

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 61 (2005) 5889-5894

2-Cyanopyridazin-3(2*H*)-ones: effective and chemoselective electrophilic cyanating agents

Jeum-Jong Kim,^a Deok-Heon Kweon,^a Su-Dong Cho,^{b,*} Ho-Kyun Kim,^a Eun-Young Jung,^a Sang-Gyeong Lee,^c J. R. Falck^d and Yong-Jin Yoon^{a,*}

^aDepartment of Chemistry and Environmental Biotechnology National Core Research Center, Gyeongsang National University, Chinju 660-701, South Korea

^bDepartment of Chemistry and Research Institute of Basic Science Changwon National University, Changwon 641-773, South Korea

^cDepartment of Chemistry and Research Institute of Life Science Gyeongsang National University, Chinju 660-701, South Korea ^dDepartment of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA

Received 2 March 2005; accepted 29 March 2005

Available online 10 May 2005

Abstract—2-Cyanopyridazin-3(2H)-ones are novel, effective, selective and electrophilic cyanating agents. A variety of amino, thiol and carbon nucleophiles are chemoselectively *N*-, *S*- or *C*-cyanated in excellent yield using 2-cyanopyridanzin-3(2H)-ones in water or tetrahydrofuran.

© 2005 Elsevier Ltd. All rights reserved.

1. Introduction

The introduction of a cyano group via carbon-carbon, carbon-nitrogen and carbon-sulfur forming reactions is a fundamental process in organic synthesis. Compounds containing the N-, S-, or C-cyano functional group are also found among many pharmaceuticals and their intermediates.^{1,2} There are a limited number of reagents that can serve as a cyano cation (CN⁺) equivalent or synthon, inter alia, tosyl cyanide,^{3,4} 2-chlorobenzylthiocyanate,⁵ cyanogen chloride,⁶ 1-cyanobenzotriazole,^{7,8} and 1-cyanoimidazole.⁹ However, problems with poor solubility, lack of reactivity, cost, stability, corrosiveness, toxicity, complicated preparation, and/or availability have prompted the continuing search for a more effective, mild, and convenient class of electrophilic cyanating agents. Since, pyridazin-3(2H)-ones 1 readily form stable anions,¹⁰ are good leaving groups, and have been used as a novel synthetic auxiliary.^{11–14} Our attention focused upon their utility as electrophilic cyanating agents. Herein, we report the first synthesis and the application of the hitherto unknown 2-cyanopyridazin-3(2H)-ones 2 as electrophilic cyanating reagents toward various amines, sulfur, and carbon nucleophilies.

2. Results and discussion

A variety of 2-cyanopyridazin-3(2H)-ones **2** were readily prepared by treating the corresponding pyridazin-3(2H)-ones **1** with cyanogen bromide and triethylamine in tetrahydrofuran at room temperature (Table 1). Yields were good to excellent even in the presence of halide, phenolic, azide, and heteroatom substituents (Scheme 1).

Table 1. Preparation of 2-cyanopyridazin-3(2H)-ones (2)^a

Entry	2	Time (h)	Yield (%) ^b	
1	2a	1.2	92	
2	2b	1.4	88	
3	2c	1.0	85	
4	2d	1.0	80	
5	2e	1.2	80	
6	2f	1.5	83	
7	2g	1.3	85	

^a Compound **1** (1 equiv), BrCN (1 equiv) and Et₃N (1 equiv), THF, at room temperature.

^b Isolated yield.

Initially, the efficacy of 2a-g for *N*-cyanation was evaluated using *N*-methylbenzylamine (**3a**) in water at 15–17 °C (Table 2, entries 1–7). Among seven *N*-cyanopyridazin-3(2H)-ones, **2a** and **2b** were the best *N*-cyanating agents. Consequently, **2a** and **2b** were further, studied in a variety of representative organic solvents (entries 8–17). Exclusive

Keywords: N-, S- or C-cyanation; Electrophilic cyanating agent; 2-Cyanopyridazin-3(2H)-ones.

^{*} Corresponding authors. Tel.: +82 055 751 6019; fax: +82 055 761 0244 (S.-D.C); (Y.-J.Y.); e-mail: yjyoon@nongae.gsnu.ac.kr

^{0040–4020/\$ -} see front matter @ 2005 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2005.03.138

N-cyanation in good to excellent yields was obtained in acetonitrile, methanol, and toluene.

Cyanation of various nitrogen and sulfur nucleophiles 3b-h with 2a-b in water under neutral condition gave the corresponding *N*- or *S*-cyano derivatives 4b-h in good to excellent yields (Table 3, entries 1–14).

We also investigated the chemoselectivity in the cyanation of bifunctional nucleophiles such as 4-aminophenol, 4-aminobenzenethiol and 4-mercaptophenol. Firstly, compounds 3i-k was treated with 2a-b in water to give both 5-substituted-pyridazin-3(2H)-ones and cyanated 4i-k. To enhance the chemoselectivity of the cyanation for bifunctional nucleophiles, we found that the best reaction condition requires the presence of 1 equiv of zinc chloride from preliminary experiments. Treatment of bifunctional nucleophiles 3i-k with 2a,b (entries 15-20) in the presence of zinc chloride in water chemoselectively afforded N- or S-cyano derivatives 4i-k in good yields. In order to expand the applications of the α -cyanation for 1,3-dicarbonyl compounds, we examined the cyanation of 31 and 3m. Otherwise the cyanations of N- or S-nucleophile, the reactions of 1,3-dicarbonyl compounds in water, methanol, acetonitrile and toluene suffer from low yield, low

Table 2. Preparation of *N*-cyano-*N*-methylbenzylamine (4a) using 2 in various solvents

Entry	2	Solvent	Temp (°C)	Time (h)	4a (%) ^a	
1	2a	H ₂ O	15–17	0.5	95	
2	2b	H ₂ O	15-17	0.5	96	
3	2c	H ₂ O	15-17	1	88	
4	2d	H ₂ O	15–17	1	83	
5	2e	H ₂ O	15-17	1.2	82	
6	2f	H ₂ O	15-17	1.5	85	
7	2g	H ₂ O	15-17	1.3	84	
8	2a	CH ₂ Cl ₂	Reflux	22	52	
9	2b	CH_2Cl_2	Reflux	28	41	
10	2a	THF	Reflux	5	b	
11	2b	THF	Reflux	20	75	
12	2a	CH ₃ CN	Reflux	9	88	
13	2b	CH ₃ CN	Reflux	14	94	
14	2a	MeOH	Reflux	6	91	
15	2b	MeOH	Reflux	4	89	
16	2a	C ₆ H ₅ CH ₃	Reflux	2	92	
17	2b	C ₆ H ₅ CH ₃	Reflux	2	97	

^a Isolated yield. Compound 1 was isolated in good to excellent yields except for entries 1–4 and could be recycled.

^b 5-(N-Methyl-N-benzylamino)-4-chloropyridazin-3(2H)-one was obtained in 80% yield.

selectivity, and long reaction time. Therefore, we chose tetrahydrofuran as solvent for the α -cyanation of 1,3dicarbonyl compounds. Reaction of **2b** with β -diketone **3l** in tetrahydrofuran mediated by ZnCl₂ or NaH (entries 21 and 22, respectively) gave rise to deacetylated α -cyano ketone 41 in excellent yields. A similar deacetylation has been reported.¹⁵ On the other hand, deacetylation was not observed for 3m under identical conditions. Reaction of 3m with 2b (2 equiv) in the presence of ZnCl₂ or NaH (entries 23 and 24, respectively) gave the corresponding α, α -dicyano derivative **4m** in excellent yields, whereas the use of just 1 equiv of 2b under the same conditions afforded 4m in 46–48% yields. In contrast to the behavior of 2b, compound 2a was not capable of cyanating the carbon nucleophiles and yielded 5-substituted-pyridazin-3(2H)ones instead of 4l or 4m. Enhancement of the reactivity of cyano group at N-2 position for the cyanation of N-, S- or C-nucleophiles with 2 may be due to the chelation of 2 with zinc chloride (Fig. 1).

The different product selectivity between substrate **31** and **3m** may be due to the different tautomerization of two substrates under our condition. In order to occur an intermolecular pyridazinone-mediated deacylation like Katritzky's mechanism,¹⁵ the terminal acetyl group of **31** and **3m** must be present as a keto-form. Under our reaction system, the structure (I) of **31** may be more favorable than the structure (II), whereas the structure (IV) of **3m** may be more favorable than the structure (III) (Scheme 2).

3. Conclusion

In conclusion, 2-cyanopyridazin-3(2H)-ones such as **2a** and **2b** are novel and stable electrophilic cyanating agents. The methodology presented here, is an efficient, chemoselective, mild and/or eco-friendly procedure for cyanation of nitrogen, sulfur and carbon nucleophiles. The solvents

Table 3. Cyanation of the substrates (3) with 2a-b in water or THF

			R−Nu 3	2 H ₂ O or THF	R-Nu-Cl 4	Ν		
Entry	2	Subs	trate (3)	Temp (°C)	Solvent	Time (h)	4 (%) ^a
12	2a 2b	3b	NH ₂	15–17 15–17	H ₂ O H ₂ O	1.5 0.5	HN-CN	4b (91) 4b (92)
3 4	2a 2b	3с	NH ₂	15–17 15–17	H ₂ O H ₂ O	1.0 0.5	HN-CN	4c (89) 4c (93)
5 6	2a 2b	3d	NH ₂	15–17 15–17	H ₂ O H ₂ O	1.2 0.5	NHCN	4d (84) 4d (86)
7 8 9 10	2a 2b 2a 2b	3e 3f	n-Bu–NH ₂	15–17 15–17 15–17 15–17	$H_{2}O$ $H_{2}O$ $H_{2}O$ $H_{2}O$	1.0 0.8 0.8 0.8	n-Bu–NHCN	4e (82) 4e (80) 4f (88) 4f (98)
11 12	2a 2b	3g	SH	15–17 15–17	$\begin{array}{c} H_2O\\ H_2O\end{array}$	0.5 0.8	SCN	4g (82) 4g (78)
13 14	2a 2b	3h	SH N N	15–17 15–17	$\begin{array}{c} H_2O\\ H_2O\end{array}$	1.5 1.2		4h (85) 4h (81)
15 16	2a 2b	3i	NH ₂	15–17 15–17	H ₂ O H ₂ O	1.5 1.5		4i (78) ^b 4i (85) ^b
17 18	2a 2b	3j	SH	15–17 15–17	H ₂ O H ₂ O	1.0 2.1	SCN	4j (82) ^b 4j (85) ^b
19 20	2a 2b	3k		15–17 15–17	H ₂ O H ₂ O	1.2 2.0		4k (86) ^b 4k (85) ^b
21 22	2b 2b	31		Reflux 7–8	THF THF	24 9		41 (93) ^c 41 (94) ^d
23 24	2b 2b	3m	Ph	Reflux 7–8	THF THF	14 5		$\frac{4m (97)^{e}}{4m (95)^{f}}$

^a Isolated yield. Compound 1 was isolated in good to excellent yield except for entry 12 and could be recycled.
^b Using ZnCl₂ (30 mol%) as the catalyst.
^c Using ZnCl₂ (1 equiv).
^d Using NaH (60%, 1.2 equiv).
^e Reaction conditions: 2b (2 equiv), ZnCl₂ (1 equiv).
^f Reaction conditions: 2b (2 equiv), NaH (60%, 2.4 equiv).

Figure 1. Chleation of 2 with Zn(II).

Scheme 2.

also affect the reactivity and the selectivity of these systems. Our investigation of the reactions of these new compounds is continuing and the results will be reported in due course.

4. Experimental

4.1. General

Melting points were determined with a capillary apparatus and uncorrected. ¹H and ¹³C NMR spectra were recorded on a 300 MHz spectrometer with chemical shift values reported in units (ppm) relative to an internal standard (TMS). IR spectra were obtained on a IR spectrophotometer. Elemental analyses were performed with a Perkin Elmer 240C. Openbed chromatography was carried out on silica gel (70–230 mesh, Merck) using gravity flow. The column was packed as slurries with the elution solvent. 4,5-Dichloropyridazin-3(2H)-one (**1a**) and 4,5-dibromopyridazin-3(2H)-one (**1e**) were prepared by the literature method. ¹⁶ 4-Chloro-5substituted-pyridazin-3(2H)-ones **1b–d**, **1f** and **1g** were prepared from **1a** by the reported method. ¹⁷

4.2. Synthesis of 2-cyanopyridazin-3(2H)-ones 2

Triethylamine (0.6 mL, 4.36 mmol) was added slowly to a stirred solution of **1** (1.1 g, 4.36 mmol) in THF (40 mL) at room temperature. After stirring 5 min, cyanogen bromide (4.36 mmol) was added. The reaction mixture was stirred at room temperature until **1** disappeared. After evaporating the solvent under reduced pressure, the resulting residue was applied to the top of an open-bed silica gel column (3.0×5 cm). The column was eluted with methylene chloride. Fractions containing **2** were combined and evaporated under reduced pressure to give **2**.

4.2.1. 2-Cyano-4,5-dichloropyridazin-3(*2H*)**-one** (2a). Yield 92%. Mp 104–105 °C. $R_{\rm f}$ =0.56 (methylene chloride). IR (KBr) 3100, 3050, 2245, 1700, 1600, 1580, 1360, 1260, 1180, 1160, 960 cm⁻¹; ¹H NMR (CDCl₃): δ 8.00 (s, 1H) ppm; ¹³C NMR (CDCl₃) δ 104.9, 134.9, 138.3, 141.2, 154.4 ppm. Elemental analysis calcd for $C_5HCl_2N_3O$: C, 34.52; H, 0.58; N, 24.15; found: C, 34.77; H, 0.53; N, 24.07.

4.2.2. 2-Cyano-4-chloro-5-methoxypyridazin-3(*2H*)-one (**2b**). Yield 88%. Mp 105–106 °C. $R_{\rm f}$ =0.61 (methylene chloride). IR (KBr) 3100, 3030, 2980, 2250, 1690, 1600, 1460, 1400, 1300, 1260, 1120, 960 cm⁻¹; ¹H NMR (CDCl₃): δ 4.24 (s, 3H), 8.19 (s, 1H) ppm; ¹³C NMR (CDCl₃) δ 59.1, 105.6, 115.8, 133.8, 155.4, 156.9 ppm. Elemental analysis calcd for C₆H₄ClN₃O₂: C, 38.83; H, 2.17; N, 22.64; found: C, 38.87; H, 2.13; N, 23.46.

4.2.3. 2-Cyano-4-chloro-5-azidopyridazin-3(*2H*)-one (**2c**). Yield 85%. $R_{\rm f}$ =0.46 (methylene chloride). Mp 114–115 °C. $R_{\rm f}$ =0.67. IR (KBr) 3100, 3070, 2250, 2160, 2120, 1700, 1600, 1520, 1380, 1310, 1230, 1130, 1000, 860, 730, 700 cm⁻¹; ¹H NMR (CDCl₃): δ 7.74 (s, 1H) ppm; ¹³C NMR (CDCl₃) δ 105.2, 122.0, 136.3, 140.5, 155.1 ppm. Elemental analysis calcd for C₅HClN₆O: C, 30.55; H, 0.51; N, 42.76; found: C, 30.77; H, 0.53; N, 42.37.

4.2.4. 2-Cyano-4-chloro-5-phenoxypyridazin-3(*2H*)-one (**2d**). Yield 80%. $R_{\rm f}$ =0.42 (methylene chloride). Mp 115–116 °C. IR (KBr) 3070, 2250, 1720, 1620, 1590, 1540, 1490, 1380, 1280, 1220, 1150, 860, 820, 780, 730, 690 cm⁻¹; ¹H NMR (CDCl₃): δ 7.12–7.17 (m, 2H), 7.34–7.41 (m, 1H), 7.47–7.55 (m, 2H), 7.65 (s, 1H) ppm; ¹³C NMR (CDCl₃) δ 105.4, 118.8, 119.9, 127.2, 130.9, 135.3, 152.7, 153.7, 156.8 ppm. Elemental analysis calcd for C₁₁H₆ClN₃O₂: C, 53.35; H, 2.44; N, 16.97; found: C, 53.57; H, 2.33, N, 16.96.

4.2.5. 2-Cyano-4,5-dibromopyridazin-3(2*H***)-one (2e).** Yield 80%. $R_{\rm f}$ =0.62 (methylene chloride). Mp 84–85 °C. $R_{\rm f}$ =0.67. IR (KBr) 3080, 3040, 2950, 2260, 1680, 1590, 1510, 1280, 1220, 1110, 960, 860, 720 cm⁻¹; ¹H NMR (CDCl₃): δ 7.98 (s, 1H) ppm; ¹³C NMR (CDCl₃) δ 137.4, 138.2, 141.1, 142.4, 154.4 ppm. Elemental analysis calcd for C₅HBr₂N₃O: C, 21.53; H, 0.36; N, 15.07; found: C, 21.71; H, 0.33; N, 15.15.

4.2.6. 2-Cyano-4-chloro-5-(benzylmethylamino)pyridazin-3(2*H***)-one** (**2f**). Yield 83%. $R_f = 0.49$ (methylene chloride). Mp 105–106 °C. IR (KBr) 3050, 2980, 2950, 2260, 1690, 1625, 1560, 1500, 1460, 1420, 1360, 1310, 1260, 1240, 1200, 1140, 1100, 1060, 1030, 980, 900, 750, 730 cm⁻¹; ¹H NMR (DMSO-*d*₆): δ 3.18 (s, 3H), 4.87 (s, 2H), 7.30 (dd, 3H, J = 7.12 Hz, 7.39), 7.39 (dd, 2H, J = 7.43 Hz, 7.51), 8.27 (s, 1H) ppm; ¹³C NMR (DMSO-*d*₆) δ 41.1, 56.8, 104.6, 107.6, 127.4, 127.9, 129.1, 136.9, 138.9, 147.5, 156.8 ppm. Elemental analysis calcd for C₁₃H₁₁ClN₄O: C, 56.84; H, 4.04; N, 20.40; found: C, 56.87; H, 4.13; N, 20.51.

4.2.7. 2-Cyano-4-chloro-5-(phenethylsulfanyl)pyridazin-3(2H)-one (2g). Yield 85%. $R_f = 0.51$ (methylene chloride). Mp 141–143 °C. IR (KBr) 3080, 3000, 2950, 2270, 1700, 1590, 1500, 1460, 1440, 1380, 1310, 1290, 1230, 1120, 960, 860, 780, 740 cm⁻¹; ¹H NMR (CDCl₃): δ 3.07 (t, 2H, J = 7.34 Hz), 3.38 (t, 2H, J = 7.34 Hz), 7.20–7.37 (m, 5H), 7.64 (s, 1H) ppm; ¹³C NMR (CDCl₃) δ 33.5, 35.7, 127.6, 128.7, 129.0, 136.9, 137.6, 143.9, 145.2, 152.3, 159.2 ppm. Elemental analysis calcd for C₁₃H₁₀ClN₃OS: C, 53.52; H, 3.45; N, 14.40; found: C, 53.63; H, 3.42; N, 14.50.

4.3. Typical cyanation of nucleophiles in water

Nucleophiles (1.2 equiv) was added slowly to a stirred solution of **2** (200 mg, 1.05 mmol) in water (20 mL) at 15–17 °C. The reaction mixture was stirred at room temperature until **2** disappeared. The product was extracted with CH₂Cl₂ (30 mL×2). The organic layer was dried over anhydrous magnesium sulfate and then the solvent evaporated under reduced pressure, the resulting residue was applied to the top of an open-bed silica gel column (3.0×7 cm). The column was eluted with methylene chloride or methylene chloride: *n*-hexane=2:1 (v/v); methylene chloride/ether=10:1 (v/v). Fractions containing **4** were combined and evaporated under reduced pressure to give **4** in 78–98% yield.

4.4. Typical cyanation of 1,3-dicarbonyl compounds in presence of base or acid

NaH or ZnCl₂ (1.1 equiv) was added slowly to a stirred solution of active methylene (1.08 mmol) in dry-THF (20 mL) at 7–8 °C (for NaH) and at reflux temperature (for ZnCl₂). After stirring 5 min, **2** (200 mg, 1.08 mmol) was added. The reaction mixture was refluxed until carbanion or **2** disappeared. After evaporating the solvent under reduced pressure, the resulting residue was applied to the top of an open-bed silica gel column (3.0×10 cm). The column was eluted with methylene chloride: ether = 7:1 (v/v). Fractions containing **4I** or **4m** were combined and evaporated under reduced pressure to give **4I** or **4m** in 93–97% yield.

4.4.1. *N*-Cyano-*N*-methylbenzylamine (4a). Oil (colorless). $R_{\rm f}$ =0.70 (methylene chloride/*n*-hexane =2:1 (v/v)). IR (KBr) 3050, 2950, 2240, 1500, 1460, 1380, 1230, 1160, 1040, 740, 700 cm⁻¹. ¹H NMR (CDCl₃) δ 2.75 (s, 3H), 4.13 (s, 2H), 7.34 (m, 5H) ppm. ¹³C NMR (CDCl₃) δ 37.7, 57.1, 118.8, 128.3, 128.5, 128.8, 134.3 ppm. Elemental analysis calcd for C₉H₁₀N₂: C, 73.94; H, 6.89; N, 19.16; found C, 73.98; H, 6.84; N, 19.21.

4.4.2. *N*-**Cyanoaniline** (**4b**). Oil (colorless). R_f =0.43 (methylene chloride/ether = 10:1 (v/v)). IR (KBr) 3190, 3100, 3000, 2930, 2230, 1600, 1500, 1440, 1300, 1250, 750, 690, 490 cm⁻¹. ¹H NMR (CDCl₃) δ 6.19 (s, NH, D₂O exchangable), 6.99 (d, 2H, *J*=8.65 Hz), 7.05 (m, 1H), 7.31 (m, 2H) ppm. ¹³C NMR (CDCl₃) δ 111.7, 115.5, 123.5, 129.7, 137.4 ppm. Elemental analysis calcd for C₇H₆N₂: C, 71.17; H, 5.12; N, 23.71; found C, 71.21; H, 5.15; N, 23.73.

4.4.3. *N*-Cyanocyclohexylamine (4c). Oil (colorless). $R_f = 0.36$ (methylene chloride). IR (KBr) 3200, 2940, 2860, 2230, 1450, 1370, 1260, 1170, 1140, 950, 900 cm⁻¹. ¹H NMR (CDCl₃) δ 1.98–1.20 (m, 10H), 3.09 (m, 1H), 4.14 (s, NH, D₂O exchangable) ppm. ¹³C NMR (CDCl₃) δ 24.3, 25.1, 32.6, 54.4, 115.7 ppm. Elemental analysis calcd for $C_7H_{12}N_2$: C, 67.70; H, 9.74; N, 22.56; found C, 67.75; H, 9.75; N, 22.53.

4.4.4. *N*-Cyanobenzylamine (4d). Oil (colorless). R_f =0.32 (methylene chloride). IR (KBr) 3260, 3080, 3030, 2220, 1500, 1460, 1440, 1340, 1310, 1220, 1160, 750, 700 cm⁻¹. ¹H NMR (CDCl₃) δ 4.14 (d, 2H, *J*=5.57 Hz), 4.41 (bs, NH,

D₂O exchangable), 7.28–7.36 (m, 5H) ppm. ¹³C NMR (CDCl₃) δ 50.1, 116.3, 127.8, 128.4, 128.9, 136.3 ppm. Elemental analysis calcd for C₈H₈N₂: C, 72.70; H, 6.10; N, 21.20; found C, 72.81; H, 6.15; N, 21.19.

4.4.5. *N*-Cyano-*n*-butylamine (4e). Oil (colorless). $R_f = 0.48$ (methylene chloride). IR (KBr) 3220, 2970, 2950, 2880, 2220, 1460, 1380, 1360, 1170 cm⁻¹. ¹H NMR (CDCl₃) δ 0.92–1.00 (t, 3H, J=3.36 Hz), 1.34–1.47 (m, 2H), 1.62–1.73 (m, 2H), 2.16 (m, 2H), 3.92 (bs, NH, D₂O exchangable) ppm. ¹³C NMR (CDCl₃) δ 13.8, 20.2, 28.8, 44.4, 147.2 ppm. Elemental analysis calcd for C₅H₁₀N₂: C, 61.19; H, 10.27; N, 28.54; found C, 61.22; H, 10.28; N, 28.49.

4.4.6. (*R*)-*N*-Cyano-α-methylbenzylamine (4f). Oil (colorless). $R_{\rm f}$ =0.29 (methylene chloride). IR (KBr) 3210, 3000, 2920, 2230, 1500, 1460, 1380, 1210, 1160, 760, 700 cm⁻¹. ¹H NMR (CDCl₃) δ 1.53 (d, 3H, *J*=6.80 Hz), 4.31 (bs, NH, D₂O exchangable), 4.32–4.41 (m, 1H), 7.25–7.40 (m, 5H) ppm. ¹³C NMR (CDCl₃) δ 22.0, 55.6, 115.3, 126.2, 128.3, 128.9, 141.5 ppm. Elemental analysis calcd for C₉H₁₀N₂: C, 73.94; H, 6.89; N, 19.16; found C, 73.88; H, 6.91; N, 19.19.

4.4.7. 2-Phenylethyl thiocyanate (4g). Oil (colorless). $R_f = 0.50$ (methylene chloride). IR (KBr) 3080, 3050, 2950, 2880, 2180, 1610, 1500, 1460, 1330, 1290, 1240, 1080, 1040, 760, 710 cm⁻¹. ¹H NMR (CDCl₃) δ 3.11 (m, 2H), 3.16 (m, 2H), 7.21 (d, 2H, J = 7.00 Hz), 7.27 (dd, 1H, J = 7.50 Hz), 7.33 (dd, 2H, J = 7.00, 7.50 Hz) ppm. ¹³C NMR (CDCl₃) δ 34.0, 34.9, 110.8, 126.1, 127.5, 127.7, 136.5 ppm. Elemental analysis calcd for C₉H₉NS: C, 66.22; H, 5.56; N, 8.58; found C, 66.24; H, 5.60; N, 8.56.

4.4.8. 2-Thiocyanatopyrimidine (**4h**). Mp 112–113 °C (colorless). $R_{\rm f}$ =0.61 (methylene chloride). IR (KBr) 3100, 3000, 2180, 1570, 1390, 1280, 1180, 820, 770, 740, 700, 630 cm⁻¹. ¹H NMR (CDCl₃) δ 7.33 (dd, 1H, *J*=4.88 Hz), 8.72 (d, 2H, *J*=4.88 Hz) ppm. ¹³C NMR (CDCl₃) δ 107.3, 119.7, 158.9, 164.2 ppm. Elemental analysis calcd for C₅H₃N₃S: C, 43.78; H, 2.20; N, 30.64; found C, 43.91; H, 2.30; N, 29.99.

4.4.9. 4-Thiocyanatoaniline (4i). Mp 55–56 °C (colorless). R_f =0.23 (methylene chloride). IR (KBr) 3430, 3350, 3250, 3060, 2970, 2930, 2150, 1640, 1600, 1500, 1440, 1300, 1180, 1080, 820, 670, 520 cm⁻¹. ¹H NMR (CDCl₃) δ 3.97 (bs, NH₂, D₂O exchangeable), 6.64–6.68 (dd, 2H, *J*= 6.80 Hz), 7.32–7.36 (dd, 2H, *J*=6.86 Hz) ppm. ¹³C NMR (CDCl₃) δ 109.6, 112.3, 116.1, 134.4, 148.9 ppm. Elemental analysis calcd for C₇H₆N₂S: C, 55.97; H, 4.03; N, 18.65; found C, 56.01; H, 4.06; N, 18.56.

4.4.10. 4-Thiocyanatophenol (4j). Mp 62–63 °C (colorless). $R_{\rm f}$ =0.38 (Ethyl acetate/*n*-hexane=1:3 (v/v)). IR (KBr) 3400, 2960, 2890, 2180, 1620, 1600, 1500, 1440, 1370, 1280, 1240, 1180, 840 cm⁻¹. ¹H NMR (CDCl₃) δ 6.00 (bs, OH, D₂O exchangeable), 6.88 (dd, 2H, J= 6.50 Hz), 7.44 (dd, 2H, J=6.50 Hz) ppm. ¹³C NMR (CDCl₃) δ 112.1, 113.4, 117.5, 134.2, 158.0 ppm. Elemental analysis calcd for C₇H₅NOS: C, 55.61; H, 3.33; N, 9.26; found C, 55.68; H, 3.36; N, 9.20.

4.4.11. *N*-Cyano-4-hydroxyaniline (4k). Mp 218–219 °C (colorless). $R_f = 0.41$ (ethyl acetate/*n*-hexane = 1:2 (v/v)). IR (KBr) 3200, 2990, 2930, 2230, 1620, 1510, 1440, 1360, 1280, 1260, 1220, 1110, 810, 620, 500 cm⁻¹. ¹H NMR (DMSO- d_6) δ 6.77 (m, 4H), 9.17 (bs, NH, D₂O exchangable), 9.62 (bs, OH, D₂O exchangeable) ppm. ¹³C NMR (DMSO- d_6) δ 111.9, 115.1, 115.2, 128.8, 151.8 ppm. Elemental analysis calcd for C₇H₆N₂O: C, 62.68; H, 4.51; N, 20.88; found C, 62.60; H, 4.66; N, 20.90.

4.4.12. 2-Cyano-3,4-dihydro-1(2*H***)-naphthalenone (41). Mp 75–77 °C (colorless). R_f=0.76 (methylene chloride/** *n***-hexane=2:1 (v/v)). IR (KBr) 3070, 2950, 2880, 2250, 1700, 1600, 1460, 1440, 1360, 1310, 1230, 1200, 920, 750 cm⁻¹. ¹H NMR (CDCl₃) \delta 2.43–2.63 (m, 2H), 3.02–3.21 (m, 2H), 3.72–3.78 (dd, 1H,** *J***=4.60, 4.61 Hz), 7.34–7.40 (dd, 1H,** *J***=7.74, 7.44 Hz), 7.52–7.59 (m, 1H), 8.05–8.09 (dd, 1H,** *J***=7.86, 7.89 Hz) ppm. ¹³C NMR (CDCl₃) \delta 27.7, 27.8, 40.8, 116.7, 127.5, 128.4, 129.0, 130.5, 134.8, 142.9, 187.8 ppm. Elemental analysis calcd for C₁₁H₉NO: C, 77.17; H, 5.30; N, 8.18; found C, 77.22; H, 5.32; N, 8.09.**

4.4.13. 2,2-Dicyano-1-benzoylacetone (4m). Mp 68–69 °C (colorless). $R_{\rm f}$ =0.42 (methylene chloride). IR (KBr) 3070, 2930, 2220, 1735, 1690, 1600, 1550, 1440, 1400, 1360, 1290, 1180, 1020, 990, 860 cm⁻¹. ¹H NMR (CDCl₃) δ 2.54 (s, 3H), 7.48–7.54 (m, 2H), 7.59–7.65 (m, 1H), 8.01–8.05 (m, 2H) ppm. ¹³C NMR (CDCl₃) δ 25.6, 88.2, 117.7, 128.6, 128.7, 128.8, 133.1, 133.8, 190.0, 200.2 ppm. Elemental analysis calcd for C₁₂H₈N₂O₂: C, 67.92; H, 3.80; N, 13.20; found C, 67.88; H, 3.78; N, 13.16.

Acknowledgements

This work was supported by a grant from the Korea Science and Engineering Foundation (KOSEF) to the Environmental Biotechnology National Core Research Center (grant #: R15-2003-012-02001-0).

References and notes

- Gilman, A. G.; Goodman, L. S.; Rall, T. W.; Murad, F. Goodman and Gilman's the pharmacological basis of therapeutics, 7th ed.; Pergamon: New York, 1990; p 899.
- Hu, L. Y.; Guo, J.; Mager, S. S.; Fischer, J. B.; Burke-Howie, K. J.; Durant, G. J. *J. Med. Chem.* **1997**, *40*, 4281–4289.
- 3. Kahne, D.; Collum, D. B. Tetrahedron Lett. 1981, 22, 5011–5014.
- Miyashita, A.; Nakasaki, I.; Kawano, A.; Suzuki, Y.; Iwamoto, K.-I.; Higashino, T. *Heterocycles* 1997, 45, 745–755.
- 5. Davis, W. A.; Cava, M. P. J. Org. Chem. 1983, 48, 2774-2775.
- 6. Wheland, R. C.; Martin, E. L. J. Org. Chem. 1975, 40, 3101-3109.
- 7. Hughes, T. V.; Cava, M. P. J. Org. Chem. 1999, 64, 313-315.
- Hughes, T. V.; Hammond, S. D.; Cava, M. P. J. Org. Chem. 1998, 63, 401–402.
- Wu, Y.-Q.; Limburg, D. C.; Wilkinson, D. E.; Hamilton, G. S. Org. Lett. 2000, 2, 795–797.
- Kim, S. K.; Cho, S. D.; Kweon, D. H.; Yoon, Y. J.; Kim, J. H.; Heo, J. N. J. Heterocycl. Chem. 1997, 34, 209–214.
- 11. Kang, Y. J.; Chung, H. A.; Kim, J. J.; Yoon, Y. J. Synthesis 2002, 733–738.
- Kim, J. J.; Park, Y. D.; Lee, W. S.; Cho, S. D.; Yoon, Y. J. Synthesis 2003, 1517–1520.
- Park, Y. D.; Kim, H. K.; Kim, J. J.; Cho, S. D.; Kim, S. K.; Shiro, M.; Yoon, Y. J. J. Org. Chem. 2003, 68, 9113–9115.
- Kim, J. J.; Park, Y. D.; Kweon, D. H.; Kang, Y. J.; Kim, H. K.; Lee, S. G.; Cho, S. D.; Lee, W. S.; Yoon, Y. J. Bull. Korean Chem. Soc. 2004, 25, 501–505.
- Katritzky, A. R.; Wang, Z.; Wang, M.; Wilkerson, C. R.; Hall, C. D.; Akhmedov, N. G. J. Org. Chem. 2004, 69(20), 6617–6622.
- 16. Dury, K. Angew. Chem., Int. Ed. Engl. 1965, 4, 292-300.
- Chung, H.-A.; Kweon, D. H.; Kang, Y. J.; Park, J. W.; Yoon, Y. J. J. Heterocycl. Chem. 1999, 36, 905–910.