Downloaded by: Universidad de Barcelona. Copyrighted material.

Synthesis of Acetaminophen Analogues Containing α -Amino Acids and Fatty Acids for Inhibiting Hepatotoxicity

Α

Seunghee Jung Yuya Kawashima Takuya Noguchi Nobuyuki Imai*

Faculty of Pharmacy, Chiba Institute of Science, 15-8 Shiomi-cho, Choshi, Chiba 288-0025, Japan nimai@cis.ac.jp

Dedicated to Professor E. J. Corey on the occasion of his 90^{th} birthday.

Received: 13.05.2019 Accepted after revision: 27.06.2019 Published online: 15.07.2019 DOI: 10.1055/s-0037-1611893; Art ID: ss-2019-s0321-op

Abstract Acetaminophen is a popular antipyretic analgesic medicine that has weaker anti-inflammatory properties and lower incidence of side effects than nonsteroidal anti-inflammatory drugs (NSAIDs). However, acetaminophen causes hepatotoxicity due to the reactive metabolite *N*-acetyl-*p*-benzoquinone imine (NAPQI). We have obtained acetaminophen analogues in 57–99% yields by using aniline derivatives with protected α -amino acids and fatty acids via the corresponding mixed carbonic carboxylic anhydrides in aqueous MeCN. We have also succeeded in synthesizing AM404 analogues in 76–97% yields, which are expected to be promising candidates for reducing hepatotoxicity.

Key words acetaminophen, hepatotoxicity, $\alpha\text{-amino}$ acid, fatty acid, AM404

Medicines are metabolized and their chemical structures are changed after being taken into the body. The formation of reactive intermediates such as electrophiles and free radicals often induces various toxicities against the body; thus, much research on the reactive metabolites has been done to date. It is important to prevent the potential production of reactive metabolites from pharmaceuticals in the design manufacturing stages because they can cause a variety of toxic effects.¹

Acetaminophen is a popular antipyretic analgesic medicine that has weaker anti-inflammatory properties and lower incidence of side effects than nonsteroidal anti-inflammatory drugs (NSAIDs). However, it is well known that acetaminophen causes severe hepatotoxicity due to the reactive metabolite *N*-acetyl-*p*-benzoquinone imine (NAPQI) upon overdose. Recently, the U.S. Food and Drug Administration (FDA) has reduced the maximum recommended daily dose of acetaminophen from 4000 to 3000 mg to avoid Stevenson Johnson syndrome and hepatotoxicity, and recommends reducing the dose of acetaminophen to 325 mg. In a possible metabolic pathway, acetaminophen is converted into the corresponding sulfate or glucuronate at the usual dosage and excreted without producing NAPQI as a reactive metabolite. However, the metabolic process is saturated in the case of overdose and the oxidative metabolism by cytochrome P-450 proceeds to afford the reactive NAPQI. Although NAPQI is detoxified by glutathione stored in the liver, it depletes the liver-derived glutathione upon acute overdose. As a result, NAPQI accumulates, binds to intracellular macromolecules, and causes hepatocellular necrosis.² Furthermore, Zygmunt et al. have recently reported that the physiological action of acetaminophen is very similar to that of N-(4-hydroxyphenyl)arachidonamide (AM 404) (Figure 1).³ AM 404 has a strong agonistic action in TRPV₁, which is an ion channel, and affects the cannabinoid CB₁ receptor. These receptors are also involved with pain and thermoregulatory systems and have received considerable attention as analgesic and anti-inflammatory therapeutic targets in recent years.⁴ Therefore, acetaminophen analogues of various fatty acids are interesting as AM404 analogues.

Although amidation in pharmaceutical synthesis often involves the reaction of active acyl chlorides with amines, acyl chlorides are usually unstable in water and it is necessary to avoid moisture during the reaction. The use of *N*,*N*dicyclohexylcarbodiimide (DCC) as an alternative condensing agent is not cheap and introduces difficulties with re-

В

spect to workup. Recently, Szostak demonstrated highly selective transition-metal-free transamidation of amides and amidation of esters in an interesting study.⁵ We have also reported the syntheses of various amides from N-protected α -amino acids and N-protected dipeptides via the corresponding mixed carbonic carboxylic anhydrides.⁶

Herein, we describe in detail the synthesis of various acetaminophen analogues^{6f} via the corresponding carbonic carboxylic anhydride. The acetyl group of acetaminophen was replaced with bulkier α -amino acid to construct a derivative of NAPQI that is less susceptible to nucleophilic attack by intracellular macromolecules. We have also prepared AM404 analogues containing fatty acids (Scheme 1).

In a preliminary investigation, 3-phenylpropionic acid (1) was reacted with 1.1 equiv of 4-chloroaniline (2a) in the presence of 1.1 equiv of Et₃N and 1.4 equiv of ClCO₂Et in aqueous tetrahydrofuran (THF) for 1.5 hours at 0 °C to give 57% yield of 3a and 34% yield of by-product 4a. The optimized conditions for the preparation of 3a afforded 88% vield using 1.1 equiv of Et₃N, 1.1 equiv of ClCO₂Et, and 1.1 equiv of 2a. The solvent effect of the amidation using 1 and **2a** was then examined for 24 hours at 0 °C. The amidation in aprotic polar solvents such as THF, acetone, and MeCN gave **3a** in excellent yields of 89–96%. However, the amidation in nonpolar solvent such as 1,4-dioxane and in protonic polar solvent such as EtOH and MeOH to give 3a in 50% and 13% yield, respectively. MeCN was thus selected as an optimal solvent for synthesizing **3a** (96% yield) as described in the previously reported article.^{6f}

The reactions of **1** with various anilines **2a–r** were then carried out; the results are collected in Table 1. Acid **1** reacted with anilines **2a–f** and **2h–j**, containing an electronwithdrawing group, to produce the corresponding amides **3a–f** and **3h–j** in yields of 30–98% as described in entries 1– 6 and 8–10. Unfortunately, the reaction of **1** with 2,4-dinitroaniline **2g** (entry 7) did not afford the corresponding amide **3g** at all and the starting material **2g** was recovered. Acid **1** reacted readily with aniline **2k** to yield amide **3k** in 94%, as shown in entry 11. The reactions of **1** with the anilines **2l–r**, containing an electron-donating group, proceeded smoothly to give the corresponding anilines **3l–r** in high yields of 75–98% (entries 12–18).

We also examined the condensation of α -amino acids and fatty acids using 4-aminophenol (**2m**), 2-ethoxyaniline (**2n**), and 4-ethoxyaniline (**2o**) for the synthesis of acetaminophen analogues. Table 2 shows the results of the condensation of various α -amino acids N-protected with Cbz, Boc, and Fmoc groups via the corresponding mixed carbonic carboxylic anhydrides, with **2m**, **2n**, and **2o**. The reaction proceeded without racemization (95–99% ee) except for the substrates listed in entries 21–22, and good yield (57–99%) although the yields given in entries 23 and 24 (65% and 57%) were lower due to low solubility in MeCN.

It is presumed that the reduction of the enantioselectivities in the reactions shown in Table 2, entries 21 and 22 is attributable to the weakened reactivity of the corresponding mixed carbonic carboxylic anhydrides by the steric hindrance of the trityl group. The yields were slightly improved in several cases compared with the previous ones^{6f} because the products were clearly separated by using a small amount of acetic acid with the eluents in order to avoid tailing of the products on silica gel during purification by column chromatography.

Finally, various AM404 analogues **8ao-ho** and **9am-hm** were synthesized by the condensation of fatty acids **7a-h** with 4-ethoxyaniline (**2o**) and 4-aminophenol (**2m**); the results are summarized in Table 3 and Table 4, respectively. The reactions of various fatty acids **7a-h** with **2o** and **2m** via the mixed carbonic acid carboxylic anhydrides gave the corresponding AM404 analogues **8ao-ho** in 83–99% yields and **9am-hm** in 76–97% yields, respectively. The stability of the synthesized AM404 analogues **9am-hm** was checked at 0 °C and 22 °C after 240 hours by analyses using 2D TLC and ¹H NMR spectra, and no change was observed. Although unsaturated fatty acids are usually sensitive in air and at room temperature, it was found that the synthesized AM404 analogues were relatively stable.

Syn<mark>thesis</mark>

S. Jung et al.

 Table 1
 Reaction of 3-Phenylpropanoic Acid 1 with Aniline Derivatives 2^a

Paper

	Ph OH $\frac{1) \text{CICO}_2\text{Et}}{2}$	Et ₃ N, MeCN, 0 °C, 30 min → —NH ₂ , MeCN–H ₂ O, 0 °C, 24 h	Ph H		× R3
	1 2		3	4	
Entry	R ³	2	3	Yield of 3 (%) ^b	Yield of 4 (%) ^b
1 ^c	4-Cl	2a	3a	96	trace
2 ^c	4-F	2b	3b	97	0
3°	2,3,4,5,6-F ₅	2c	3c	67	34
4 ^c	4-EtO ₂ C	2d	3d	70	0
5 ^c	4-0 ₂ N	2e	3e	65	0
6 ^c	3,5-(O ₂ N) ₂	2f	3f	30	0
7 ^c	2,4-(O ₂ N) ₂	2g	3g	0	0
8	4-Br	2h	3h	98	2
9	4-1	2i	3i	94	5
10	4-CN	2j	3j	87	0
11 ^c	Н	2k	3k	94	trace
12 ^c	4-Me	21	31	95	1
13 ^c	4-HO	2m	3m	92	3
14 ^c	2-EtO	2n	3n	89	trace
15 ^c	4-EtO	2o	Зо	98	2
16	4-SH	2р	3р	92	7
17	4-tert-Bu	2q	3q	96	0
18	2,4,6-Me ₃	2r	3r	75	4

^a Reaction conditions: **1** (0.5 mmol), Et₃N (0.55 mmol), ClCO₂Et (0.55 mmol), MeCN (10 mL). After stirring for 30 min at 0 °C, H₂O (0.75 mL) and **2** were added at 0 °C to the reaction mixture.

^b Isolated yield.

^c Described in the previously reported article.^{6f}

Table 2Synthesis of Acetaminophen Analogues 6 Containing α -Amino Acids 5^a

			R ¹ -N P 5	1) CICO ₂ I 2)	Et, Et ₃ N, MeCl	N, 0 °C, 30 min ► N−H ₂ O, 0 °C, 24 h	R ¹ R ² -N P 6			
Entry	Р	R ¹		R ²	5	R ³	6	Yield (%) ^b	ee (%) ^d	Retention time (min)
1 ^c	Cbz	PhCH ₂ (L)		Н	5aL	4-EtO	6aLo	96	>99	15
2 ^c	Cbz	PhCH ₂ (D)		Н	5aD	4-EtO	6aDo	97	>99	17
3c	Cbz	PhCH ₂ (L)		Н	5aL	2-EtO	6aLn	91	>99	26
4 ^c	Cbz	PhCH ₂ (D)		Н	5aD	2-EtO	6aDn	91	>99	51
5°	Cbz	PhCH ₂ (L)		Н	5aL	4-OH	6aLm	88	>99	26
6 ^c	Cbz	PhCH ₂ (D)		Н	5aD	4-OH	6aDm	88	>99	30
7 ^c	Cbz	Me ₂ CH (L)		Н	5bL	4-EtO	6bLo	97	>99	10
8 ^c	Cbz	Me ₂ CH (D)		Н	5bD	4-EtO	6bDo	99	>99	11
9 ^c	Cbz	Me (L)		Н	5cL	4-EtO	6cLo	82	>99	14
10 ^c	Cbz	Me (D)		Н	5cD	4-EtO	6cDo	91	98	16

▲ c

Table (continued)									
Entry	Р	R ¹	R ²	5	R ³	6	Yield (%) ^b	ee (%) ^d	Retention time (min)
11 ^c	Cbz	$MeS(CH_2)_2$ (L)	Н	5dL	4-EtO	6dLo	85	>99	15
12 ^c	Cbz	$MeS(CH_2)_2$ (D)	Н	5dD	4-EtO	6dDo	88	>99	20
13 ^c	Cbz	(CH ₂) ₃ (L)		5eL	4-EtO	6eLo	99	>99°	56
14 ^c	Cbz	(CH ₂) ₃ (D)		5eD	4-EtO	6eDo	99	>99°	20
15°	Boc	PhCH ₂ (L)	Н	5fL	4-EtO	6fLo	99	>99	13
16 ^c	Boc	PhCH ₂ (D)	Н	5fD	4-EtO	6fDo	99	95	8
17 ^c	Fmoc	PhCH ₂ (L)	Н	5gL	4-EtO	6gLo	82	>99 ^f	29
18 ^c	Fmoc	PhCH ₂ (D)	Н	5gD	4-EtO	6gDo	95	>99 ^f	11
19	Вос	$C_6H_5CH_2OCH_2$ (L)	Н	5hL	4-EtO	6hLo	93	>99 ª	19
20	Boc	$C_6H_5CH_2OCH_2$ (D)	Н	5hD	4-EtO	6hDo	95	98 g	16
21	Fmoc	$Ph_3CSCH_2(L)$	Н	5iL	4-EtO	6iLo	77	79 ^{f,h}	64
22	Fmoc	Ph_3CSCH_2 (D)	Н	5iD	4-EtO	6iDo	79	86 ^{f,h}	55
23	Cbz	$p-HOC_6H_4CH_2$ (L)	Н	5jL	4-EtO	6jLo	65	>99 ^f	62
24	Cbz	$p-HOC_6H_4CH_2$ (D)	Н	5jD	4-EtO	6jDo	57	>99 ^f	81
25	Cbz	$C_8H_6NCH_2$ (L)	Н	5kL	4-EtO	6kLo	91	>99 ^{e,i}	121
26	Cbz	$C_8H_6NCH_2$ (D)	Н	5kD	4-EtO	6kDo	91	>99 ^{e,i}	87
27	Вос	H ₂ NCOCH ₂ CH ₂ (L)	Н	5IL	4-EtO	6lLo	79	>99	19
28	Вос	$H_2NCOCH_2CH_2$ (D)	Н	5ID	4-EtO	6lDo	80	>99	14
29	Вос	Cbz-NH(CH ₂) ₄ (L)	Н	5mL	4-EtO	6mLo	94	>99	37
30	Вос	Cbz-NH(CH ₂) ₄ (D)	Н	5mD	4-EtO	6mDo	97	>99	15

D

^a Reaction conditions: N-protected α-amino acid 5 (0.50 mmol), Et₃N (0.55 mmol), ClCO₂Et (0.55 mmol), MeCN (10 mL). After stirring for 30 min at 0 °C, H₂O (0.75 mL) and aniline derivative **2** (0.55 mmol) were added at 0 °C to the reaction mixture. ^b Isolated yield.

^c Described in the previously reported article.^{6f}

^d Determined by HPLC analysis with a 90:10 mixture of hexane and isopropanol as eluent, using Chiralcel OD (1.0 mL/min).

* Determined by HPLC analysis with a 90:10 mixture of hexane and isopropanol as an eluent, using Chiralcel AS (1.0 mL/min).

^f Determined by HPLC analysis with a 90:10 mixture of hexane and isopropanol as an eluent, using Chiralcel ADH (1.0 mL/min).

⁹ Determined by HPLC analysis with a 95:5 mixture of hexane and isopropanol as an eluent, using Chiralcel OD (1.0 mL/min).

^h The reactions were carried out at –15 °C.

ⁱ Cbz was deprotected.

Table 3 Synthesis of AM404 Analogues 8 Containing Fatty Acids 7^a

Syn thesis

S. Jung et al.

Paper

Table (continued)

Ε

^a Reaction conditions: fatty acid **7** (1 equiv), Et₃N (1.1 equiv), ClCO₂Et (1.1 equiv) in MeCN. After stirring for 30 min at 0 °C, H₂O and **2o** (1.1 equiv) were added at 0 °C to the reaction mixture.

^b Isolated yield.

^c Described in the previously reported article.^{6f}

^a Reaction conditions: fatty acid **7** (1 equiv), Et₃N (1.1 equiv), ClCO₂Et (1.1 equiv) in MeCN. After stirring for 30 min at 0 °C, H₂O and **2m** (1.1 equiv) were added at 0 °C to the reaction mixture.

^b Isolated yield.

arachidonic acid (c20-4)

docosahexaenoic acid (c₂₂₋₆)

7g

7h

7

8

In conclusion, we have synthesized acetaminophen analogues 6aLo-mDo in 57-99% yields, AM404 analogues 8aoho in 83-99% yields, and **9am-hm** in 76-97% yields, by using a convenient and economical procedure. These analogues would be useful p-aminophenol donors and are expected to act as novel antipyretic analgesics like acetaminophen. Various amides were obtained in high to excellent yields with excellent enantioselectivities after purification by silica gel column chromatography, by using ClCO₂Et and Et₃N under mild conditions. In particular, both of the activating agents (ethyl ClCO₂Et and Et₃N) are relatively inexpensive and the by-products obtained by our efficient method are triethylamine hydrochloride, carbon dioxide, and the corresponding alcohols, which are relatively environmentally benign. Although amidations via activated carboxylic acids are usually carried out under anhydrous conditions, it is quite unique that the reaction of the activated carbonic carboxylic anhydride proceeded smoothly in aqueous organic solvent to afford the corresponding amides. Our synthetic method is also characterized by no racemization and low levels of by-product formation.

All reagents were used without further purification. The ¹H NMR and ¹³C NMR spectra were measured with a Bruker Ultrashield TM 400 Plus spectrometer. The chemical shifts are expressed in parts per million downfield from tetramethylsilane (δ = 0.00 ppm) as an internal standard. Chemical shifts (δ) are reported in ppm, and spin–spin coupling constants (*J*) are given in hertz (Hz). Abbreviations to denote the multiplicity of a particular signal are s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and br (broad). The high-resolution mass spectra (HRMS) of the compounds with a high molecular weight were recorded with a Waters LCT Premier (ESI-TOF-MS) spectrometer. Reactions were monitored using thin-layer chromatography with silica gel 60 F₂₅₄. Purification of the reaction products was carried out by column chromatography using silica gel (64–210 mesh). Melting points were determined with a hot-plate apparatus. Optical rotations

were measured with a digital polarimeter with a sodium lamp at room temperature. Infrared (IR) spectra were recorded with a HORIBA FT-IR Fourier transform infrared spectrophotometer.

9gm

9hm

90

78

Amidation of 3-Phenylpropionic Acid (1) with 4-Chloroanilne (2a); Typical Procedure

To a colorless solution of 3-phenylpropionic acid **1** (75 mg, 0.50 mmol) in MeCN (10 mL) were added at 0 °C Et₃N (77 μ L, 0.55 mmol, 1.1 equiv) and ClCO₂Et (53 μ L, 0.55 mmol, 1.1 equiv). After stirring for 30 min at 0 °C, a solution of 4-chloroanilne **2a** (70 mg, 0.55 mmol, 1.1 equiv) in H₂O (0.75 mL) was added at 0 °C to the colorless suspension. The mixture was stirred for 24 h at 0 °C and concentrated in vacuo. To the residue was added a 1.0 M aqueous HCl to pH 2. The resulting suspension was extracted with EtOAc (50 mL), washed with brine (10 mL), and 1.0 M aqueous NaHCO₃ (5 mL), and dried over MgSO₄. The crude product was purified by chromatography on silica gel with a 1:1 mixture of hexane and EtOAc to afford 125 mg (96% yield) of *N*-(4-chlorophenyl)-3-phenylpropanamide **3a**.

N-(4-Chlorophenyl)-3-phenylpropanamide (3a)^{6f}

Yield: 125 mg (96%); colorless powder; mp 137–139 °C.

IR (KBr): 3302 (NH), 1657 (CON) cm⁻¹.

¹H NMR (400 MHz, $CDCl_3$): δ = 2.66 (t, *J* = 7.6 Hz, 2 H, CH_2CO), 3.05 (t, *J* = 7.6 Hz, 2 H, CH_2CH_2CO), 6.95 (br s, 1 H, NH), 7.21–7.38 (m, 9 H, C_6H_4 , C_6H_5).

¹³C NMR (100 MHz, CDCl₃): δ = 31.5, 39.3, 121.3, 126.5, 128.0, 128.3, 128.9, 129.3, 136.3, 140.4, 170.7.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₅H₁₄NOClNa: 282.0656; found: 282.0667.

N-(4-Fluorophenyl)-3-phenylpropanamide (3b)^{6f}

Yield: 118 mg (97%); colorless powder; mp 119-120 °C.

IR (KBr): 3289 (NH), 1652 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.65 (t, *J* = 7.4 Hz, 2 H, CH₂CO), 3.05 (t, *J* = 7.4 Hz, 2 H, CH₂CO), 6.96–7.02, 7.21–7.39 (m, m, 3 H, 7 H, NH, C₆H₄, C₆H₅).

G

S. Jung et al.

¹³C NMR (100 MHz, CDCl₃): δ = 31.6, 39.4, 115.5, 115.7, 121.7, 121.8, 126.5, 128.4, 128.7, 133.7, 140.6, 160.6, 170.3.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₅H₁₄FNONa: 266.0952; found: 266.0977.

N-(2,3,4,5,6-Pentafluorophenyl)-3-phenylpropanamide (3c)^{6f}

Yield: 105 mg (67%); colorless powder; mp 128-129 °C.

IR (KBr): 3265 (NH), 1685 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.77 (t, *J* = 7.4 Hz, 2 H, CH₂CO), 3.07 (t, *J* = 7.4 Hz, 2 H, CH₂CH₂CO), 6.57 (br s, 1 H, NH), 7.22–7.34 (m, 5 H, C₆H₅).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 31.3, 38.0, 126.6, 128.3, 128.8, 140.0, 170.5.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₅H₁₀F₅NONa: 338.0575; found: 338.0593.

Ethyl 4-(3-Phenylpropanamido)benzoate (3d)^{6f}

Yield: 104 mg (70%); colorless powder; mp 132-133 °C.

IR (KBr): 3316 (NH), 1711 (CO₂), 1593 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 1.38 (t, *J* = 7.1 Hz, 3 H, CH₃CH₂O), 2.69 (t, *J* = 7.4 Hz, 2 H, CH₂CO), 3.06 (t, *J* = 7.4 Hz, 2 H, CH₂CH₂CO), 4.53 (q, *J* = 7.1 Hz, 2 H, CH₃CH₂O), 7.21–7.33 (m, 6 H, NH, C₆H₅), 7.50, 7.98 (d, d, *J* = 8.7, 8.7 Hz, 2 H, 2 H, C₆H₄).

 ^{13}C NMR (100 MHz, CDCl_3): δ = 14.4, 31.4, 39.6, 60.9, 118.8, 126.0, 126.5, 128.4, 128.7, 130.8, 140.4, 141.8, 166.1, 170.5.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₈H₁₉NO₃Na: 320.1257; found: 320.1250.

N-(4-Nitrophenyl)-3-phenylpropanamide (3e)^{6f}

Yield: 88 mg (65%); yellow powder; mp 121–123 °C.

IR (KBr): 3249 (NH), 1670 (CON), 1504 (NO) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.73 (t, *J* = 7.4 Hz, 2 H, CH₂CO), 3.08 (t, *J* = 7.4 Hz, 2 H, CH₂CH₂CO), 7.18 (br s, 1 H, NH), 7.23–7.35 (m, 5 H, C₆H₅), 7.59, 8.19 (d, d, *J* = 9.2, 9.2 Hz, 2 H, 2 H, C₆H₄).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 31.3, 39.6, 119.0, 125.1, 126.7, 128.4, 128.8, 140.1, 143.5, 143.5, 170.7.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₁₅H₁₅N₂O₃: 271.1077; found: 271.1069.

N-(3,5-Dinitrophenyl)-3-phenylpropanamide (3f)6f

Yield: 47 mg (30%); yellow powder; mp 166–167 °C.

IR (KBr): 3357 (NH), 1710 (CON), 1540 (NO) cm⁻¹.

¹H NMR (400 MHz, CD₃OD): δ = 2.75 (t, *J* = 7.6 Hz, 2 H, CH₂CO), 3.02 (t, *J* = 7.6 Hz, 2 H, CH₂CH₂CO), 7.18 (br s, 1 H, NH), 7.14–7.29 (m, 5 H, C₆H₅), 8.64, 8.21 (t, d, *J* = 2.1, 2.1 Hz, 1 H, 2 H, C₆H₃).

 ^{13}C NMR (100 MHz, CD_3OD): δ = 32.3, 39.8, 113.7, 119.9, 127.4, 129.5, 129.6, 142.0, 142.6, 150.1, 174.2.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₅H₁₃N₃O₅Na: 338.0747; found: 338.0747.

N-(4-Bromophenyl)-3-phenylpropanamide (3h)

Yield: 148 mg (98%); colorless powder; mp 150–151 °C. IR (KBr): 3298 (NH), 1658 (CON) cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ = 2.65 (t, *J* = 7.5 Hz, 2 H, CH₂CO), 3.05 (t, *J* = 7.5 Hz, 2 H, CH₂CH₂CO), 7.00 (br s, 1 H, NH), 7.21–7.41 (m, 9 H, C₆H₄, C₆H₅).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 31.5, 39.5, 116.9, 121.4, 126.5, 128.4, 128.7, 131.9, 136.8, 140.5, 170.3.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₅H₁₄NOBrNa: 326.0151; found: 326.0112.

N-(4-Iodophenyl)-3-phenylpropanamide (3i)

Yield: 165 mg (94%); colorless powder; mp 163–165 °C. IR (KBr): 3298 (NH), 1655 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.65 (t, *J* = 7.5 Hz, 2 H, CH₂CO), 3.04 (t, *J* = 7.5 Hz, 2 H, CH₂CH₂CO), 6.95 (br s, 1 H, NH), 7.19–7.32, 7.57–7.61 (m, m, 7 H, 2 H, C₆H₄, C₆H₅).

 ^{13}C NMR (100 MHz, CDCl_3): δ = 31.5, 39.6, 87.4, 121.7, 126.5, 128.4, 128.7, 137.5, 137.9, 140.5, 170.3.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₅H₁₄INONa: 374.0012; found: 373.9984.

N-(4-Cyanophenyl)-3-phenylpropanamide (3j)

Yield: 109 mg (87%); colorless powder; mp 115–117 °C.

IR (KBr): 3257 (NH), 2218 (CN), 1672 (CON) cm⁻¹.

¹H NMR (400 MHz, DMSO- d_6): δ = 2.68 (t, J = 7.6 Hz, 2 H, CH₂CO), 2.91 (t, J = 7.6 Hz, 2 H, CH₂CH₂CO), 7.18–7.30 (m, 5 H, C₆H₅), 7.72–7.90 (m, 4 H, C₆H₄), 10.36 (s, 1 H, NH).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 30.4, 37.9, 104.6, 118.9, 119.0, 125.9, 128.1, 128.2, 133.2, 140.9, 143.3, 171.2.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₁₆H₁₅N₂O: 251.1179; found: 251.1172.

N,3-Diphenylpropanamide (3k)^{6f}

Yield: 106 mg (94%); colorless powder; mp 130-133 °C.

IR (KBr): 3322 (NH), 1650 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.67 (t, *J* = 7.7 Hz, 3 H, CH₂CO), 3.07 (t, *J* = 7.7 Hz, 2 H, CH₂CH₂CO), 6.96 (br s, 1 H, NH), 7.08–7.44 (m, 10 H, 2 × C₆H₅).

¹³C NMR (100 MHz, CDCl₃): δ = 31.6, 39.5, 119.9, 124.3, 126.4, 128.4, 128.7, 129.0, 137.7, 140.6, 170.3.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₅H₁₅NONa: 248.1046; found: 248.1068.

N-(4-Methylphenyl)-3-phenylpropanamide (31)^{6f}

Yield: 114 mg (95%); colorless powder; mp 97-98 °C.

IR (KBr): 3300 (NH), 1657 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.30 (s, 3 H, CH₃), 2.30 (t, *J* = 7.4 Hz, 2 H, CH₂CO), 3.06 (t, *J* = 7.4 Hz, 2 H, CH₂CO), 6.90 (br s, 1 H, NH), 7.09–7.11, 7.20–7.33 (m, m, 2 H, 7 H, C₆H₄, C₆H₅).

¹³C NMR (100 MHz, CDCl₃): δ = 20.9, 31.6, 39.5, 120.0, 126.4, 128.4, 128.7, 129.5, 134.0, 135.1, 140.7, 170.1.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₆H₁₇NONa: 262.1202; found: 262.1172.

N-(4-Hydroxyphenyl)-3-phenylpropanamide (3m)^{6f}

Yield: 111 mg (92%); colorless powder; mp 143–145 °C. IR (KBr): 3325 (OH), 1660 (CON) cm⁻¹.

¹H NMR (400 MHz, DMSO- d_6): δ = 2.55 (t, J = 7.7 Hz, 2 H, CH₂CO), 2.88 (t, J = 7.7 Hz, 2 H, CH₂CO), 6.65–6.68, 7.15–7.34 (m, m, 2 H, 7 H, C₆H₄, C₆H₅), 9.14 (s, 1 H, NH), 9.63 (s, 1 H, OH).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 30.9, 37.7, 114.9, 120.7, 125.8, 128.1, 128.2, 130.8, 141.2, 153.0, 169.5.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₅H₁₅NO₂Na: 264.0995; found: 264.1019.

N-(2-Ethoxyphenyl)-3-phenylpropanamide (3n)^{6f}

Yield: 120 mg (89%); colorless powder; mp 79-80 °C.

IR (KBr): 3298 (NH), 1653 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 1.41 (t, *J* = 7.0 Hz, 3 H, CH₃CH₂O), 2.71 (t, *J* = 7.8 Hz, 2 H, CH₂CO), 3.07 (t, *J* = 7.8 Hz, 2 H, CH₂CH₂CO), 4.07 (q, *J* = 7.0 Hz, 2 H, CH₃CH₂O), 6.83–7.32, 8.38–8.40 (m, m, 8 H, 1 H, C₆H₄, C₆H₅), 7.73 (br s, 1 H, NH).

 ^{13}C NMR (100 MHz, CDCl_3): δ = 14.8, 31.5, 39.7, 64.1, 110.8, 119.8, 121.0, 123.5, 126.3, 127.7, 128.4, 128.6, 140.8, 146.9, 170.1.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₇H₁₉NO₂Na: 292.1308; found: 292.1268.

N-(4-Ethoxyphenyl)-3-phenylpropanamide (30)^{6f}

Yield: 132 mg (98%); colorless powder; mp 131-133 °C.

IR (KBr): 3292 (NH), 1652 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 1.39 (t, *J* = 7.0 Hz, 3 H, CH₃CH₂O), 2.64 (t, *J* = 7.4 Hz, 2 H, CH₂CO), 3.06 (t, *J* = 7.4 Hz, 2 H, CH₂CH₂CO), 4.00 (q, *J* = 7.0 Hz, CH₃CH₂O), 6.82–6.84, 7.18–7.36 (m, m, 3 H, 7 H, NH, C₆H₄, C₆H₅).

 ^{13}C NMR (100 MHz, CDCl_3): δ = 14.8, 31.7, 39.4, 63.7, 114.8, 121.9, 126.4, 128.4, 128.7, 130.7, 140.7, 155.9, 170.1.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₇H₁₉NO₂Na: 292.1308; found: 292.1313.

N-(4-Mercaptophenyl)-3-phenylpropanamide (3p)

Yield: 118 mg (92%); colorless powder; mp 197–199 °C.

IR (KBr): 3326 (NH), 1658 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 2.65 (t, *J* = 7.5 Hz, 2 H, CH₂CO), 3.05 (t, *J* = 7.5 Hz, 2 H, CH₂CH₂CO), 3.41 (s, 1 H, SH), 6.90 (br s, 1 H, NH), 7.22–7.33 (m, 9 H, C₆H₄, C₆H₅).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 30.6, 37.8, 119.7, 125.9, 128.1, 128.2, 129.3, 130.0, 139.3, 141.0, 170.5.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₃₀H₂₈N₂O₂S₂Na: 535.1484; found: 535.1502.

N-(4-*tert*-Butylphenyl)-3-phenylpropanamide (3q)

Yield: 135 mg (96%); colorless powder; mp 139–141 °C.

IR (KBr): 3282 (NH), 1655 (CON) cm⁻¹.

¹H NMR (400 MHz, DMSO- d_6): δ = 1.25 (s, 9 H, 3 × CH₃), 2.59 (t, J = 7.7 Hz, 2 H, CH₂CO), 2.90 (t, J = 7.7 Hz, 2 H, CH₂CH₂CO), 7.18–7.31, 7.46–7.49 (m, m, 7 H, 2 H, C₆H₄, C₆H₅), 9.82 (s, 1 H, NH).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 30.8, 31.1, 33.9, 118.8, 125.1, 125.8, 128.1, 128.2, 136.6, 141.1, 145.2, 170.0.

HRMS (ESI-TOF): m/z [M + H]⁺ calcd for C₁₉H₂₄NO: 282.1852; found: 282.1866.

N-Mesityl-3-phenylpropanamide (3r)

Yield: 100 mg (75%); colorless powder; mp 171-173 °C.

IR (KBr): 3228 (NH), 1646 (CON) cm⁻¹.

¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.97–199 (m, 6 H, 2 × CH₃), 2.20 (s, 3 H, CH₃), 2.62 (t, *J* = 7.5 Hz, 3 H, CH₂CO), 2.92 (t, *J* = 7.5 Hz, 2 H, CH₂CH₂CO), 6.83 (s, 2 H, C₆H₂), 7.19–7.29 (m, 5 H, C₆H₅), 9.09 (s, 1 H, NH).

¹³C NMR (100 MHz, DMSO- d_6): δ = 17.8, 20.4, 31.1, 36.7, 125.8, 128.1, 128.1, 128.2, 128.6, 132.5, 134.7, 135.1135.7, 141.1, 169.8.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₈H₂₁NONa: 290.1515; found: 290.1546.

Amidation of Cbz-L-Phe-OH (5aL) with 4-Ethoxyaniline (2o); Typical Procedure

To a colorless solution of Cbz-L-Phe-OH **5aL** (150 mg, 0.50 mmol) in MeCN (10 mL) were added at 0 °C Et₃N (77 μ L, 0.55 mmol, 1.1 equiv) and ClCO₂Et (53 μ L, 0.55 mmol, 1.1 equiv). After stirring for 30 min at 0 °C, a solution of 4-ethoxyaniline **2o** (75 mg, 0.55 mmol, 1.1 equiv) in H₂O (0.75 mL) was added at 0 °C to the colorless suspension. The mixture was stirred for 24 h at 0 °C and concentrated in vacuo. To the residue was added 1.0 M aqueous HCl to pH 2. The resulting suspension was extracted with EtOAc (50 mL), washed with brine (10 mL), and 1.0 M aqueous NaHCO₃ (5 mL), and dried over MgSO₄. The crude product was purified by chromatography on silica gel with a 3:1 mixture of hexane and EtOAc including a small amount of acetic acid to afford 201 mg (96% yield) of Cbz-L-Phe-NHC₆H₄-4-OEt (**6aLo**).

Cbz-L-Phe-NHC₆H₄-4-OEt (6aLo)^{6f}

Yield: 201 mg (96%); colorless powder; >99% ee; mp 178–179 °C; $[\alpha]_D^{30}$ +69.0 (*c* 0.99, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90:10): t_r = 15 min.

IR (KBr): 3292 (NH), 1693 (CON), 1653 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 1.39 (t, *J* = 7.0 Hz, 3 H, CH₃CH₂O), 3.10 (dd, *J* = 6.0, 7.8 Hz, 1 H, CH_AC₆H₅), 3.21 (dd, *J* = 6.0, 6.3 Hz, 1 H, CH_BC₆H₅), 3.99 (q, *J* = 7.0 Hz, 3 H, CH₃CH₂O), 4.48 (m, 1 H, CHCO), 5.12 (s, 2 H, OCH₂C₆H₅), 5.42 (br s, 1 H, NH), 6.78–6.82, 7.18–7.37 (m, m, 2 H, 13 H, NH, C₆H₄, 2 × C₆H₅).

 ^{13}C NMR (100 MHz, CDCl_3): δ = 14.8, 38.7, 57.0, 63.7, 67.3, 114.7, 122.0, 127.2, 128.1, 128.3, 128.6, 128.9, 129.4, 129.9, 136.0, 156.1, 168.7.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₅H₂₆N₂O₄Na: 441.1785; found: 441.1795.

Cbz-D-Phe-NHC₆H₄-4-OEt (6aDo)^{6f}

Yield: 203 mg (97%); colorless powder; >99% ee; mp 178–179 °C; $[\alpha]_D^{31}$ –70.0 (*c* 0.98, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90:10): *t*_r = 17 min.

Cbz-L-Phe-NHC₆H₄-2-OEt (6aLn)^{6f}

Yield: 190 mg (91%); colorless powder; >99% ee; mp 143–145 °C; $[\alpha]_D^{30}$ –17.8 (*c* 0.98, DMSO).

IR (KBr): 3303 (NH), 1680 (CON), 1597 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 1.30 (t, *J* = 7.0 Hz, 3 H, CH₃CH₂O), 3.18 (d, *J* = 6.6 Hz, 2 H, CH₂C₆H₅), 3.97 (q, *J* = 7.0 Hz, 2 H, CH₃CH₂O), 4.58–4.59 (m, 1 H, CHCO), 5.11 (s, 2 H, OCH₂C₆H₅), 5.39 (br s, 1 H, NH), 6.80, 6.94, 7.02, 8.33 (d, t, t, d, *J* = 8.1, 7.8, 7.8, 8.0 Hz, 1 H, 1 H, 1 H, 1 H, C₆H₄), 7.20–7.32 (m, 10 H, 2 × C₆H₅), 8.11 (br s, 1 H, NH).

Paper

 ^{13}C NMR (100 MHz, CDCl₃): δ = 14.7, 38.8, 64.2, 67.2, 111.0, 119.7, 120.9, 124.1, 127.1, 128.0, 128.2, 128.6, 128.8, 129.3, 136.1, 136.3, 147.4, 168.7.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₅H₂₆N₂O₄Na: 441.1785; found: 441.1795.

The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90:10): t_r =26 min.

Cbz-D-Phe-NHC₆H₄-2-OEt (6aDn)^{6f}

Yield: 190 mg (91%); colorless powder; >99% ee; mp 143–145 °C; $[\alpha]_D^{30}$ +17.8 (*c* 0.98, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90:10): t_i = 51 min.

Cbz-L-Phe-NHC₆H₄-4-OH (6aLm)^{6f}

Yield: 172 mg (88%); colorless powder; >99% ee; mp 184–185 °C; $[\alpha]_D^{29}$ +65.8 (*c* 1.02, DMSO).The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90:10): t_r = 26 min.

IR (KBr): 3649 (OH), 1687 (CON), 1660 (CON) cm⁻¹.

¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.83 (dd, *J* = 9.2, 10.3 Hz, 1 H, $CH_AC_6H_5$), 3.00 (dd, *J* = 9.2, 4.4 Hz, 1 H, $CH_BC_6H_5$), 4.36–4.37 (m, 1 H, CHCO), 4.96 (s, 2 H, $OCH_2C_6H_5$), 6.68–6.71, 7.18–7.37, 7.64–7.70 (m, m, m, 2 H, 12 H, 1 H, NH, C_6H_4 , 2 × C_6H_5), 9.20 (s, 1 H, NH), 9.85 (s, 1 H, OH).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 37.6, 56.7, 65.2, 115.0, 121.0, 126.2, 127.4, 127.6, 128.0, 128.2, 129.2, 130.4, 137.9, 153.3, 155.8, 169.7.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₃H₂₂N₂O₄Na: 413.1472; found: 413.1503.

Cbz-D-Phe-NHC₆H₄-4-OH (6aDm)^{6f}

Yield: 172 mg (88%); colorless powder; >99% ee; mp 184–185 °C; $[\alpha]_D^{29}$ –65.5 (*c* 1.00, DMSO).

The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90:10): t_r = 30 min.

Cbz-L-Val-NHC₆H₄-4-OEt (6bLo)^{6f}

Yield: 179 mg (97%); colorless powder; >99% ee; mp 210–212 °C; $[\alpha]_D^{31}$ +37.1 (*c* 1.02, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90:10): t_r = 10 min.

IR (KBr) = 3300 (NH), 1689 (CON), 1654 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 1.00 (d, d, *J* = 6.8, 6.8 Hz, 3 H, 3 H, (CH₃)₂CH), 1.39 (t, *J* = 7.0 Hz, 3 H, CH₃CH₂O), 2.18–2.26 (m, 1 H, CH(CH₃)₂), 4.00 (q, *J* = 7.0 Hz, 2 H, CH₃CH₂O), 4.07 (m, 1 H, CHCO), 5.11 (s, 2 H, OCH₂C₆H₅), 5.44 (br s, 1 H, NH), 6.81–6.83, 7.34–7.37 (m, m, 2 H, 7 H, C₆H₄, C₆H₅), 7.76 (br s, 1 H, NH).

¹³C NMR (100 MHz, CDCl₃): δ = 14.8, 18.0, 19.4, 30.9, 61.3, 63.7, 67.3, 114.8, 122.0, 128.1, 128.3, 128.6, 130.3, 136.1, 156.1, 156.7, 169.4.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₁H₂₆N₂O₄Na: 393.1785; found: 393.1732.

Cbz-D-Val-NHC₆H₄-4-OEt (6bDo)^{6f}

Yield: 183 mg (99%); colorless powder; >99% ee; mp 210–212 °C; $[\alpha]_D^{31}$ –36.0 (*c* 1.00, DMSO).

The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90:10): $t_r = 11$ min.

Cbz-L-Ala-NHC₆H₄-4-OEt (6cLo)^{6f}

Yield: 140 mg (82%); colorless powder; >99% ee; mp 163–164 °C; $[\alpha]_D^{31}$ +1.2 (*c* 1.02, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90:10): t_r = 14 min.

IR (KBr): 3357 (NH), 1693 (CON), 1668 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 1.40 (t, *J* = 7.0 Hz, 3 H, CH₃CH₂O), 1.46 (d, *J* = 7.0 Hz, 3 H, CH₃CH), 4.01 (q, *J* = 7.0 Hz, 2 H, CH₃CH₂O), 4.22–4.37 (m, 1 H, CHCO), 5.13 (s, 2 H, OCH₂C₆H₅), 5.28 (br s, 1 H, NH), 6.83–6.86, 7.32–7.38 (m, m, 2 H, 7 H, C₆H₄, C₆H₅), 7.94 (br s, 1 H, NH).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 14.8, 18.3, 51.1, 63.7, 67.3, 114.7, 121.8, 128.0, 128.3, 128.5, 128.6, 130.6, 136.0, 155.9, 170.3.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₉H₂₂N₂O₄Na: 365.1472; found: 365.1440.

Cbz-D-Ala-NHC₆H₄-4-OEt (6cDo)^{6f}

Yield: 156 mg (91%); colorless powder; 98% ee; mp 163–164 °C; $[\alpha]_D^{31}$ –1.1 (*c* 0.98, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90:10): *t_r* = 16 min.

Cbz-L-Met-NHC₆H₄-4-OEt (6dLo)^{6f}

Yield: 171 mg (85%); colorless powder; >99% ee; mp 129–130 °C; $[\alpha]_D^{31}$ +14.7 (*c* 0.98, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90:10): *t*_r = 15 min.

IR (KBr): 3288 (NH), 1689 (CON), 1653 (CON) cm⁻¹.

¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.30 (t, *J* = 6.9 Hz, 3 H, CH₃CH₂O), 1.86–1.91 (m, 4 H, CH₂CH₂S), 2.05 (s, 3 H, CH₃S), 3.98 (q, *J* = 6.9 Hz, 2 H, CH₃CH₂O), 4.20–4.21 (m, 1 H, CHCO), 5.03 (s, 1 H, OCH₂C₆H₅), 6.86, 7.49 (d, d, *J* = 8.4, 8.4 Hz, 2 H, 2 H, C₆H₄), 7.31–7.64 (m, 6 H, NH, C₆H₅), 9.90 (s, 1 H, NH).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 14.5, 14.6, 29.7, 31.5, 54.5, 63.0, 65.4, 114.3, 120.8, 126.9, 127.6, 127.7, 128.2, 131.8, 136.9, 154.4, 156.0, 169.9.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₁H₂₆N₂O₄Na: 425.1505; found: 425.1554.

Cbz-D-Met-NHC₆H₄-4-OEt (6dDo)^{6f}

Yield: 177 mg (88%); colorless powder; >99% ee; mp 129–130 °C; $[\alpha]_D^{30}$ –13.8 (*c* 1.00, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90:10): *t*_r = 20 min.

Cbz-L-Pro-NHC₆H₄-4-OEt (6eLo)^{6f}

Yield: 182 mg (99%); colorless powder; >99% ee; mp 112–114 °C; $[\alpha]_D^{30}$ –38.3 (*c* 0.99, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel AS: hexane/2-propanol = 90:10): *t*_r = 56 min.

IR (KBr): 3269 (NH), 1709 (CON), 1664 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 1.40 (t, *J* = 6.9 Hz, 3 H, CH₃CH₂O), 1.95–2.55, 3.46–3.53 (m, m, 4 H, 2 H, pyrrolidinyl H), 4.01 (q, *J* = 6.9 Hz, 2 H, CH₃CH₂O), 4.39–4.52 (m, 1 H, CHCO), 5.21 (s, 2 H, OCH₂C₆H₅), 6.81–6.83, 7.26–7.37 (m, m, 2 H, 8 H, NH, C₆H₄, C₆H₅), 8.97 (br s, 1 H, NH).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 14.8, 24.7, 27.7, 47.1, 61.0, 61.4, 63.7, 67.6, 114.7, 121.4, 128.0, 128.2, 128.4, 128.6, 131.2, 136.3, 155.5, 156.7, 169.2.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₁H₂₄N₂O₄Na: 391.1628; found: 391.1620.

Cbz-D-Pro-NHC₆H₄-4-OEt (6eDo)^{6f}

Yield: 182 mg (99%); colorless powder; >99% ee; mp 112–114 °C; $[\alpha]_D^{30}$ +40.8 (*c* 1.02, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel AS: hexane/2-propanol = 90:10): *t_r* = 20 min.

Boc-L-Phe-NHC₆H₄-4-OEt (6fLo)^{6f}

Yield: 190 mg (99%); colorless powder; >99% ee; mp 159–161 °C; $[\alpha]_D^{31}$ +75.9 (*c* 0.98, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90:10): t_r = 13 min.

IR (KBr): 3344 (NH), 1691 (CON), 1664 (CON) cm⁻¹.

¹H NMR (400 MHz, DMSO- d_6): $\delta = 1.23-1.32$ (m, 12 H, CH₃CH₂O, (CH₃)₃C), 2.82 (dd, J = 10.3, 10.4 Hz, 1 H, CH_AC₆H₅), 2.97 (dd, J = 8.8, 10.3 Hz, 1 H, CH_BC₆H₅), 3.98 (q, J = 7.0 Hz, 2 H, CH₃CH₂O), 4.25-4.31 (m, 1 H, CHCO), 6.87, 7.46 (d, d, J = 9.0, 9.0 Hz, 2 H, 2 H, C₆H₄), 7.06-7.31 (m, 6 H, NH, C₆H₅), 9.87 (s, 1 H, NH).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 14.6, 28.1, 56.3, 63.0, 77.9, 114.3, 120.7, 126.2, 127.9, 129.1, 131.9, 137.9, 154.4, 155.3, 170.1.

HRMS (ESI-TOF): $m/z \text{ [M + Na]}^+$ calcd for $C_{22}H_{28}N_2O_4Na$: 407.1941; found: 407.1909.

Boc-D-Phe-NHC₆H₄-4-OEt (6fDo)^{6f}

Yield: 190 mg (99%); colorless powder; 95% ee; mp 159–161 °C; $[\alpha]_D^{31}$ –75.6 (*c* 0.99, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90:10): *t_r* = 8 min.

Fmoc-L-Phe-NHC₆H₄-4-OEt (6gLo)^{6f}

Yield: 207 mg (82%); colorless powder; >99% ee; mp 218–220 °C; $[\alpha]_D^{29}$ +20.5 (*c* 1.00, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel ADH: hexane/2-propanol = 90:10): t_r = 29 min.

IR (KBr): 3307 (NH), 1691 (CON), 1654 (CON) cm⁻¹.

¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.31 (t, *J* = 7.0 Hz, 3 H, *CH*₃CH₂O), 2.89 (dd, *J* = 10.2, 10.3 Hz, 1 H, *CH*_AC₆H₅), 3.02 (dd, *J* = 4.7, 10.2 Hz, 1 H, *CH*_BC₆H₅), 3.98 (q, *J* = 7.0 Hz, 2 H, *CH*₃CH₂O), 4.16–4.19 (m, 3 H, CHCH₂O), 4.38 (m, 1 H, CHCO), 6.86–6.88, 7.20–7.89 (m, m, 2 H, 16 H, NH, C₆H₄, C₆H₅, fluorenyl H), 9.97 (s, 1 H, NH).

¹³C NMR (100 MHz, DMSO- d_6): δ = 14.6, 37.5, 46.5, 56.7, 63.0, 65.6, 114.3, 120.0, 120.7, 125.2, 125.3, 126.2, 126.9, 127.5, 128.0, 129.2, 131.8, 137.9, 140.6, 143.6, 143.7, 154.5, 155.8, 169.8.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₃₂H₃₀N₂O₄Na: 529.2098; found: 529.2053.

Fmoc-D-Phe-NHC₆H₄-4-OEt (6gDo)^{6f}

Yield: 240 mg (95%); colorless powder; >99% ee; mp 218–220 °C; $[\alpha]_D^{29}$ –15.6 (*c* 1.00, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel ADH: hexane/2-propanol = 90:10): *t_r* = 11 min.

O-Benzyl-Boc-L-Ser-NHC₆H₄-4-OEt (6hLo)

Yield: 193 mg (93%); colorless powder; >99% ee; mp 104–105 °C; $[\alpha]_D^{30}$ +13.8 (*c* 1.02, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 95:5): *t_r* = 19 min.

IR (KBr): 3350 (NH), 1687 (CON), 1664 (CON) cm⁻¹.

¹H NMR (400 MHz, DMSO- d_6): δ = 1.30 (t, *J* = 7.0 Hz, 3 H, CH₃CH₂O), 1.39 (s, 9 H, (CH₃)₃C), 3.60–3.65 (m, 2 H, CH₂CHCO), 3.98 (q, *J* = 7.0 Hz, 2 H, CH₃CH₂O), 4.34–4.38 (m, 1 H, CHCO), 4.50 (s, 2 H, OCH₂C₆H₅), 6.87, 7.49 (d, d, *J* = 6.9, 6.9 Hz, 2 H, 2 H, C₆H₄), 6.98–7.33 (m, 6 H, NH, C₆H₅), 9.91 (s, 1 H, NH). Paper

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 14.6, 28.1, 54.8, 63.0, 69.8, 72.0, 78.2, 114.3, 120.7, 127.3, 128.1, 131.8, 138.1, 154.5, 155.1, 168.3. HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₃H₃₀N₂O₅Na: 437.2047;

O-Benzyl-Boc-D-Ser-NHC₆H₄-4-OEt (6hDo)

found: 437.2057.

I

Yield: 197 mg (95%); colorless powder; 98% ee; mp 104–105 °C; $[\alpha]_D^{30}$ –12.8 (*c* 1.00, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 95:5): *t*_r = 16 min.

S-Trityl-Fmoc-L-Cys-NHC₆H₄-4-OEt (6iLo)

Yield: 271 mg (77%); colorless powder; 79% ee; mp 191–193 °C; $[\alpha]_D^{30}$ –10.0 (*c* 0.98, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel ADH: hexane/2-propanol = 90:10): *t*_r = 64 min.

IR (KBr): 3292 (NH), 1685 (CON), 1662 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 1.39 (t, *J* = 7.0 Hz, 3 H, CH₃CH₂O), 2.71–2.79 (m, 2 H, SCH₂CHCO), 3.84–3.87 (m, 1 H, SCH₂CHCO), 3.99 (q, *J* = 7.0 Hz, 2 H, CH₃CH₂O), 4.18 (t, *J* = 6.8 Hz, 1 H, CHCH₂OCO), 4.42 (d, *J* = 6.8 Hz, 2 H, CHCH₂OCO), 5.01 (br s, 1 H, NH), 6.80–6.82, 7.18–7.76 (m, m, 2 H, 26 H, C₆H₄, NH, 3 × C₆H₅, fluorenyl H).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 14.8, 33.6, 47.1, 54.7, 64.0, 67.1, 67.5, 114.7, 120.0, 121.7, 125.0, 127.0, 127.1, 127.8, 128.1, 129.6, 130.1, 141.3, 143.6, 144.3, 156.0, 167.9.

HRMS (ESI-TOF): $m/z \ [M + Na]^+$ calcd for $C_{45}H_{40}N_2O_4SNa$: 727.2602; found: 727.2616.

S-Trityl-Fmoc-D-Cys-NHC₆H₄-4-OEt (6iDo)

Yield: 278 mg (79%); colorless powder; 86% ee; mp 191–193 °C; $[\alpha]_D^{29}$ +13.5 (*c* 1.00, DMSO).

The enantiomeric ratio was determined by HPLC (Chiralcel ADH: hexane/2-propanol = 90:10): t_r = 55 min.

Cbz-L-Tyr-NHC₆H₄-4-OEt (6jLo)

Yield: 141 mg (65%); colorless powder; >99% ee; mp 170–171 °C; $[\alpha]_D^{30}$ +64.4 (*c* 1.01, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel ADH: hexane/2-propanol = 90:10): t_r = 62 min.

IR (KBr): 3413 (OH), 3313 (NH), 1710 (CON), 1668 (CON) cm⁻¹.

¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.31 (t, *J* = 7.0 Hz, 3 H, *CH*₃CH₂O), 3.00 (dd, *J* = 5.1, 9.2 Hz, 1 H, *CH*_AC₆H₄), 3.14 (dd, *J* = 9.1, 9.2 Hz, *CH*_BC₆H₄), 3.98 (q, *J* = 7.0 Hz, 2 H, *CH*₃CH₂O), 4.42–4.44 (m, 1 H, CHCO), 4.97 (s, 2 H, OCH₂C₆H₅), 6.85–7.69 (m, 14 H, 2 × C₆H₄, NH, C₆H₅), 9.98 (s, 1 H, NH), 10.83 (s, 1 H, OH).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 14.6, 27.8, 56.0, 63.0, 65.2, 109.8, 111.2, 114.2, 118.1, 118.5, 120.8, 120.8, 123.8, 127.1, 127.5, 127.6, 128.2, 131.9, 135.9, 136.9, 154.4, 155.8, 170.2.

HRMS (ESI-TOF): m/z [M + 2Na]⁺ calcd for C₂₅H₂₆N₂O₅Na₂: 480.1626; found: 480.1674.

Cbz-D-Tyr-NHC₆H₄-4-OEt (6jDo)

Yield: 124 mg (57%); colorless powder; >99% ee; mp 170–171 °C; $[\alpha]_D^{30}$ –62.1 (*c* 1.02, DMSO).

The enantiomeric ratio was determined by HPLC (Chiralcel ADH: hexane/2-propanol = 90:10): $t_r = 81$ min.

Cbz-L-Trp-NHC₆H₄-4-OEt (6kLo)

Yield: 208 mg (91%); colorless powder; >99% ee; mp 181–182 °C; $[\alpha]_D^{30}$ +51.5 (*c* 1.00, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel AS: hexane/2-propanol = 99:1): *t_r* = 121 min.

IR (KBr): 3415 (NH), 3299 (NH), 1701 (CON), 1658 (CON) cm⁻¹.

¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.31 (t, *J* = 7.0 Hz, 3 H, CH₃CH₂O), 3.00 (dd, *J* = 9.3, 5.1 Hz, 1 H, CH_A-indole), 3.14 (dd, *J* = 5.1, 5.1 Hz, 1 H, CH_B-indole), 3.98 (q, *J* = 7.0 Hz, 2 H, CH₃CH₂O), 4.42–4.44 (m, 1 H, CH-CO), 4.97 (s, 2 H, OCH₂C₆H₅), 6.85–7.69 (m, 15 H, C₆H₄, NH, C₆H₅, indolyl H), 9.98 (s, 1 H, NHCO), 10.83 (s, indole NH).

¹³C NMR (100 MHz, DMSO- d_6): δ = 14.6, 27.8, 56.0, 63.0, 65.2, 109.9, 111.2, 114.2, 118.1, 118.5, 120.8, 120.9, 123.8, 127.2, 127.5, 127.6, 128.2, 131.9, 136.0, 136.9, 154.4, 155.8, 170.3.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₇H₂₇N₃O₄Na: 480.1894; found: 480.1883.

Cbz-D-Trp-NHC₆H₄-4-OEt (6kDo)

Yield: 208 mg (91%); colorless powder; >99% ee; mp 181–182 °C; $[\alpha]_D^{30}$ –51.1 (*c* 1.02, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel AS: hexane/2-propanol = 90:10): *t_r* = 87 min.

Boc-L-Gln-NHC₆H₄-4-OEt (6lLo)

Yield: 144 mg (79%); colorless powder; >99% ee; mp 176–178 °C; $[\alpha]_D^{30}$ +6.8 (*c* 1.01, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90:10): t_r = 19 min.

IR (KBr): 3388 (NH), 3336 (NH), 3194 (NH), 1681 (CON), 1654 (CON) $\rm cm^{-1}.$

¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.30 (t, *J* = 7.0 Hz, 3 H, *CH*₃CH₂O), 1.38 (s, 9 H, (*CH*₃)₃C), 1.75–1.87 (m, 2 H, *CH*₂CH), 2.09–2.16 (m, 2 H, *CH*₂CH₂CH), 3.95–4.02 (m, 3 H, *CH*₃CH₂O, *CHCO*), 6.78 (s, 1 H, NH_A), 6.86, 7.48 (d, *d*, *J* = 9.0, 9.0 Hz, 2 H, 2 H, *C*₆H₄), 7.00 (d, *J* = 7.8 Hz, 1 H, NH), 7.29 (s, 1 H, NH_B), 9.80 (s, 1 H, NH).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 14.6, 27.6, 28.1, 31.5, 54.6, 63.0, 78.0, 114.3, 120.7, 131.9, 154.4, 155.3, 170.3, 173.5.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₈H₂₇N₃O₅Na: 388.1843; found: 388.1835.

Boc-D-Gln-NHC₆H₄-4-OEt (6lDo)

Yield: 146 mg (80%); colorless powder; >99% ee; mp 176–178 °C; $[\alpha]_D^{30}$ –6.4 (*c* 1.01, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90:10): *t*_r = 14 min.

N^{α} -Boc- N^{ε} -Cbz-L-Lys-NHC₆H₄-4-OEt (6mLo)

Yield: 241 mg (94%); colorless powder; >99% ee; mp 139–140 °C; $[\alpha]_D^{30}$ +5.4 (*c* 1.00, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90:10): *t_r* = 37 min.

IR (KBr): 3338 (NH), 1695 (CON), 1666 (CON) cm⁻¹.

¹H NMR (400 MHz, DMSO- d_6): δ = 1.30 (t, *J* = 7.0 Hz, 3 H, CH₃CH₂O), 1.38 (s, 9 H, (CH₃)₃C), 1.54–1.58 (m, 6 H, NHCH₂(CH₂)₃), 2.95–2.99 (m, 2 H, NHCH₂(CH₂)₃), 3.95–4.02 (m, 3 H, CH₃CH₂O, CHCO), 4.99 (s, 2 H, OCH₂C₆H₅), 6.90, 7.48 (d, d, *J* = 9.0, 9.0 Hz, 2 H, 2 H, C₆H₄), 7.00 (d, *J* = 7.8, 1 H, NHCH), 9.80 (s, 1 H, NHCO).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 14.6, 22.8, 28.1, 29.0, 31.5, 54.9, 63.0, 65.0, 77.9, 114.3, 120.6, 127.6, 128.2, 132.0, 137.2, 154.3, 155.4, 156.0, 170.7.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₇H₃₇N₃O₆Na: 522.2575; found: 522.2547.

N^α-Boc-N^ε-Cbz-D-Lys-NHC₆H₄-4-OEt (6mDo)

Yield: 249 mg (97%); colorless powder; >99% ee; mp 139–140 °C; $[\alpha]_D^{30}$ –5.5 (*c* 1.02, DMSO). The enantiomeric ratio was determined by HPLC (Chiralcel OD: hexane/2-propanol = 90:10): *t*_r = 15 min.

Amidation of Lauric Acid (7a) with 4-Ethoxyaniline (2o)

To a colorless solution of lauric acid **7a** (100 mg, 0.50 mmol) in MeCN (10 mL) were added at 0 °C Et₃N (77 μ L, 0.55 mmol, 1.1 equiv) and ClCO₂Et (53 μ L, 0.55 mmol, 1.1 equiv). After stirring for 30 min at 0 °C, a solution of 4-ethoxyaniline **2o** (75 mg, 0.55 mmol, 1.1 equiv) in H₂O (0.75 mL) was added at 0 °C to the colorless suspension. The mixture was stirred for 24 h at 0 °C and concentrated in vacuo. To the residue was added 1.0 M aqueous HCl to pH 2. The resulted suspension was extracted with EtOAc (50 mL), washed with brine (10 mL), and 1.0 M aqueous NaHCO₃ (5 mL), and dried over MgSO₄. The crude product was purified by chromatography on silica gel with a 2:1 mixture of hexane and EtOAc to afford 155 mg (97% yield) of *N*-(4-ethoxyphenyl)lauramide **8ao**.

N-(4-Ethoxyphenyl)lauramide (8ao)^{6f}

Yield: 155 mg (97%); colorless powder; mp 104-105 °C.

IR (KBr): 3302 (NH), 1653 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 0.88 (t, J = 6.8 Hz, 3 H, $CH_3(CH_2)_{10}$), 1.26–1.41 (m, 16 H, $CH_3(CH_2)_8$), 1.40 (t, J = 7.0 Hz, 3 H, CH_3CH_2O), 1.70–1.75 (m, 2 H, CH_2CH_2CO), 2.32 (t, J = 7.6 Hz, 2 H, CH_2CH_2CO), 4.01 (q, J = 7.0 Hz, 2 H, CH_3CH_2O), 6.84, 7.39 (d, d, J = 8.9, 8.9 Hz, 2 H, 2 H, C_6H_4), 7.03 (br s, 1 H, NHCO).

¹³C NMR (100 MHz, CDCl₃): δ = 14.1, 14.8, 22.7, 25.7, 29.3, 29.3, 29.4, 29.5, 29.6, 31.9, 37.7, 63.7, 114.8, 121.7, 131.0, 155.7, 171.2.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₀H₃₃NO₂Na: 342.2404; found: 342.2403.

N-(4-Ethoxyphenyl)palmitamide (8bo)^{6f}

Yield: 184 mg (98%); colorless powder; mp 111-112 °C.

IR (KBr): 3302 (NH), 1658 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 0.88 (t, *J* = 6.8, 3 H, CH₃(CH₂)₁₄), 1.25– 1.41 (m, 24 H, CH₃(CH₂)₁₂), 1.40 (t, *J* = 7.0 Hz, 3 H, CH₃CH₂O), 1.70– 1.71 (m, 2 H, CH₂CH₂CO), 2.32 (t, *J* = 7.6 Hz, 2 H, CH₂CH₂CO), 4.01 (q, *J* = 7.0 Hz, 2 H, CH₃CH₂O), 6.84, 7.39 (d, d, *J* = 9.0, 9.0 Hz, 2 H, 2 H, C₆H₄), 7.05 (br s, 1 H, NHCO).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 14.1, 14.8, 22.7, 25.7, 29.3, 29.4, 29.4, 29.5, 29.6, 29.7, 29.7, 31.9, 37.7, 63.7, 114.8, 121.7, 131.0, 155.7, 171.3.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₄H₄₁NO₂Na: 398.3030; found: 398.3046.

N-(4-Ethoxyphenyl)oleamide (8co)^{6f}

Yield: 178 mg (89%); colorless powder; mp 66-67 °C.

IR (KBr): 3296 (NH), 1653 (CON) cm⁻¹.

¹H NMR (400 MHz, DMSO- d_6): $\delta = 0.84$ (t, J = 7.0 Hz, 3 H, $CH_3(CH_2)_7$), 1.23–1.31 (m, 23 H, CH_3CH_2O , $CH_3(CH_2)_6$, $(CH_2)_4CH_2CH_2CO$), 1.54–1.57 (m, 2 H, CH_2CH_2CO), 1.97–1.98 (m, 4 H, 2 × CH_2CH), 2.24 (t, J = 7.4 Hz, 2 H, CH_2CO), 3.97 (q, J = 7.0 Hz, 2 H, CH_3CH_2O), 5.28–5.36 (m, 2 H, 2 × CH), 6.83, 7.46 (d, d, J = 8.9, 8.9 Hz, 2 H, 2 H, C_6H_4), 9.67 (s, 1 H, NHCO).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 13.9, 14.6, 22.1, 25.2, 26.6, 26.6, 28.6, 28.6, 28.7, 28.8, 29.1, 31.3, 36.3, 63.0, 114.2, 120.5, 129.5, 129.6, 132.5, 154.2, 170.6.

Jownloaded by: Universidad de Barcelona. Copyrighted material

L

S. Jung et al.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₆H₄₃NO₂Na: 424.3186; found: 424.3218.

(9Z,12Z)-N-(4-Ethoxyphenyl)linoleamide (8do)^{6f}

Yield: 186 mg (93%); yellow powder; mp 47-48 °C.

IR (KBr): 3302 (NH), 1655 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 0.89 (t, *J* = 6.9 Hz, 3 H, *CH*₃(CH₂)₄), 1.27–1.40 (m, 14 H, CH₃(*CH*₂)₃, (*CH*₂)₄CH₂CH₂CO), 1.39 (t, *J* = 7.0 Hz, 3 H, *CH*₃CH₂O), 1.66–1.71 (m, 2 H, *CH*₂CH₂CO), 2.02–2.07 (m, 4 H, 2 × CH₂CH₂CH), 2.30 (t, *J* = 7.6 Hz, 2 H, CH₂CO), 2.75–278 (m, 2 H, CHCH₂CH), 3.99 (q, *J* = 7.0 Hz, 2 H, CH₃CH₂O), 5.29–5.40 (m, 4 H, 4 × CH), 6.81, 7.38 (d, d, *J* = 9.0, 9.0 Hz, 2 H, 2 H, C₆H₄), 7.42 (br s, 1 H, NHCO).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 14.1, 14.8, 22.6, 25.7, 25.7, 29.2, 29.3, 29.3, 29.4, 29.6, 31.5, 37.6, 63.7, 114.8, 115.1, 121.8, 130.1, 130.2, 131.1, 155.7, 171.4.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₆H₄₁NO₂Na: 422.3030; found: 422.3019.

(9Z,12Z,15Z)-N-(4-Ethoxyphenyl)linolenamide (8eo)^{6f}

Yield: 189 mg (95%); yellow powder; mp 47-49 °C.

IR (KBr): 3300 (NH), 1655 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 0.97 (t, *J* = 7.5 Hz, 3 H, CH₃CH₂CH), 1.28–1.41 (m, 8 H, (CH₂)₄CH₂CH₂CO), 1.39 (t, *J* = 7.0 Hz, 3 H, CH₃CH₂O), 1.66–1.73 (m, 2 H, CH₂CH₂CO), 2.03–2.11 (m, 4 H, CH₃CH₂CH, CH₂CH₂CH), 2.32 (t, *J* = 7.6 Hz, 2 H, CH₂CO), 2.75–2.82 (m, 4 H, 2 × CHCH₂CH), 4.00 (q, *J* = 7.0 Hz, 2 H, CH₃CH₂O), 5.30–5.41 (m, 6 H, 6 × CH), 6.84, 7.39 (d, *d*, *J* = 9.0, 9.0 Hz, 2 H, 2 H, C₆H₄), 7.11 (s, 1 H, NHCO). ¹³C NMR (100 MHz, CDCl₃): δ = 14.3, 14.8, 20.6, 25.5, 25.6, 25.7, 27.2,

29.1, 29.3, 29.6, 37.7, 63.7, 114.8, 121.7, 127.1, 127.6, 128.3, 128.3, 130.3, 130.9, 132.0, 155.7, 171.2.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₆H₃₉NO₂Na: 420.2873; found: 420.2862.

(E)-N-(4-Ethoxyphenyl)elaidamide (8fo)

Yield: 166 mg (83%); colorless powder; mp 87–88 °C.

IR (KBr): 3323 (NH), 1655 (CON) cm-1.

¹H NMR (400 MHz, CDCl₃): δ = 0.88 (t, *J* = 6.9 Hz, 3 H, CH₃(CH₂)₇), 1.26–1.41 (m, 20 H, CH₃(CH₂)₆, (CH₂)₄CH₂CH₂CO), 1.40 (t, *J* = 7.0 Hz, 3 H, CH₃CH₂O), 1.67–1.75 (m, 2 H, CH₂CH₂CO), 1.94–1.97 (m, 4 H, 2 × CH₂CH), 2.32 (t, *J* = 7.6 Hz, 2 H, CH₂CO), 4.00 (q, *J* = 7.0 Hz, 2 H, CH₃CH₂O), 5.37–5.39 (m, 2 H, 2 × CH), 6.84, 7.39 (d, d, *J* = 9.0, 9.0 Hz, 2 H, 2 H, C₆H₄), 7.05 (br s, 1 H, NHCO).

¹³C NMR (100 MHz, CDCl₃): δ = 14.1, 14.8, 22.7, 25.7, 29.0, 29.2, 29.3, 29.3, 29.5, 29.6, 29.7, 31.9, 32.6, 32.6, 37.7, 63.7, 114.8, 121.7, 130.2, 130.5, 131.0, 155.7, 171.2.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₆H₄₃NO₂Na: 424.3186; found: 424.3218.

(5Z,8Z,11Z,14Z)-N-(4-Ethoxyphenyl)arachidonamide (8go)^{6f}

Yield: 49 mg (93%); brown oil.

IR (KBr): 3292 (NH), 1655 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 0.89 (t, *J* = 6.9 Hz, 3 H, CH₃(CH₂)₄), 1.27–1.41 (m, 6 H, CH₃(CH₂)₃), 1.40 (t, *J* = 7.0 Hz, 3 H, CH₃CH₂O), 1.81– 1.85 (m, 2 H, CH₂CH₂CO), 2.03–2.20 (m, 4 H, 2 × CH₂CH₂CH), 2.33 (t, *J* = ¹³C NMR (100 MHz, CDCl₃): δ = 14.1, 14.8, 22.6, 25.4, 25.7, 26.5, 27.2, 29.3, 31.3, 36.9, 63.7, 114.8, 121.7, 127.5, 127.9, 128.2, 128.3, 128.6, 129.1, 130.5, 130.9, 155.8, 170.9.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₈H₄₁NO₂Na: 446.3030; found: 446.3061.

(4Z,7Z,10Z,13Z,16Z,19Z)-N-(4-Ethoxyphenyl)docosahexaenoamide (8ho)

Yield: 49 mg (99%); brown oil.

IR (KBr): 3296 (NH), 1655 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): $\delta = 0.97$ (t, J = 7.5 Hz, 3 H, CH_3CH_2CH), 1.39 (t, J = 7.0 Hz, 3 H, CH_3CH_2O), 2.04–2.11 (m, 2 H, CH_3CH_2CH), 2.36–2.40 (m, 2 H, CH_2CH_2CO), 2.48 (t, J = 6.7 Hz, 2 H, CH_2CO), 2.70–2.88 (m, 10 H, 5 × $CHCH_2CH$), 3.99 (q, J = 7.0 Hz, 2 H, CH_3CH_2O), 5.32–5.45 (m, 6 H, 12 × CH), 6.82, 7.37 (d, d, J = 9.0, 9.0 Hz, 2 H, 2 H, C_6H_4), 7.33 (s, 1 H, NHCO).

 ^{13}C NMR (100 MHz, CDCl₃): δ = 14.3, 14.8, 20.6, 23.4, 25.6, 25.7, 37.2, 63.7, 114.7, 121.8, 127.0, 128.0, 128.1, 128.1, 128.3, 128.3, 128.4, 128.6, 129.6, 130.9, 155.8, 170.6.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₃₀H₄₁NO₂Na: 470.3030; found: 470.3023.

Amidation of Lauric Acid (7a) with 4-Aminophenol (2m); Typical Procedure

To a colorless solution of lauric acid **7a** (100 mg, 0.50 mmol) in MeCN (10 mL) were added at 0 °C Et₃N (77 μ L, 0.55 mmol, 1.1 equiv) and ClCO₂Et (53 μ L, 0.55 mmol, 1.1 equiv). After stirring for 30 min at 0 °C, a solution of 4-aminophenol **2m** (60 mg, 0.55 mmol, 1.1 equiv) in H₂O (0.75 mL) was added at 0 °C to the colorless suspension. The mixture was stirred for 24 h at 0 °C and concentrated in vacuo. To the residue was added 1.0 M aqueous HCl to pH 2. The resulting suspension was extracted with EtOAc (50 mL), washed with brine (10 mL), and 1.0 M aqueous NaHCO₃ (5 mL), and dried over MgSO₄. The crude product was purified by chromatography on silica gel with a 2:1 mixture of hexane and EtOAc to afford 127 mg (87% yield) of *N*-(4-hydroxyphenyl)lauramide (**9am**).

N-(4-Hydroxyphenyl)lauramide (9am)

Yield: 127 mg (87%); colorless powder; mp 130–131 °C.

IR (KBr): 3313 (NH), 1653 (CON) cm⁻¹.

¹H NMR (400 MHz, DMSO-*d*₆): δ = 0.85 (t, *J* = 6.8 Hz, 3 H, $CH_3(CH_2)_{10}$), 1.24–1.27 (m, 16 H, $CH_3(CH_2)_8$), 1.53–1.57 (m, 2 H, CH_2CH_2CO), 2.22 (t, *J* =7.4 Hz, 2 H, CH_2CO), 6.66, 7.34 (d, d, *J* = 8.9, 8.8 Hz, 2 H, 2 H, C_6H_4), 9.10 (s, 1 H, NHCO), 9.55 (s, 1 H, OH).

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 13.9, 22.0, 25.2, 28.6, 28.6, 28.7, 28.4, 28.9, 28.9, 31.2, 36.2, 114.9, 120.8, 131.0, 153.0, 170.4.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₁₈H₂₉NO₂Na: 314.2091; found: 314.2099.

N-(4-Hydroxyphenyl)palmitamide (9bm)

Yield: 132 mg (76%); colorless powder; mp 133–134 °C. IR (KBr): 3315 (NH), 1653 (CON) cm⁻¹.

~					
Svn	T	ne	CI.		
J y 11			21	•	

Paper

¹H NMR (400 MHz, DMSO- d_6): $\delta = 0.85$ (t, J = 7.0 Hz, 3 H, $CH_3(CH_2)_{14}$), 1.24–1.27 (m, 24 H, $CH_3(CH_2)_{12}$), 1.53–1.57 (m, 2 H, CH_2CH_2CO), 2.22 (t, J = 7.4 Hz, 2 H, CH_2CO), 6.66, 7.34 (d, d, J = 8.9, 8.9 Hz, 2 H, 2 H, C_6H_4), 9.10 (s, 1 H, NHCO), 9.55 (s, 1 H, OH).

S. Jung et al.

¹³C NMR (100 MHz, DMSO-*d*₆): δ = 13.8, 22.0, 25.2, 28.6, 28.7, 28.8, 28.9, 28.9, 31.2, 114.9, 120.8, 130.9, 153.0, 170.5.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₂H₃₇NO₂Na: 370.2717; found: 370.2760.

N-(4-Hydroxyphenyl)oleamide (9cm)

Yield: 147 mg (79%); colorless powder; mp 99-100 °C.

IR (KBr): 3278 (NH), 1649 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 0.88 (t, *J* = 6.9 Hz, 3 H, CH₃(CH₂)₇), 1.27–1.32 (m, 20 H, CH₃(CH₂)₆, (CH₂)₄CH₂CH₂CO), 1.68–175 (m, 2 H, CH₂CH₂CO), 2.00–2.02 (m, 4 H, 2 × CH₂CH), 2.33 (t, *J* = 7.6 Hz, 2 H, CH₂CO), 5.33–5.36 (m, 2 H, 2 × CH), 5.50 (br s, 1 H, NHCO), 6.76, 7.29 (d, *J* = 8.8, 8.7 Hz, 2 H, 2 H, C₆H₄), 7.06 (br s, 1 H, OH).

¹³C NMR (100 MHz, CDCl₃): δ = 14.1, 22.7, 25.7, 27.2, 27.3, 29.2, 29.3, 29.3, 29.3, 29.5, 29.7, 29.8, 31.9, 37.6, 115.8, 122.6, 129.8, 130.0, 130.4, 153.1, 171.8.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₄H₃₉NO₂Na: 396.2873; found: 396.2899.

(9Z,12Z)-N-(4-Hydroxyphenyl)linoleamide (9dm)

Yield: 174 mg (94%); colorless powder; mp 86-87 °C.

IR (KBr): 3319 (NH), 1655 (CON) cm⁻¹.

¹H NMR (400 MHz, DMSO-*d*₆): δ = 0.85 (t, *J* = 6.2 Hz, 3 H, *CH*₃(*CH*₂)₄), 1.26–1.33 (m, 14 H, *CH*₃(*CH*₂)₃, (*CH*₂)₄*CH*₂*CH*₂*CO*), 1.53–1.55 (m, 2 H, *CH*₂*CH*₂*CO*), 1.99–2.02 (m, 4 H, 2 × *CH*₂*CH*₂*CH*), 2.22 (t, *J* = 7.4 Hz, 2 H, *CH*₂*CO*), 2.72–2.75 (m, 2 H, *CHCH*₂*CH*), 5.24–5.38 (m, 4 H, 4 × *CH*), 6.66, 7.34 (d, *d*, *J* = 8.7, 8.7 Hz, 2 H, 2 H, *C*₆H₄), 9.10 (s, 1 H, NHCO), 9.55 (s, 1 H, OH).

 13 C NMR (100 MHz, DMSO- d_6): δ = 13.8, 21.9, 25.1, 25.2, 26.5, 26.5, 28.5, 28.6, 28.6, 28.9, 30.8, 36.2, 114.9, 120.8, 127.7, 127.7, 129.6, 129.7, 130.9, 153.0, 170.4.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₄H₃₇NO₂Na: 394.2717; found: 394.2704.

(9Z,12Z,15Z)-N-(4-Hydroxyphenyl)linolenamide (9em)

Yield: 152 mg (82%); colorless powder; mp 81–82 °C.

IR (KBr): 3319 (NH), 1655 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 0.97 (t, *J* = 7.5 Hz, 3 H, CH₃CH₂CH), 1.26–1.32 (m, 8 H, (CH₂)₄CH₂CH₂CO), 1.66–1.74 (m, 2 H, CH₂CH₂CO), 2.02–2.11 (m, 4 H, CH₃CH₂CH, CH₂CH₂CH), 2.32 (t, *J* = 7.6 Hz, 2 H, CH₂-CO), 2.77–2.82 (m, 4 H, 2 × CHCH₂CH), 5.32–5.39 (m, 6 H, 6 × CH), 6.73, 7.23 (d, d, *J* = 8.8, 8.8 Hz, 2 H, 2 H, C₆H₄), 6.83 (s, 1 H, NHCO), 7.30 (s, 1 H, OH).

¹³C NMR (100 MHz, CDCl₃): δ = 20.6, 22.6, 22.7, 25.5, 25.6, 25.8, 27.2, 29.2, 29.3, 29.3, 29.3, 29.6, 29.6, 29.8, 31.5, 31.9, 37.4, 116.2, 127.1, 127.7, 127.9, 128.0, 128.3, 128.3, 129.6, 130.1, 130.3, 130.3, 132.0, 153.7, 172.6.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₄H₃₅NO₂Na: 392.2560; found: 392.2568.

(E)-N-(4-Hydroxyphenyl)elaidamide (9fm)

Yield: 181 mg (97%); colorless powder; mp 117–119 °C. IR (KBr): 3332 (NH), 1655 (CON) cm⁻¹. ¹H NMR (400 MHz, DMSO- d_6): $\delta = 0.85$ (t, J = 6.9 Hz, 3 H, $CH_3(CH_2)_7$), 1.23–1.27 (m, 20 H, $CH_3(CH_2)_6$, $(CH_2)_4$ CH_2CH_2CO), 1.53–1.57 (m, 2 H, CH_2CH_2CO), 1.93–1.94 (m, 4 H, 2 × CH_2CH), 2.22 (t, J = 7.4 Hz, 2 H, CH_2CO), 5.35–5.37 (m, 2 H, 2 × CH), 6.66, 7.34 (d, d, J = 8.9, 8.9 Hz, 2 H, 2 H, C_6H_4), 9.10 (s, 1 H, NHCO), 9.55 (s, 1 H, OH).

 ^{13}C NMR (100 MHz, DMSO- d_6): δ = 13.9, 22.0, 25.1, 28.3, 28.4, 28.6, 28.6, 28.7, 28.9, 31.2, 31.9, 114.6, 120.7, 130.0, 130.0, 131.0, 153.0, 170.4.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₄H₃₉NO₂Na: 396.2873; found: 396.2899.

(5*Z*,8*Z*,11*Z*,14*Z*)-*N*-(4-Hydroxyphenyl)arachidonamide (AM404; 9gm)⁴

Yield: 124 mg (90%); colorless powder; mp 51-52 °C.

IR (KBr): 3315 (NH), 1653 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 0.88 (t, *J* = 6.9 Hz, 3 H, CH₃(CH₂)₄), 1.25–1.39 (m, 6 H, CH₃(CH₂)₃), 1.77–1.85 (m, 2 H, CH₂CH₂CO), 2.02– 2.08 (m, 2 H, CH₃(CH₂)₃CH₂), 2.14–2.18 (m, 2 H, CH₂(CH₂)₂CO), 2.34 (t, *J* = 7.6 Hz, 2 H, CH₂CO), 2.79–2.84 (m, 6 H, 3 × CHCH₂CH), 5.30–5.44 (m, 8 H, 8 × CH), 6.17 (br s, 1 H, NHCO), 6.74, 7.25 (d, d, *J* = 8.8, 7.4 Hz, 2 H, 2 H, C₆H₄), 7.15 (s, 1 H, OH).

 ^{13}C NMR (100 MHz, CDCl_3): δ = 14.1, 22.6, 25.4, 25.7, 26.6, 27.2, 29.3, 31.5, 36.8, 115.8, 122.6, 127.5, 127.9, 128.1, 128.3, 128.6, 129.0, 130.2, 130.6, 153.2, 171.6.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₆H₃₇NO₂Na: 418.2717; found: 418.2767.

(4Z,7Z,10Z,13Z,16Z,19Z)-N-(4-Hydroxyphenyl)docosahexaenamide (9hm)

Yield: 36 mg (78%); brown oil.

IR (KBr): 3302 (NH), 1657 (CON) cm⁻¹.

¹H NMR (400 MHz, CDCl₃): δ = 0.97 (t, *J* = 7.5 Hz, 3 H, CH₃CH₂CH), 2.03–2.09 (m, 2 H, CH₃CH₂CH), 2.36–2.40 (m, 2 H, CH₂CH₂CO), 2.49 (t, *J* = 7.1 Hz, 2 H, CH₂CO), 2.79–2.85 (m, 10 H, 5 × CHCH₂CH), 5.32–5.43 (m, 13 H, 12 × CH, NHCO), 6.71, 7.19 (d, d, *J* = 8.6, 8.2 Hz, 2 H, 2 H, C₆H₄), 7.45 (br s, 1 H, OH).

¹³C NMR (100 MHz, CDCl₃): δ = 14.3, 20.6, 23.4, 25.6, 25.7, 37.1, 115.6, 123.0, 127.0, 127.9, 128.0, 128.1, 128.3, 128.3, 128.4, 128.6, 129.7, 129.8, 132.1, 153.7, 171.6.

HRMS (ESI-TOF): m/z [M + Na]⁺ calcd for C₂₈H₃₇NO₂Na: 442.2717; found: 442.2695.

References

- (1) Baillie, T. A. Chem. Res. Toxicol. 2006, 19, 889.
- (2) (a) Chen, C.; Krausz, K. W.; Idle, J. R.; Gonzalez, F. J. J. Biol. Chem.
 2008, 283, 4543. (b) Manyike, P. T.; Kharasch, E. D.; Kalhorn, T. F.; Slattery, J. T. Clin. Pharmacol. Ther. 2000, 67, 275. (c) Webster, P. A.; Roberts, D. W.; Benson, R. W.; Kearns, G. L. J. Clin. Pharmacol. 1996, 36, 397.
- (3) Högestätt, E. D.; Jönsson, B. A. G.; Ermund, A.; Andersson, D. A.; Björk, H.; Alexander, J. P.; Cravatt, B. F.; Basbaum, A. I.; Zygmunt, P. M. J. Biol. Chem. **2005**, 280, 31405.
- (4) (a) Deshpande, L. S.; DeLorenzo, R. J. *Neuroreport* 2011, 22, 15.
 (b) Ottani, A.; Leone, S.; Sandrini, M.; Ferrari, A.; Bertolini, A. *Eur. J. Pharmacol.* 2006, 531, 280.
- (5) Li, G.; Szostak, M. Nat. Commun. 2018, 9, 4165.

- (6) (a) Ezawa, T.; Jung, S.; Kawashima, Y.; Noguchi, T.; Imai, N. Bull. Chem. Soc. Jpn. 2017, 90, 689. (b) Ezawa, T.; Kawashima, Y.; Noguchi, T.; Jung, S.; Imai, N. Tetrahedron: Asymmetry 2017, 28, 266. (c) Ezawa, T.; Jung, S.; Kawashima, Y.; Noguchi, T.; Imai, N. Tetrahedron: Asymmetry 2017, 28, 75. (d) Kawashima, Y.; Ezawa, T.; Yamamura, M.; Harada, T.; Noguchi, T.; Imai, N. Tetrahedron Lett. 2016, 57, 668. (e) Noguchi, T.; Jung, S.; Imai, N. Tetrahedron
- Lett. **2014**, *55*, 394. (f) Jung, S.; Tsukuda, Y.; Kawashima, R.; Ishiki, T.; Matsumoto, A.; Nakaniwa, A.; Takagi, M.; Noguchi, T.; Imai, N. *Tetrahedron Lett.* **2013**, *54*, 5718. (g) Noguchi, T.; Sekine, M.; Yokoo, Y.; Jung, S.; Imai, N. *Chem. Lett.* **2013**, *42*, 580. (h) Noguchi, T.; Jung, S.; Imai, N. *Chem. Lett.* **2012**, *41*, 577. (i) Noguchi, T.; Tehara, N.; Uesugi, Y.; Jung, S.; Imai, N. *Chem. Lett.* **2012**, *41*, 42.