ketone component of the mixture.**the 

mixture appeared as one peak by GC-MS, masses corresponded to that of the ketone.  

3,3-Dihydroxy-4,4-difluoro-5-methylenehexahydro-2H,2'H-[2,4'-bipyran] (8c). 

Hydrate 8c was prepared according to general procedure D from propargyl ether 6c (0.320 g, 

1.00 mmol) with 1,3-bis(2,6-diisopropylphenyl-imidazol-2-ylidene)gold(I) chloride (5 mol 

%, 0.031 g) and silver hexafluoroantimonate(V) (5 mol %, 0.017 g) in 2-

Methyltetrahydrofuran (6.0 mL). The crude material (0.393 g) was purified by flash column 

chromatography (40 g silica, 15 % acetone in dichloromethane) to afford hydrate 8c as a 

colourless solid (0.154 g, 62 %). m.p. = 102-104 °C (recrystallized from 

tetrahydrofuran/pentane by vapour diffusion as a colourless needles); Rf = 0.35 (20 % acetone 

in dichloromethane); 1H NMR (400 MHz, DMSO-d6): δ = 6.36 (s, 1H), 6.03 (s, 1H), 5.41 (d, 

4
JH-F = 4.90 Hz, 1H), 5.34 (br. s, 1H), 4.30 (dd, 2

J = 12.9, 4
JH-F = 4.2 Hz, 1H), 3.94 (d, 2

J = 

12.9 Hz, 1H), 3.81 (dd, 2
J = 11.5, J = 4.5 Hz, 2H), 3.29 (dd, 2

J = 11.5, J = 2.2 Hz, 1H), 3.23 
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(dd, 2
J = 11.5, J = 2.2 Hz, 1H), 3.11 (t, J = 4

JH-F = 4.0 Hz, 1H), 2.17-2.03 (m, 1H), 1.85-1.75 

(m,  1H), 1.74-1.64 (m, 1H), 1.46 (qd, 2
J = J = 12.1, J = 4.5 Hz, 1H), 1.36 (qd, 2

J = J = 12.1, 

J = 4.5 Hz, 1H) ppm; 13C NMR (150 MHz, DMSO-d6): δ = 138.6 (t, 2
JC-F = 19.9 Hz), 117.0 

(dd, 1
JC-F = 262.8, 240.9 Hz), 114.1 (t, 3

JC-F = 7.7 Hz), 94.1 (dd, 2
JC-F = 26.1, 19.3 Hz), 83.0 

(d, 3
JC-F = 2.7 Hz), 68.6 (d, 3

JC-F = 4.1 Hz), 67.7, 67.6, 34.0, 31.7, 29.0 ppm; 19F NMR (376 

MHz, DMSO-d6): δ = -104.6 (d, 2
J = 236.8 Hz, 1F), -136.0 (d, 2

J = 236.8 Hz, 1F) ppm; (the 

19F-1H splittings are not resolved in the 376 MHz 19F NMR spectrum); ν�/(neat) = 3287, 2846, 

1446, 1297, 1052, 914 cm-1; HRMS (APCI): calcd for C11H18F2O3N1, 250.1249 [M+NH4]
+, 

found: 250.1253;* MS (EI): m/z (%): 232 (2) [M]+, 202 (7) [M-C2H4]
+,** tR (GC) = 11.69 

minutes.** *accurate mass was calculated for the ketone component. **the mixture appeared 

as one peak by GC-MS, masses corresponded to that of the ketone.  

4,4-Difluoro-5-methylene-2-phenyldihydro-2H-pyran-3(4H)-one (7d) and 3,3-

dihydroxy-4,4-difluoro-5-methylene-2-phenyldihydro-2H-pyran (8d).  

 

Ketone 7d and hydrate 8d were prepared according to general procedure D from propargyl 

ether 6d (0.312 g, 1.00 mmol) with 1,3-bis(2,6-diisopropylphenyl-imidazol-2-ylidene)gold(I) 

chloride (5 mol %, 0.031 g) and silver hexafluoroantimonate(V) (5 mol %, 0.017 g) in 2-

Methyltetrahydrofuran (6.0 mL). The crude material (0.324 g) was purified by flash column 

chromatography (40 g silica, 3 % acetone in dichloromethane) to afford an inseparable 

mixture of ketone 7d and hydrate 8d as a colourless solid (0.126 g, 52 %, 1:3.8). m.p. = 76-

78 °C (recrystallised from ethyl acetate/hexane by vapour diffusion as a colourless plate); Rf 

= 0.53 (10 % acetone in dichloromethane); The following signals were attributed to both 

ketone 7d and hydrate 8d 1H NMR (400 MHz, CDCl3): δ = 7.64-7.32 (m, 5H) ppm; The 

following signals were attributed to ketone 7d (assigned on the basis of δ and intensity); 1H 

NMR (400 MHz, CDCl3): δ = 5.91-5.86 (m, 1H), 5.58 (app. q, 4JH-F = 4
J = 1.5 Hz, 1H), 5.24 
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(t, 4JH-F = 3.1 Hz, 1H), 4.71 (app. dq, 2J = 13.8, 4J = 4JH-F = 1.1 Hz, 1H), 4.61 (br. d, 2J = 13.8 

Hz, 1H) ppm; 13C NMR (100 MHz, CDCl3): δ = 193.0 (dd, 2
JC-F = 27.3, 23.4 Hz), 137.6 (t, 

2
JC-F = 19.3 Hz), 132.8, 128.6, 128.1, 127.0, 117.5 (t, 3JC-F = 7.4 Hz), 110.2 (dd, 1JC-F = 260.4, 

248.7 Hz), 83.6, 67.8 (d, 3
JC-F = 2.7 Hz) ppm; 19F NMR (376 MHz, CDCl3): δ = -107.2 - -

108.0 (m, including -107.6 (app. d, 2
J = 264.5 Hz, 1F)), -116.3 (d, 2

J = 264.5, 1F) ppm; (the 

19F-1H splittings are not resolved in the 376 MHz 19F NMR spectrum); The following signals 

were attributed to hydrate 8d (assigned on the basis of δ and intensity);  1H NMR (400 MHz, 

CDCl3): δ = 5.73 (d, 4JH-F = 4.9 Hz, 1H), 5.46 (app. q, 4JH-F = 4J = 1.7 Hz,  1H), 4.77-4.71 (m, 

1H), 4.49 (dd, 2
J = 13.1, 4

JH-F = 4.0 Hz, 1H), 4.38 (br. d, 2
J = 13.1 Hz, 1H), 2.88 (br. s, 2H) 

ppm; 13C NMR (100 MHz, CDCl3): δ = 136.1 (t, 2JC-F = 19.9 Hz), 133.0, 128.5, 127.9, 127.6, 

115.5 (t, 1JC-F = 262.8 Hz), 115.2 (t, 3JC-F = 7.1 Hz), 92.2 (dd, 2
JC-F = 27.7, 19.7 Hz), 80.5 (d, 

3
JC-F = 3.2 Hz), 68.7 (d, 3JC-F = 4.5 Hz) ppm; 19F NMR (376 MHz, CDCl3): δ = -106.8 (d, 2J = 

242.3 Hz, 1F), -137.2 (app. dquint, 2
J = 242.3, 4

JF-H = 2.0 Hz, 1F) ppm; ν�/(neat) = 3306, 

2905, 1713, 1326, 1203, 1047, 946 cm-1;  HRMS (APCI): calcd for C12H11F2O2, 225.0727 

[M+H]+, found: 225.0723;*MS (EI): m/z (%): 147 (4) [M-C6H5]
+, 90 (100) [M-C9H9O]+,** tR 

(GC) = 11.82 minutes.** *accurate mass was calculated for the ketone component of the 

mixture.**the mixture appeared as one peak by GC-MS, masses corresponded to that of the 

ketone.  

4,4-Difluoro-5-methylene-2-(4-(trifluoromethyl)phenyl)dihydro-2H-pyran-3(4H)-one 

(7e) and 3,3-dihydroxy-4,4-difluoro-5-methylene-2-(4-(trifluoromethyl)phenyl)dihydro-2H-

pyran (8e). Ketone 7e and hydrate 8e were prepared according to general procedure D from 

propargyl ether 6e (0.380 g, 1.00 mmol) with 1,3-bis(2,6-diisopropylphenyl-imidazol-2-

ylidene)gold(I) chloride (5 mol %, 0.031 g) and silver hexafluoroantimonate(V) (5 mol %, 

0.017 g) in 2-Methyltetrahydrofuran (6.0 mL). The crude material (0.376 g) was purified by 

flash column chromatography (40 g silica, 2 % acetone in dichloromethane) to afford an 
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inseparable mixture of ketone 7e and hydrate 8e as a colourless solid (0.161 g, 52 %, 1:6.1). 

Rf = 0.45 (5 % acetone in dichloromethane); The following signals were attributed to both 

ketone 7e and hydrate 8e 1H NMR (400 MHz, CDCl3): δ = 7.67, 7.65 (ABq, JAB = 8.7 Hz, 

4H) ppm; The following signals were attributed to ketone 7e (assigned on the basis of δ and 

intensity); 1H NMR (400 MHz, CDCl3): δ = 7.49 (d, J = 8.4 Hz, 2H), 5.92-5.88 (m, 1H), 5.61 

(q, 4
JH-F = 4

J = 1.4 Hz, 1H), 5.30 (t, 4
JH-F = 3.2 Hz, 1H), 4.73 (dq, 2

J = 13.9, 4
J = 4

JH-F = 1.2 

Hz, 1H), 4.64 (br. d, 2J = 13.9 Hz, 1H) ppm; 13C NMR (100 MHz, CDCl3): δ = 192.2 (dd, 2JC-

F = 27.7, 23.4 Hz), 137.3 (t, 2
JC-F = 19.1 Hz), 136.5, 130.7 (q, 2

JC-F = 32.8 Hz), 127.2, 125.0 

(q, 3JC-F = 3.9 Hz), 117.9 (t, 3JC-F = 7.5 Hz), 110.2 (dd, 1JC-F = 260.3, 247.3 Hz), 82.7, 68.1 (d, 

3
JC-F = 3.3 Hz) ppm (the large 1J CF3 quartet could not be observed in the 100 MHz 13C NMR 

spectrum); 19F NMR (376 MHz, CDCl3): δ = -62.8 (s, 3F), -107.0 (d, 2
J = 265.4 Hz, 1F), -

117.4 (d, 2
J = 265.4, 1F) ppm (the 19F-1H splittings are not resolved in the 376 MHz 19F 

NMR spectrum); The following signals were attributed to hydrate 8e (assigned on the basis of 

δ and intensity);  1H NMR (400 MHz, CDCl3): δ = 5.76 (d, 4
JH-F = 4.8 Hz, 1H), 5.49 (app. q, 

4
JH-F = 4J = 1.8 Hz, 1H), 4.82-4.77 (m, 1H), 4.51 (dd, 2J = 13.1, 4JH-F = 4.1 Hz, 1H), 4.38 (br. 

d, 2J = 13.1 Hz, 1H), 3.09 (br. s, 1H), 2.81 (br. s, 1H) ppm;    

13C NMR (100 MHz, CDCl3): δ = 137.2, 135.7 (t, 2JC-F = 20.2 Hz), 130.5 (q, 2JC-F = 32.6 Hz), 

128.1, 124.5 (q, 3
JC-F = 3.7 Hz), 123.8 (q, 1

JC-F = 272.3 Hz), 115.6 (t, 3
JC-F = 7.1 Hz), 115.3 

(dd, 1
JC-F = 261.8, 242.8 Hz), 92.3 (dd, 2

JC-F = 28.6, 20.8 Hz), 79.9 (d, 3
JC-F = 2.8 Hz), 68.7 

(d, 3
JC-F = 4.6 Hz) ppm; 19F NMR (376 MHz, CDCl3): δ = -62.7 (s, 3F), -106.9 (d, 2J = 241.7 

Hz, 1F), -137.2 (app. dquint, 2
J = 241.7, 4

JF-H = 1.9 Hz, 1F) ppm; ν�/(neat) = 3621, 3259, 

2921, 1708, 1323, 1067, 952 cm-1; HRMS (APCI): calcd for C13H13F5O2N1, 310.0861 

[M+NH4]
+, found: 310.0857;* MS (EI): m/z (%): 292 (1) [M]+, 145 (63) [C7H4F3]

+, 90 (100) 

[M-C10H8F3O]+,** tR (GC) = 11.57 minutes.** *accurate mass was calculated for the ketone 
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component of the mixture.**the mixture appeared as one peak by GC-MS, masses 

corresponded to that of the ketone. 

 

Supporting Information 

The Supporting Information is available free of charge on the ACS Publications website. 

Copies of spectroscopic data (1H, 13C and 19F) for all products and X-ray crystallographic 

data. 
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