Synthesis of Cyclic Peptides by Ring-Closing Metathesis

John F. Reichwein,[†] Cornelis Versluis,[‡] and Rob M. J. Liskamp^{*,†}

Department of Medicinal Chemistry, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands, and Department of Biomolecular Mass Spectrometry, Bijvoet Center for Biomolecular Research, Utrecht University

r.m.j.liskamp@pharm.uu.nl

Received May 18, 2000

The synthesis of a series of "amide to amide" cyclized peptides by ring-closing metathesis (RCM) as well as a convenient synthesis for the linear precursors is described. In addition, the influence of the length of the alkene substituents and the influence of the peptide sequence is investigated, leading to a set of general rules to obtain "amide to amide" cyclized peptides by RCM.

Introduction

Cyclization of peptides is an appropriate way to reduce the flexibility of a peptide and—among others—to increase the affinity toward a receptor.¹ Methods for cyclization can be divided into cyclizations involving C and N termini,² the so-called "backbone to backbone" cyclization,³ and methods involving the side chains of individual amino acids.² Examples of the latter method include the formation of disulfide bridges between cysteine residues and the formation of lactam bridges between glutamic/ aspartic acid and lysine residues.

Scheme 1

In our approach denoted as "amide to amide" cyclization, we wanted to use *N*-substituted amides in such a way that we could perform cyclization by ring-closing metathesis (RCM).⁴ Several cyclic peptides by RCM were reported⁵ but so far only one cyclic peptide **3** involving *N*-substituted amino acids was prepared from **1** using Grubbs ruthenium catalyst **2** (Scheme 1).⁶ Recently, we

[‡] Bijvoet Center for Biomolecular Research.

synthesized a number of cyclic dipeptides derived from the cyclization of amide substituents in bis-*N*-alkylated dipeptides⁷ (Scheme 1) as well as a number of cyclic Leu-Enkephalin derivatives originating from the cyclization of bis amide substituted peptides in a rolling loop scan.⁸

^{*}To whom correspondence should be addressed. Fax: (± 31) 30-2536655.

[†] Utrecht Institute for Pharmaceutical Sciences.

⁽¹⁾ See e.g. Adang, A. E. P.; Hermkens, P. H. H.; Linders, J. T. M.; Ottenheijm, H. C. J.; van Staveren, C. J. *Recl. Trav. Chim. Pays-Bas* **1994**, *113*, 63–78.

⁽²⁾ See, for example, Hruby, V. J.; Al-Obeidi, F.; Kazmierski, W. *Biochem. J.* **1990**, *268*, 249–262.

⁽³⁾ See, for example, Gilon, C.; Halle, D.; Chorev, M.; Selinger, Z.; Byk, G. *Biopolymers* **1991**, *31*, 745–750.

⁽⁴⁾ For recent reviews, see Grubbs, R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res. **1995**, 28, 446–452. Schmalz, H.-G. Angew. Chem., Int. Ed. Engl. **1995**, 34, 1833–1836. Schuster, M.; Blechert, S. Angew. Chem., Int. Ed. Engl. **1997**, 36, 2036–2056. Grubbs, R. H.; Chang, S. Tetrahedron **1998**, 54, 4413–4450. Armstrong, S. K. J. Chem. Soc., Perkin Trans. 1 **1998**, 371–388.

⁽⁵⁾ Piscopio, A. D.; Miller, J. F.; Koch, K. Tetrahedron Lett. 1998, 39, 2667–2670. Piscopio, A. D.; Miller, J. F.; Koch, K. Tetrahedron Lett. 1997, 38, 7143–7146. Piscopio, A. D.; Miller, J. F.; Koch, K. Tetrahedron 1999, 55, 8189–8198. Jarvo, E. R.; Copeland, G. T.; Papaioannou, N.; Bonitatebus, P. J., Jr.; Miller, S. J. J. Am. Chem. Soc. 1999, 121, 11638–11643. Pernerstorfer, J.; Schuster, M.; Blechert, S. Chem. Commun. 1997, 1949–1950. Fink, B. E.; Kym, P. R.; Katzenellenbogen, J. A. J. Am. Chem. Soc. 1998, 120, 4334–4344. Ripka, A. S.; Bohacek, R. S.; Rich, D. H. Bioorg., & Med. Chem. Lett. 1998, 8, 357–360. Grubbs, R. H.; Blackwell H. E. Angew. Chem., Int. Engl. 1998, 37, 3281–3284. Clark, T. D.; Ghadiri, M. R. J. Am. Chem. Soc. 1995, 117, 12364–12365.

⁽⁶⁾ Miller, S. J.; Blackwell, H. E.; Grubbs, R. H. J. Am. Chem. Soc. 1996, 118, 9606–9614. Miller, S. J.; Grubbs, R. H. J. Am. Chem. Soc. 1995, 117, 5855–5856.

⁽⁷⁾ Reichwein, J. F.; Liskamp, R. M. J. Eur. J. Org. Chem. 2000, 65, 2335-2344.

Scheme 3

We were interested to investigate the preparation of larger cyclic peptides. One of the restrictions found so far was the synthesis of the appropriate starting building blocks (*N*-substituted amino acids) for synthesis of bis-*N*-alkene peptides. The previously required relatively simple bis-*N*-alkylated dipeptides were prepared by different methods. However, a few peptides were prepared according to our earlier method for site-specific alkylation, 9 which enabled the introduction of a substituent onto every desired peptide bond nitrogen.

In this procedure the Fmoc group of the first amino acid was removed and replaced by an *o*-nitrobenzene sulfonyl (*o*NBS) group, which increases the acidity of the N–H proton enough for a Mitsunobu reaction using an

⁽⁸⁾ Reichwein, J. F.; Wels, B.; Kruijtzer, J. A. W.; Versluis, C.; Liskamp, R. M. J. Angew. Chem., Int. Ed. **1999**, *38*, 3684–3687.

⁽⁹⁾ Reichwein, J. F.; Liskamp, R. M. J. Tetrahedron Lett. 1998, 39, 1243–1246.

Synthesis of Cyclic Peptides

appropriate unsaturated alcohol for introduction of the alkene substituent. After removal of the *o*NBS group by application of a thiolate, peptide synthesis was continued until the site for introduction of the required second alkene side chain was reached, which was carried out as just described. All cyclization precursors used for these studies could be prepared according to this general and versatile protocol (Scheme 2).⁹ RCM was carried out after cleavage of the bis-*N*-alkylated peptides from the resin, leading to the cyclized peptide.¹⁰

Results and Discussion

Tri- up to hexapeptides containing *N*-allyl substituents $4\mathbf{a} - \mathbf{d}$ both on the first and last amide bond were prepared. A proline residue was incorporated in order to favor ring closure by facilitating rotation (of the peptide bond) within the peptide backbone. Unfortunately, all attempts to cyclize these compounds using the Grubbs ruthenium catalyst **2** failed (Scheme 3). Despite the presence of a proline residue, it is likely that these peptides cannot adopt the proper conformation for ring-closure. The only products obtained were either isomers, in which the double bond had migrated one carbon atom,¹¹ or dimers.

Increasing the distance between the *N*-allyl groups by the introduction of even more amino acids between them did not lead to any ring-closure product by RCM. The only parameter which still could be varied was the length of the alkenyl substituent. For this purpose one carbon atom homologation to a homoallyl group was chosen and synthesized. Remarkably, after subjection to RCM conditions the corresponding peptides 6a-d all underwent ring closure in moderate to very good yields affording 7a-d (Scheme 4). Apparently, the length of the alkene chain has a tremendous effect on formation of the ring, which cannot be fully explained by the increased ring size (compare Schemes 3 and 4). However, the increase in length will allow the existence of more conformations that have the proper geometry for ring closure. The ¹H and ¹³C NMR spectra showed the presence of many (seven for **7d**) conformers which originated from mixtures of Eand Z isomers and from rotations around the tertiary amide bonds.

Thus, it seemed that the length of the alkene substituents was crucial for ring closure. Therefore, at this point it was important to investigate if the originally introduced proline was still required for cyclization to occur. To study this, proline was replaced by valine. It was suspected that this change in the backbone would have a significant effect on the ring-closure results. The number of rotamers is reduced as is clear from the ¹H and ¹³C NMR spectra which show sharper and more defined signals. The absence of proline is reflected in the lower yields of cyclized peptides **9a,b** obtained from the smaller peptides **8a,b**. Not quite unexpectedly, the larger peptides **8c,d** gave comparable results (Scheme 5) as the corresponding peptides **6c,d** containing proline (Scheme 4), showing that in larger sequences proline is no longer required for a "cis" like backbone conformation which is favorable for cyclization.

Although tripeptide **8a** could not be cyclized, we were interested in cyclic structures based on tripeptides without a proline residue. We reasoned that the only way this could be achieved is by further elongation of the *N*-alkene substituents. Therefore an analogue of **8a** was synthesized, i.e., **10** containing 4-pentenyl substituents instead of the homoallyl group. This tripeptide **10** was ring-closed to **11** in a very good yield of **83**% (Scheme 6). However, ¹H and ¹³C NMR spectra revealed the presence of several conformers.

As was clearly demonstrated above, the length of the two alkene substituents was important for the success of the ring closure. So far only peptides were used having two *N*-alkene substituents of equal length, and it was interesting to investigate if also alkene substituents of unequal length could be employed. In addition, peptides con-

Scheme 7

Scheme 8

taining, for example, a homoallyl and an allyl substituent as in **12**, will lead to "identical size mimetics" of head to tail cyclic peptides. Fortunately, peptides **12** could be ring-closed, albeit in low yields, to obtain **13** (Scheme 7).

The role of proline with respect to successfully obtaining cyclic peptides has been discussed above. Another way to preorganize the backbone toward a cyclic structure is the introduction of a D-amino acid which will supposedly induce a β -turn like structure. 12 The presence of D-amino acids, is also an essential requirement for the cyclization of small peptides.¹³ The effect of the presence of a D-amino acid was investigated in peptides 14. These were subjected to RCM using 2 and the all-L peptide barely gave ring closure except for the tetra- and pentapeptide. In contradistinction the peptides containing a D-amino acid all gave the cyclic peptides in moderate to high yields (Scheme 8). It is noteworthy to mention that the cyclic tetrapeptide 15d consisted of only one conformation according to ¹H, ¹³C, and NOESY NMR spectra. It is possible that the formation of 15c was accomplished by racemization because this peptide is identical to 15d as judged by its NMR spectra and retention time on HPLC.

Conclusion

Based on the above-described results, "rules" for cyclization of bis *N*-alkylated peptides by RCM can be inferred (Figure 1). Cyclic dipeptides—involving two amide bonds can be obtained starting from bis *N*-allyl (or longer) alkene substituents. Cyclic tripeptides—involving three amide bonds—can be obtained starting from bis *N*-4-pentenyl (or longer) alkene substituents. Cyclic tetra-, penta-, and hexapeptides—involving four, five, or six amide bonds, respectively—can be obtained starting from bis *N*-ho-moallyl (or longer) alkene substituents. Introduction of either a proline residue or one D-amino acid residue as part of the ring increases the yield of the cyclization.

four, five or more amide bonds: bis N-homoallyl

Figure 1.

In conclusion, we have prepared a variety of cyclic peptides employing ring-closing metathesis. The results

⁽¹⁰⁾ Although RCM can be carried out on the solid phase, so far higher yields were obtained if RCM was carried out in solution: see ref 7.

⁽¹¹⁾ Based on the presence of the ω -CH₃ signals at 1.8 ppm in ¹H NMR spectra; see also ref 7.

were used to define a set of rules with respect to the length of the alkene substituents which have to be obeyed for ring closure to take place. We have demonstrated that the length of the alkene substituent has a tremendous influence on the cyclization results. Incorporation of proline-facilitated ring closure probably due to the presence of a "cis" rotamer. A β -turn structure favored by introduction of a D-amino acid residue also led to a large increase of the ring closure yield.

Experimental Section

General. Unless otherwise stated, chemicals were obtained from commercial sources and used without further purification. TEA¹⁴ and DiPEA were distilled subsequently from ninhydrin and KOH. 2,4,6-Collidine was distilled from CaH₂. "Dry solvents" were obtained as peptide grade solvents from Biosolve and stored on molecular sieves (4 Å). THF was distilled from LiAlH₄. Reactions were run at ambient temperature unless stated otherwise. ¹H NMR spectra were also recorded using the COSY sequence. ¹³C spectra were recorded using the attached proton test (APT) sequence. R_f values were determined by thin-layer chromatography (TLC) on Merck precoated silica gel 60F-254 (0.25 mm) plates. Spots were visualized with I_2 , UV light, or Cl_2 -TDM (N,N,N,N-tetramethyl-4,4'-diaminodiphenylmethane).¹⁵ Solvents were evaporated under reduced pressure at 40 °C. Column chromatography was performed on silica 60. Analytical and preparative HPLC was performed on a automated HPLC system with an auto sampler and a UV-vis detector with either an analytical or preparative reverse-phase column (Alltech Adsorbosphere C8, 5 μ m, 250 imes 4.6 mm; Alltech Adsorbosphere C8, 10 μ m, 250 imes 22 mm, resectively), or a UV detector operating at 254 and 220 nm, at a flow of 1 mL/min (11.5 mL/min for preparative HPLC). Elution was effected using a gradient from 0.1% TFA in water to 0.085% TFA in acetonitrile/water (95/5, v/v) in 20 min. All solid-phase reactions were run under a nitrogen atmosphere with dry peptide-grade solvents.

For the synthesis of Fmoc-(Nall)Gly-OH, see ref 7.

Typical Procedure for RCM. A 10 mM solution of the linear peptide in TCE was purged with nitrogen for 15 min, followed by the addition of 10 mol % of $Cl_2(PCy_3)_2Ru=CHPh$ **2** and refluxed for 16 h under a nitrogen atmosphere. After concentrating in vacuo, the crude cyclic peptide was obtained and was purified by column chromatography.

Boc-(Nall)Gly-Pro-(Nall)Gly-OMe 4a was prepared as described for **4d** (vide infra). Crude **4a** was purified by chromatography (2.5% MeOH/DCM) and obtained as a colorless oil (0.187 mmol 79 mg) in 75% yield. R_f 0.43 (10% MeOH/DCM). The purity according to HPLC was 98%. ¹H NMR (CDCl₃): δ 1.40 (s, 9H, CH₃ Boc), 1.94–2.13 (m, 4H, $^{\beta}$ CH₂ and $^{\nu}$ CH₂ Pro), 3.42–4.28 (m, 9H, CH₂ Nall, Gly and $^{\delta}$ CH₂ Pro), 3.67 and 3.71 (two s, 3H, OCH₃), 4.43, 4.49, 4.86, and 4.92 (four lines, 1H, CH₂ Gly), 4.51–4.55 and 4.81–4.84 (m, 1H, $^{\alpha}$ CH Pro), 5.05–5.31 (m, 4H, =CH₂), 5.67–5.91 (m, 2H, =CH). ¹³C NMR (CDCl₃): δ 21.9, 24.6, 25.0, 28.7, 29.1, and 31.5 ($^{\beta}$ -CH₂ and $^{\nu}$ CH₂ Pro), 28.1 (CH₃ Boc), 46.3, 46.4, 46.9, 47.2, 47.5, 47.7, 47.9, 48.8, 49.8, 49.9, 50.1, 50.9, and 51.4 (CH₂), 51.9, 52.1, and 52.2 (OCH₃), 56.2, 56.5, and 56.8 ($^{\alpha}$ CH Pro), 79.8

and 80.0 (C Boc), 116.3, 116.4, 117.1, 117.9, and 118.3 (=CH₂), 132.1, 132.3, 132.6, 133.6, and 134.0 (=CH), 155.4 and 155.9 (CO Boc), 167.5, 167.6, 169.4, 169.9, 170.6, 172.6, 172.7, and 173.4 (CO). MS-MS (FAB) m/z: 869 [2M + Na]⁺, 847 [2M + H]⁺, 446 [M + Na]⁺, 424 [M + H]⁺, 368 [M - tBu + H]⁺, 324 [M - Boc + H]⁺, 227 [(H-Pro-(*N*all)Gly-OMe) + H]⁺.

Boc-(Nall)Gly-Pro-Phe-(Nall)Gly-OMe 4b was prepared as described for 4d (vide infra). Crude 4b was purified by chromatography (2.5% MeOH/DCM) and obtained as a colorless oil (0.198 mmol, 113 mg) in 88% yield. Rf 0.53 (10% MeOH/ DCM). The purity according to HPLC was 95%. ¹H NMR (CDCl₃): δ 1.42 (s, 9H, CH₃ Boc), 1.78–2.16 (m, 4H, β CH₂ and ^{*y*}CH₂ Pro), 2.86–3.13 (m, 2H, ^{*β*}CH₂ Phe), 3.33 (br m, 1H, ^{*δ*}CH₂ Pro) 3.52–4.15 (m, 9H, CH₂ (Nall)Gly 8H and $^{\delta}$ CH₂ Pro 1H), 3.68 (s, 3H, OCH₃), 4.48 (br m, 1H, ^αCH Pro), 4.80–5.12 (m, 5H, =CH₂ and ^αCH Phe), 5.56–5.82 (m, 2H, =CH), 7.16–7.22 (m, 5H, ArH), 7.35–7.39 (m, 1H, NH). $^{13}\mathrm{C}$ NMR (CDCl_3): δ 24.8 and 27.3 (^βCH₂ and ^γCH₂ Pro), 38.9 (^βCH₂ Phe), 46.3, 47.1, 48.0, 50.6 and 51.1 (CH₂), 28.3 (CH₃ Boc), 50.1, 50.4, 52.0, 52.4, and 60.0 (^aCH and OCH₃), 80.2 (C Boc), 116.4, 118.2, and 118.5 (=CH₂), 126.7, 128.0.2, 128.5, 129.5, and 129.7 (CH Ar), 132.3 and 134.0 (=CH), 136.6 (C Ar), 155.9 (CO Boc), 168.9, 169.4, 170.5, 170.7, 171.5, and 171.8 (CO). MS-MS (FAB) m/z: 1163 $[2M + Na]^+$, 1141 $[2M + H]^+$, 593 $[M + Na]^+$, 571 $[M + H]^+$, 471 [M - Boc + H]⁺, 442 [(Boc-(Nall)Gly-Pro-Phe) + H]⁺, 374 [(H-Pro-Phe-(Nall)Gly-OMe) + H]⁺, 295 [(Boc-(Nall)Gly-Pro) + H]⁺, 277 [(H-Phe-(Nall)Gly-OMe) + H]⁺, 130 [(H-(Nall)Gly- $OMe) + H]^{+}$

Boc-(Nall)Gly-Leu-Pro-Phe-(Nall)Gly-OMe 4c was prepared as described for 4d (vide infra). Crude 4c was purified by chromatography (2.5% MeOH/DCM) and obtained as a colorless oil (0.204 mmol, 140 mg) in 91% yield. R_f 0.60 (10% MeOH/DCM). The purity according to HPLC was 93%. ¹H NMR (CDCl₃): δ 0.90–0.96 (m, 6H, CH₃ Leu), 1.31–1.49 (m, 2H ^βCH₂ Leu), 1.43 (s, 9H, CH₃ Boc), 1.63–1.66 (m, 1H, ^γCH Leu), 1.91–2.16 (m, 4H, $^{\beta}CH_2$ and $^{\gamma}CH_2$ Pro), 2.86–3.13 (m, 2H, ^βCH₂ Phe), 3.46–3.47 (m, H, ^δCH₂ Pro), 3.60–4.11 (m, 9H, CH2 (Nall)Gly 8H and ⁶CH2 Pro 1H), 3.66 and 3.68 (s, 3H, OCH₃), 4.46–4.48 (m, 1H, ^aCH Pro), 4.78–4.83 (m, 1.25H, ^aCH Leu and Phe 0.25H), 4.99–5.14 (m, 4.75H, =CH₂ and ^aCH Phe 0.75 H), 5.46-5.78 (m, 2H, =CH), 6.60 (m, 1H, NH Leu), 7.17 7.27 (m, 6H, ArH and NH Phe). ¹³C NMR (CDCl₃): δ 21.7, 23.4, and 24.7 (^yCH and CH₃ Leu), 24.9, 27.7, 27.8, 39.1, 41.9, 47.0, 47.1, 47.9, 49.6, 50.2, and 51.1 CH₂), 28.2 (CH₃ Boc), 48.7, 50.2, 50.6, 52.0, 52.4, 59.8, and 59.9 (°CH and OCH3), 80.8 (C Boc), 118.3 and 118.5 (=CH₂), 126.9, 126.9, 128.4, 129.4, and 129.6 (CH Ar), 132.1, 132.2 and 133.0 (=CH), 136.2 and 136.4 (C Ar), 155 (CO Boc), 169.2, 169.3, 169.5, 170.4, 170.5, 171.6, 171.8, and 172.1 (CO). MS-MS (FAB) m/z. 706 [M + Na]⁺, 684 [M + H]⁺, 584 [M - Boc + H]⁺, 374 [(H-Pro-Phe-(Nall)-Gly-OMe) + H]+, 130 [(H-(Nall)Gly-OMe) + H]+, 555.3 [(Boc-(Nall)Gly-Leu-Pro-Phe) + H]⁺

Boc-(Nall)Gly-Leu-Pro-Ala-Phe-(Nall)Gly-OMe 4d. Fmoc-(Nall)Gly-OH was coupled to TentaGel-OH according to the method of Sieber.¹⁶ The Fmoc group was removed from Fmoc-(Nall)Gly-O-TentaGel (0.224 mmol, 995 mg) by treatment with 20% piperidine in NMP for 30 min, followed by washings with NMP $(3\times)$ and DCM $(3\times)$. The resulting amine was treated with Boc-Phe-OH (0.896 mmol, 237 mg), PyBroP (0.896 mmol, 418 mg), and DiPEA (1.79 mmol, 312 μ L) in NMP for 1 h, followed by washings with NMP $(3 \times)$ and DCM $(3 \times)$. Removal of the Boc-group was achieved by treatment (twice) with 4 N HCl in Dioxane for 15 min, followed by washings with DCM $(6\times)$. The hydrochloride salt was treated with Fmoc-Ala-OH (0.896 mmol, 295 mg), HATU (0.896 mmol, 340 mg), and DiPEA (1.79 mmol, 312 μ L) in NMP for 1 h, followed by washings with NMP ($3\times$) and DCM ($3\times$). The Fmoc group was removed by treatment with 20% piperidine in NMP for 30 min, followed by washings with NMP $(3\times)$ and DCM $(3\times)$. This procedure was repeated for the introduction of the proline, leucine and N-allyl-glycine residues. Treatment of the resin with a catalytic amount of NaCN in MeOH for 16 h afforded

⁽¹²⁾ See, for example, Kessler, H.; Gratias, R.; Gurrath, M.; Muller. Pure Appl. Chem. **1996**, 68, 1201–1205.

⁽¹³⁾ See, for example, Schmidt, U.; Langner, J. J. Pept. Res. 1997, 49, 67-73.

⁽¹⁴⁾ Abbreviations used: (*N*all)Aaa: *N*-allyl amino acid; all: allyl; (*M*hal)Aaa: *N*-homoallyl amino acid; hal: homo allyl; (*N*pen)Aaa: *N*-4pentenyl amino acid; pen: 4-pentenyl; DCE: 1,2-dichloroethane; TCE: 1,1,2-trichloroethane; DCM: dichloromethane; DMF: *N*,*N*-dimethylformamide; PyBroP, bromotripyrrolidinophosphonium hexafluorophosphate; BOP, (1*H*-benzotriazol-1-yloxy)tris(dimethyl)phosphonium hexafluorophosphate; HOAt, 1-hydroxy-7-azabenzotriazole; HATU, *O*-(7azabenzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate; TEA: triethylamine; DIPEA: *N*,*N*-diisopropylethylamine: DEAD: diethyl azodicarboxylate; DIAD: diisopropyl azodicarboxylate; NMP: 1-methyl-2-pyrrolidinone.

⁽¹⁵⁾ von Arx, E.; Faupel, M.; Bruggen, M. *J. Chromatogr.* **1976**, *120*, 224

crude 4d. Column chromatography (gradient: 2.5% MeOH/ DCM to 5% MeOH/DCM) afforded 4d (0.218 mmol, 165 mg) as a colorless oil in 97% yield. $R_f 0.61$ (10% MeOH/DCM). The purity according to HPLC was 96%. ¹H NMR (CDCl₃): δ 0.92– 0.98 (m, 6H, CH₃ Leu), 1.25-1.28 (m, 3H, CH₃ Ala), 1.46 (s, 9H, CH₃ Boc), 1.46-1.51 (m, 1H, ^yCH Leu), 1.53-1.65 (m, 2H $^{\beta}$ CH₂ Leu), 1.87–2.31 (m, 4H, $^{\beta}$ CH₂ and $^{\gamma}$ CH₂ Pro), 2.92–3.15 (m, 2H, ^βCH₂ Phe), 3.51-3.58 (m, 1H, ^δCH₂ Pro), 3.65-4.16 (m, 9H, CH₂ (Nall)Gly 8H and $^{\delta}$ CH₂ Pro 1H), 3.71 and 3.72 (s, 3H, OCH₃), 4.30-4.35 (m, 1H, ^aCH Ala), 4.46-4.50 (m, 1H, ^aCH Pro), 4.81-4.86 (m, 1.20H, ^aCH Leu and Phe 0.20H), 5.04–5.18 (m, 4.8H, =CH₂ and ^aCH Phe 0.8 H), 5.53–5.79 (m, 2H, =CH), 6.74-6.77 (m, 2H, NH Leu and Phe), 7.08 (m, 1H, NH Phe), 7.16–7.30 (m, 5H, ArH). ¹³C NMR (CDCl₃): δ 17.9, 21.8, 23.3, and 24.7 ($^{\gamma}$ CH and CH₃), 28.3 (CH₃ Boc), 25.1, 27.6, 39.1, 41.9, 47.1, 47.3, 48.1, 49.6, 50.1, and 51.2 (CH₂), 48.9, 50.1, 50.5, 52.1, 52.5, and 59.8 (^aCH and OCH₃), 80.7 (C Boc), 118.4 and 118.5 (=CH2), 126.9, 128.4, 129.4, and 129.6 (CH Ar), 132.1 and 133.1 (=CH), 136.1 and 136.4 (C Ar), 169.2, 169.5, 170.9, 171.4, 171.6, 171.9, and 172.3 (CO). MS-MS (FAB) m/z: 1532 $[2M + Na]^+$, 777 $[M + Na]^+$, 755 $[M + H]^+$, 655 [M Boc + H]⁺, 558 [(H-Leu-Pro-Ala-Phe-(Nall)Gly-OMe) + H]⁺ 445 [(H-Pro-Ala-Phe-(Nall)Gly-OMe) + H]⁺, 277 [(H-Phe- $(Nall)Gly-OMe) + H]^+$, 130 $[(H-(Nall)Gly-OMe) + H]^+$, 626 [(Boc-(Nall)Gly-Leu-Pro-Ala-Phe-H) + H]+, 379 [(Boc-(Nall)-Gly-Leu-Pro-Ala-H) + H]⁺, 408 [(Boc-(Nall)Gly-Leu-Pro-H) + H]+

Ac-(Mhal)Gly-Pro-(Mhal)Gly-OMe 6a was prepared as described for 6d (vide infra). Crude 6a was purified by chromatography (gradient: 2.5% MeOH/DCM to 10% MeOH/ DCM) and obtained as a colorless oil (108 μ mol, 41 mg) in 46% yield. R_f 0.60 (10% MeOH/DCM). ¹H NMR (CDCl₃): δ 1.95– 2.07 (m, 4H, β CH₂ and γ CH₂ Pro), 2.14 and 2.16 (s, 3H, CH₃ Ac), 2.18–2.47 (m, 4H, ^βCH₂ hal), 3.36–3.75 (m, 7H, ^αCH₂ hal) $^{\delta}CH_2$ Pro and $^{\alpha}CH_2$ Gly 1H), 3.70 (s, 3H, OCH_3), 3.71–4.05 (m, 2H, CH₂ Gly), 4.50-4.58 (m, 1.5H, CH₂ Gly 1H and ^αCH Pro 0.8H), 4.89-5.14 (m, 4.5H, =CH₂ and α CH Pro 0.2H), 5.70-5.82 (m, 1H, =CH). ¹³C NMR (CDCl₃): δ 21.0 (CH₃ Ac), 24.7, 25.1, 28.8, 29.3, 31.8, 32.7, 33.0, 46.4, 46.6, 46.8, 47.3, 48.1, 48.2, 48.3, 48.7, 49.1, 49.5, 50.3, and 51.1 (CH₂), 52.0, 52.3, 56.3, and 56.6 (^aCH Pro and OCH₃), 116.8, 117.6, and 117.7 (=CH₂), 134.2, 134.5, and 135.2 (=CH), 167.0, 171.1, and 172.7 (CO). MS (ESI) m/z: 416 [M + Na]⁺

Ac-(Mhal)Gly-Pro-Phe-(Mhal)Gly-OMe 6b was prepared as described for **6d** (vide infra). Crude **6b** was purified by chromatography (gradient: 2.5% MeOH/DCM to 5% MeOH/DCM) and obtained as a colorless oil (78 μ mol, 41 mg) in 33% yield. R_f 0.55 (10% MeOH/DCM). ¹H NMR (CDCl₃): δ 1.68–2.12 (m, 4H, β CH₂ and γ CH₂ Pro), 2.14 and 2.17 (s, 3H, CH₃ Ac), 2.20–2.35 (m, 4H, β CH₂ hal), 2.89–3.16 (m, 2H, β CH₂ Phe), 3.20–3.36 (m, 2H, δ CH₂ Pro), 3.39–3.54 (m, 4H, α CH₂ hal), 3.70 (s, 3H, OCH₃), 3.70–4.41 (m, 4H CH₂ Gly), 4.44–4.49 (m, 1H, α CH Pro), 4.78–4.83 (0.2H, α CH Phe), 4.98–5.13 (m, 4.8H, =CH₂ and α CH Phe 0.8H), 5.58–5.84 (m, 1H, =CH), 6.91–6.94 (m, 1H, NH), 7.16–7.34 (m, 5H, ArH). MS (ESI) *m*/*z*: 563 [M + Na]⁺.

Ac-(*Mhal*)Gly-Leu-Pro-Phe-(*Mhal*)Gly-OMe 6c was prepared as described for 6d (vide infra). Crude 6c was purified by chromatography (gradient: 2.5% MeOH/DCM to 5% MeOH/DCM) and obtained as a colorless oil (0.165 mmol, 108 mg) in 66% yield. R_f 0.54 (10% MeOH/DCM). ¹H NMR (CDCl₃): δ 0.91–0.99 (m, 6H, CH₃ Leu), 1.35–1.66 (m, 3H, β CH₂ and γ CH Leu), 1.87–2.12 (m, 4H, β CH₂ and γ CH₂ Pro), 2.16 (s, 3H, CH₃ Ac), 2.26–2.39 (m, 4H, β CH₂ and γ CH₂ Pro), 3.36–3.56 (m, 4H, α CH₂ hal), 3.69 and 3.71 (s, 3H, OCH₃), 3.76–4.17 (m, 4H CH₂ Gly), 4.49 (br m, 1H, α CH Pro), 4.69–4.82 (m, 1H, α CH Leu), 4.95–5.13 (m, 5H, =CH₂ and α CH Phe), 5.54–5.80 (m, 1H, =CH), 6.62–6.77 (m, 1H, NH), 7.08–7.26 (m, 6H, ArH and NH). MS (ESI) *m/z*: 676 [M + Na]⁺.

Ac-(Mhal)Gly-Leu-Pro-Ala-Phe-(Mhal)Gly-OMe 6d. Fmoc-Gly-OH was coupled to TentaGel-OH according to the method of Sieber.¹⁶ The Fmoc group was removed from Fmoc-Gly-O– TentaGel (0.236 mmol, 1.00 g) by treatment with 20% piperidine in DMF for 30 min, followed by washings with DMF (3×) and DCM (3×). The amine group was treated with oNBS-Cl (1.25 mmol, 278 mg) and DiPEA (1.29 mmol, 224 μ L) in DMF for 30 min, followed by washings with DCM $(6 \times)$. Mitsunobu reaction of the sulfonamide was carried out using PPh₃ (1.25 mmol, 328 mg), 3-butene-1-ol (2.35 mmol, 202 μ L), and DIAD (1.18 mmol, 232 μ L) in DCM for 30 min, followed by washings with DCM $(3\times)$ and DMF $(6\times)$. The *o*NBS group was removed by DBU (1.21 mmol, 180 µL) in 0.50 M 2-mercaptoethanol/ DMF for 30 min, followed by washings with 25% HOAc/DMF $(1\times)$, DMF $(3\times)$, 2.5% DiPEA/DMF $(3\times)$, and DMF $(3\times)$. Now the secondary amine was treated with Boc-Phe-OH (0.706 mmol, 187 mg), PyBroP (0.706 mmol, 329 mg), and DiPEA $(1.45 \text{ mmol}, 252 \,\mu\text{L})$ in DMF for 1 h, followed by washings with DMF $(3\times)$ and DCM $(3\times)$. Removal of the Boc-group was achieved with 4 N HCl in dioxane for 15 min, this step was repeated once, followed by washings with DCM $(6\times)$. The amine group was treated with Fmoc-Ala-OH (0.706 mmol, 232 mg), HATU (0.706 mmol, 268 mg), and DiPEA (1.45 mmol, 252 μ L) in DMF for 1 h, followed by washing with DMF (3×) and DCM $(3\times)$. The Fmoc group was removed by treatment with 20% piperidine in DMF for 30 min, followed by washings with DMF ($3\times$) and DCM ($3\times$). The amine group was treated with Fmoc-Pro-OH (0.706 mmol, 302 mg), BOP (0.706 mmol, 396 mg), and DiPEA (1.45 mmol, 252 μ L) in DMF for 1 h, followed by washings with DMF (3×) and DCM (3×). The leucine and glycine residues were introduced as described for the proline residue. Introduction of the oNBS-group, the Mitsunobu reaction, and removal of the oNBS-group were carried out as described above. Now the secondary amine was treated with Ac-Cl (1.25 mmol, $89 \,\mu$ L) and DiPEA (1.25 mmol, 217 µL) in DCM for 30 min, followed by washings with DCM $(6 \times)$. Treatment of the resin with a catalytic amount of NaCN in MeOH for 16 h afforded crude 6d. Column chromatography (gradient: 2.5% MeOH/DCM to 10% MeOH/DCM) afforded 6d (76 μ mol, 54 mg) as a colorless oil in 32% yield. R_f 0.36 (10% MeOH/DCM). ¹H NMR (CDCl₃): δ 0.88–0.94 (m, 6H, CH₃) Leu), 1.16-1.23 (m, 3H, CH₃ Ala), 1.46-1.63 (m, 3H, β CH₂ and ^{γ}CH Leu), 1.88–2.11 (m, 4H, $^{\beta}$ CH₂ and $^{\gamma}$ CH₂ Pro), 2.02 and 2.13 (s, 3H, CH₃ Ac), 2.18–2.34 (m, 4H, ^βCH₂ hal), 2.87–3.12 (m, 2H, ^{*β*}CH₂ Phe), 3.21–3.48 (m, 4H ^{*α*}CH₂ hal), 3.51–4.13 (m, 6H, ^bCH₂ Pro and CH₂ Gly), 3.68 and 3.69 (s, 3H, OCH₃), 4.34-4.48 (m, 2H, $^{\alpha}$ CH Pro and $^{\alpha}$ CH Ala), 4.73–4.83 (m, 1H, $^{\alpha}$ CH Leu), 4.95-5.14 (m, 5H, =CH₂ and ^aCH Phe), 5.57-5.77 (m, 1H, =CH), 7.04-7.29 (m, 8H, ArH and NH). MS (ESI) m/z. 747 [M + Na]+

Cyclo [Ac-(Mhal)Gly-Pro-(Mhal)Gly-OMe] 7a was prepared as described in the typical procedure for RCM. Column chromatography (gradient 2.5% MeOH/DCM to 10% MeOH/DCM) afforded **7a** (137 μ mol, 48 mg) as a brownish oil in 46% yield. R_f 0.32 (10% MeOH/DCM). The purity according to HPLC was 95%. MS (FAB) m/z: 388 [M + Na]⁺, 366 [M + H]⁺.

Cyclo [Ac-(Mhal)Gly-Pro-Phe-(Mhal)Gly-OMe] 7b was prepared as described in the typical procedure for RCM. Column chromatography (gradient 2.5% MeOH/DCM to 5% MeOH/DCM) afforded **7b** (72.3 μ mol, 36 mg) as a brownish oil in 92% yield. R_f 0.51 (10% MeOH/DCM). The purity according to HPLC was >99%. MS (FAB) m/z 1074 [2M + Na]⁺, 1025 [2M + H]⁺, 535 [M + Na]⁺, 513 [M + H]⁺.

Cyclo [Ac-(*M*hal)Gly-Leu-Pro-Phe-(*M*hal)Gly-OMe] 7c was prepared as described in the typical procedure for RCM. Column chromatography (gradient 2.5% MeOH/DCM to 10% MeOH/DCM) afforded crude 7c. After a second purification by column chromatography (gradient 2.5% MeOH/DCM to 5% MeOH/DCM) 7c (64.0 μ mol, 40 mg was obtained) as a white solid in 39% yield. R_f 0.38 (10% MeOH/DCM). Preparative HPLC afforded pure (99+%) 7c in a recovery of 41%. MS (FAB) m/z. 648 [M + Na]⁺, 626 [M + H]⁺.

Cyclo [Ac-(Mhal)Gly-Leu-Pro-Ala-Phe-(Mhal)Gly-OMe] 7d was prepared as described in the typical procedure for RCM. Column chromatography (gradient 2.5% MeOH/DCM to 10% MeOH/DCM) afforded **7d** (50.0 μ mol, 34 mg) as a brownish solid in 65% yield. *R_f* 0.48 (10% MeOH/DCM). The purity according to HPLC was 98%. MS (FAB) *m*/*z*: 719 [M + Na]⁺, 697 [M + H]⁺. **Ac-(Mhal)Gly-Val-(Mhal)Gly-OMe 8a** was prepared as described for **6d**. Crude **8a** was purified by chromatography (gradient: 2.5% MeOH/DCM to 5% MeOH/DCM) and obtained as a colorless oil (116 μ mol, 46 mg) in 46% yield. The purity according to HPLC was 93%. R_f 0.53 (10% MeOH/DCM). ¹H NMR (CDCl₃): δ 0.85–0.91 and 0.97–1.01 (m, 6H, CH₃ Val), 2.04 and 2.15 (s, 3H, CH₃ Ac), 1.93–2.15 (m, 1H, ^{\vec{\mathcal{B}}}CH Val), 2.22–2.39 (m, 4H, ^{\vec{\mathcal{B}}}CH₂ ahl), 3.38–3.48 (m, 4H, ^{\vec{\mathcal{C}}}CH₂ hal), 3.20–4.40 (m, 4H, CH₂ Gly), 3.70 and 3.74 (s, 3H, OCH₃), 4.45–4.50 and 4.75–4.87 (m, 1H ^{\vec{\mathcal{C}}}CH Val), 5.00–5.14 (m, 4H, =CH₂), 5.66–5.82 (m, 1H, =CH), 6.70–6.80 (m, 1H, NH). MS-MS (FAB) m/z: 813 [2M + Na]⁺, 791 [2M + H]⁺, 418 [M + Na]⁺, 396 [M + H]⁺, 253 [(Ac-(Mhal)Gly-Val) + H]⁺, 154 [(Ac-(Mhal)Gly) + H]⁺, 144 [(H-(Mhal)Gly-OMe) + H]⁺.

Ac-(*N***hal)Gly-Val-Phe-(***N***hal)Gly-OMe 8b** was prepared as described for 6d. Crude 8b was purified by chromatography (gradient: 2.5% MeOH/DCM to 5% MeOH/DCM) and obtained as a white solid (161 μ mol, 87 mg) in 64% yield. R_f 0.57 (10% MeOH/DCM). ¹H NMR (CDCl₃): δ 0.71–0.88 (m, 6H, CH₃ Val), 1.98–2.18 (m, 3H $^{\beta}$ CH Val and $^{\beta}$ CH₂ hal), 2.12 and 2.18 (s, 3H, CH₃ Ac), 2.21–2.37 (m, 2H, $^{\beta}$ CH₂ hal), 2.81–3.11 (m, 4H, °CH₂ hal and $^{\beta}$ CH₂ Phe) 3.17–3.51 (m, 2H, °CH₂ hal), 3.68 (s, 3H, OCH₃), 3.83–4.10 (m, 4H, CH₂ Gly), 4.22–4.37 (m, 1H, °CH Val), 4.82–5.16 (m, 5H, °CH Phe and =CH₂), 5.54–5.80 (m, 1H, =CH), 6.63–6.66 and 6.85–6.98 (m, 2H, NH), 7.16– 7.27 (m, 5H, ArH). MS (ESI) *m*/*z*: 565 [M + Na]⁺.

Ac-(Mhal)Gly-Leu-Val-Phe-(Mhal)Gly-OMe 8c was prepared as described for 6d. Crude 8c was purified by chromatography (gradient: 2.5% MeOH/DCM to 5% MeOH/DCM) and obtained as a colorless oil (145 μ mol, 93 mg) in 61% yield. R_f 0.26 (10% MeOH/DCM). ¹H NMR (CDCl₃): δ 0.84-0.93 (m, 12H, CH₃ Val and Leu), 1.50–1.62 (m, 3H, $^{\gamma}$ CH and $^{\beta}$ CH₂ Leu), 1.93–2.15 (m, 3H, $^{\beta}$ CH Val and $^{\beta}$ CH₂ hal), 2.15 (s, 3H, CH₃ Ac), 2.24–2.36 (m, 2H, ^βCH₂ hal), 2.89–3.13 (m, 2H, ^βCH₂ Phe), $3.17{-}3.50$ (m, 4H, $^{\alpha}CH_{2}$ hal), $3.60{-}3.76$ (m, 1H, CH_{2} Gly), 3.67(s, 3H, OCH₃), 3.83-4.06 (m, 3H, CH₂ Gly), 4.41-4.44 and 4.46-4.73 (m, 2H, "CH Leu and Val), 4.82-5.26 (m, 5H, "CH Phe and =CH₂), 5.54-5.80 (m, 2H, =CH), 6.67-6.83 (m, 1H, NH), 7.08-7.27 (m, 6.1H, ArH and NH), 7.37-7.43 and 7.59-7.62 (m, 0.8H, NH), 8.15–8.18 (m, 1H, 0.1H). $^{13}\mathrm{C}$ NMR (CDCl₃): δ 18.0, 18.3, 18.7, 18.8, 18.9, 21.1, 21.5, 21.8, 22.9, 24.7, 24.8, 31.2, 31.7 (CH3 and CH), 31.4, 31.8, 32.7, 32.8, 32.9, 39.3, 39.6, 40.8, 41.6, 46.9, 47.4, 47.9, 48.0, 48.2, 49.4, 49.7, and 50.0 (CH₂), 49.9, 50.1, 51.7, 52.0, 52.5, 58.0, and 58.1 (^aCH and OCH₃), 116.7, 117.0, 117.9, 118.0, and 118.1 (=CH₂), 127.0, 128.6, 129.3, 129.4, 129.5, and 129.6 (CH Ar), 133.8, 134.1, 134.8, and 135.4 (=CH), 136.3 and 136.4 (C Ar), 168.8, 169.2, 169.5, 170.4, 170.5, 171.4, 171.7, 172.0, 172.2, and 172.3 (CO). MS (ESI) m/z: 678 [M + Na]⁺

Ac-(Nhal)Gly-Leu-Val-Ala-Phe-(Nhal)Gly-OMe 8d was prepared as described for 6d. Crude 8d was purified by chromatography (gradient: 2.5% MeOH/DCM to 5% MeOH/ DCM) and obtained as a colorless oil (86 μ mol, 61 mg) in 65% yield. $R_f 0.23$ (10% MeOH/DCM). ¹H NMR (DMSO- d_6): $\delta 0.80-$ 0.90 (m, 12H, CH₃ Val and Leu), 1.11–1.17 (m, 3H, CH₃ Ala), 1.48–1.63 (m, 3H, ^γCH and ^βCH₂ Leu), 1.92–2.32 (m, 5H, ^βCH Val and $^{\beta}CH_2$ hal), 1.92 and 2.05 (s, 3H, CH₃ Ac), 2.76–3.04 (m, 2H, ${}^{\beta}CH_2$ Phe), 3.24–3.58 (m, 6H, ${}^{\alpha}CH_2$ hal and CH₂ Gly 2H), 3.62 and 3.66 (s, 3H, OCH₃), 3.86-4.07 (m, 2H, CH₂ Gly), 4.13-4.18 (m, 2H, "CH Val), 4.26-4.48 (m, 2H, "CH Leu and Ala), 4.60 (br m, 0.1H, "CH Phe), 4.91-5.14 (m, 4.9H, "CH Phe 0.9 H and =CH₂), 5.64-5.83 (m, 2H, =CH), 7.18-7.30 (m, 5H, ArH), 7.72-7.75, 7.86-7.92, 8.03-8.06 and 8.23-8.32 (m, 4H, NH). ¹³C NMR (DMSO, d6): δ 18.7, 18.8, 19.1, 19.2, 20.0, 21.9, 22.2, 22.3, 23.8, 24.9, 25.1, 31.1, and 31.3 (CH₃ and CH), 32.0, 32.3, 33.2, 33.4, 38.7, 41.3, 41.4, 46.6, 48.5, 48.8, 49.4, and 51.8 (CH₂), 48.6, 50.4, 50.6, 52.0, 52.1, 52.5, 52.9, 58.2, and 58.4 (°CH and OCH3), 117.1, 117.4, 118.0, and 118.1 (=CH₂), 127.3, 127.4, 129.1, 129.2, 130.0, and 130.1 (CH Ar), 135.8, 136.4, 136.5, and 136.9 (=CH), 138.2 and 138.4 (C Ar), 169.4, 169.5, 170.5, 171.0, 171.2, 171.4, 172.2, 172.6, 172.7, and 172.9 (CO). MS (ESI) m/z: 749 $[M + Na]^+$

Cyclo [Ac-(*Nhal*)Gly-Val-Phe-(*Nhal*)Gly-OMe] 9b was prepared as described in the typical procedure for RCM. Column chromatography (gradient 2.5% MeOH/DCM to 10% MeOH/DCM) afforded **9b** (42.8 μ mol, 22 mg) as an off white solid in 27% yield. R_f 0.52 (10% MeOH/DCM). The purity according to HPLC was 99+%. MS (FAB) m/z: 1051 [2M + Na]⁺, 1027 [2M + H]⁺, 537 [M + Na]⁺, 515 [M + H]⁺.

Cyclo [Ac-(*Nhal*)Gly-Leu-Val-Phe-(*Nhal*)Gly-OMe] 9c was prepared as described in the typical procedure for RCM. Column chromatography (gradient 2.5% MeOH/DCM to 10% MeOH/DCM) afforded 9c (60.4 μ mol, 37 mg) as a brownish solid in 42% yield. R_f 0.45 (10% MeOH/DCM). Preparative HPLC afforded pure (99+%) 9c in a recovery of 15%. MS (FAB) m/z: 1277 [2M + Na]⁺, 1255 [M + H]⁺, 650 [M + Na]⁺, 628 [M + H]⁺.

Cyclo [Ac-(*M*hal)Gly-Leu-Val-Ala-Phe-(*M*hal)Gly-OMe] **9d** was prepared as described in the typical procedure for RCM. Column chromatography (gradient 2.5% MeOH/DCM to 10% MeOH/DCM) afforded **9d** (48.2 μ mol, 33 mg) as a brownish oil in 54% yield. R_f 0.37 (10% MeOH/DCM). Preparative HPLC afforded pure (99+%) **9d** in a recovery of 30%. MS (FAB) m/z: 1420 [2M + Na]⁺, 1398 [M + H]⁺, 721 [M + Na]⁺, 699 [M + H]⁺.

Ac-(Npen)Gly-Val-(Npen)Gly-OMe 10 was prepared as described for **6d**. Crude **10** was purified by chromatography (2.5% MeOH/DCM) and obtained as a colorless oil (260 μ mol, 107 mg) in 52% yield. Rf 0.58 (10% MeOH/DCM). ¹H NMR (CDCl₃): δ 0.76–0.97 (m, 6H, CH₃ Val), 1.52–1.72 (m, 4H, $^{\beta}$ CH₂ pen), 1.92–2.17 (m, 8H, CH₃ Ac and $^{\gamma}$ CH₂ pen and $^{\beta}$ CH Val), 3.21-3.49 (m, 4H, "CH2 pen), 3.60-4.43 (m, 4H, CH2 Gly), 3.66 and 3.70 (s, 3H, OCH₃), 4.70-4.83 (m, 1H, αCH Val), 4.89-5.04 (m, 4H, =CH₂), 5.65-5.81 (m, 1H, =CH), 6.71-6.82 (m, 1H, NH). ¹³C NMR (CDCl₃): δ 17.2, 17.5, 19.4 (⁷CH₃ Val), 21.0 and 21.5 (CH3 Ac), 26.2, 26.5, 27.4, 27.6, 30.4, 30.5, 30.8, 46.9, 47.2, 47.5, 48.3, 49.4, 49.6, 49.9, 50.0, and 52.1 (CH₂), 31.3, 31.5, and 31.6 (^{*β*}CH Val), 52.0, 52.4, 53.3, 53.4, and 53.8 (^aCH Val and OCH₃), 114.9, 115.1, 115.7, 115.8, and 115.9 (= CH₂), 136.7, 136.9. 137.5, and 137.6 (=CH), 168.0, 168.7, 169.3, 169.5, 171.2, and 171.9 (CO). MS (ESI) m/z. 446 [M + Na]+.

Cyclo [Ac-(*Npen*)**Gly-Val**-(*Npen*)**Gly-OMe**] **11** was prepared as described in the typical procedure for RCM. Column chromatography (gradient 2.5% MeOH/DCM to 5% MeOH/ DCM) afforded **11** (152 μ mol, 58 mg) as a brownish oil in 76% yield. *R*_f 0.49 (10% MeOH/DCM). Preparative HPLC afforded pure (99+%) **12** in a recovery of 25%. MS (ESI) *m*/*z*: 418 [M + Na]⁺, 396 [M + H]⁺.

Ac-(Nhal)Gly-Val-(Nal)Gly-OMe 12a was prepared as described for 6d. Crude 12a was purified by chromatography (2.5% MeOH/DCM) and obtained as a colorless oil (320 μ mol, 117 mg) in 64% yield. R_f 0.67 (10% MeOH/DCM). ¹H NMR (CDCl₃): δ 0.84–0.95 (m, 6H, CH₃ Val), 1.94–2.13 (m, 4H, CH₃ Ac and $^{\beta}$ CH Val), 2.17–2.38 (m, 2H, $^{\beta}$ CH₂ hal), 3.32–3.44 (m, 2H, ^aCH₂ hal), 3.58-4.37 (m, 6H, CH₂ Gly and ^aCH₂ all), 3.65 and 3.69 (s, 3H, OCH₃), 4.70-4.83 (m, 1H "CH Val), 4.95-5.22 (m, 4H, =CH₂), 5.62-5.81 (m, 2H, =CH), 6.85-6.88 (m, 1H, NH). ¹³C NMR (CDCl₃): δ 17.2, 17.6, 19.5 (CH₃ Val), 21.1 and 21.5 (CH₃ Ac), 31.2, 31.3, and 31.4 ($^{\beta}$ CH Val), 31.8, 32.7, 46.6, 46.8, 48.1, 49.2, 49.6, 49.8, 49.9, 51.3 and 52.3 (CH₂), 51.9, 53.4, 53.5, and 53.9 (^aCH Val and OCH₃), 116.8, 117.7, 118.1, 118.5, and 118.7 (=CH₂), 132.1, 132.2, 133.8, and 135.0 (= CH), 168.1, 168.7, 169.3, 169.4, 171.2, 171.8, 172.0, and 172.1 (CO). MS (ESI) m/z: 404 [M + Na]⁺.

Ac-(Mal)Gly-Val-Phe-(Nall)Gly-OMe 12b was prepared as described for **6d**. Crude **12b** was purified by chromatography (gradient 2.5% MeOH/DCM to 5% MeOH/DCM) and obtained as a colorless oil (154 μ mol, 83 mg) in 61% yield. R_f 0.58 (10% MeOH/DCM). ¹H NMR (CDCl₃): δ 0.71–0.88 (m, 6H, CH₃ Val), 2.00–2.17 (m, 1H, ^{β}CH Val), 2.15 and 2.17 (s, 3H, CH₃ Ac), 2.26–2.36 (m, 2H, ^{β}CH₂ hal), 2.88–3.09 (m, 2H, ^{β}CH₂ Phe), 3.36–3.48 (m, 2H, ^{α}CH₂ hal), 3.60–4.06 (m, 6H, CH₂ Gly and ^{α}CH₂ all), 3.66 and 3.67 (s, 3H, OCH₃), 4.11–4.29 (m, 1H ^{α}CH Val), 4.84–5.13 (m, 5H, =CH₂ and ^{α}CH Phe), 5.46–5.79 (m, 2H, =CH), 6.69–6.72 and 6.93–7.08 (m, 2H, NH), 7.16–7.26 (m, 5H, ArH). MS (ESI) *m*/*z*. 551 [M + Na]⁺, 529 [M + H]⁺, 400 [M – ((*N*all)Gly-OMe) + H]⁺.

Ac-(*Nhal*)Gly-Leu-Val-Phe-(*Nal*)Gly-OMe 12c was prepared as described for 6d. Crude 12c was purified by chromatography (gradient: 2.5% MeOH/DCM to 5% MeOH/DCM) and obtained as a white solid (77 μ mol, 50 mg) in 31% yield. $R_f 0.56$ (10% MeOH/DCM). ¹H NMR (CDCl₃): δ 0.83–0.92 (m, 12H, CH₃ Val and Leu), 1.49–1.70 (m, 3H, ⁷CH and ^{β}CH₂ Leu), 1.93–2.18 (m, 1H, ^{β}CH Val), 1.98 and 2.14 (s, 3H, CH₃ Ac), 2.23–2.36 (m, 2H, ^{β}CH₂ hal), 2.89–3.12 (m, 2H, ^{β}CH₂ Phe), 3.37–3.48 (m, 2H, ^{α}CH₂ hal), 3.59–4.08 (m, 6H, CH₂ Gly and ^{α}CH₂ all), 3.64, 3.66 and 3.67 (s, 3H, OCH₃), 4.43–4.51 and 4.62–4.74 (m, 2H ^{α}CH Val and Leu), 4.91–5.25 (m, 5H, =CH₂ and ^{α}CH Phe), 5.44–5.80 (m, 2H, =CH), 6.75–6.86, 7.53–7.70 and 8.28–8.31 (m, 3H, NH), 7.15–7.30 (m, 5H, ArH). MS (ESI) m/z, 664 [M + Nal⁺.

Cyclo [Ac-(*M*hal)**Gly-Val-**(*N*al)**Gly-OMe**] **13a** was prepared as described in the typical procedure for RCM. Column chromatography (gradient: 2.5% MeOH/DCM to 5% MeOH/ DCM) afforded **13a** (2 μ mol, 7 mg) as a brownish oil in 35% yield. *R*_f 0.41 (10% MeOH/DCM). Preparative HPLC afforded pure (99+% according to HPLC) **13a** in a recovery of 42%. MS (ESI) *m*/*z*: 375 [M + Na]⁺.

Cyclo [Ac-(*N***hal)Gly-Leu-Val-Phe-(***N***all)Gly-OMe] 13c** was prepared as described in the typical procedure for RCM. Column chromatography (gradient 2.5% MeOH/DCM to 5% MeOH/DCM) afforded **13c** (1 μ mol, 6 mg) as a white solidl in 13% yield. *R_f* 0.41 (10% MeOH/DCM). Preparative HPLC afforded pure (99+%) **13c** in a quant. recovery. MS (FAB) *m/z*: 632 [M + Na]⁺, 614 [M + H]⁺.

Ac-(Mhal)Val-Phe-(Nall)Leu-OMe 14a was prepared as described for 6d. Crude 14a was purified by chromatography (gradient: 2.5% MeOH/DCM to 5% MeOH/DCM) and obtained as a colorless oil (63 μ mol, 33 mg) in 24% yield. $R_f 0.54$ (10% MeOH/DCM). ¹H NMR (CDCl₃): δ 0.67–0.98 (m, 12H, CH₃ Val and Leu), 1.33-1.47 (m, 1H, ^yCH Leu), 1.50-2.12 (m, 4H, ${}^{\beta}CH_{2}$ hal and ${}^{\beta}CH_{2}$ Leu), 1.98, 2.00, 2.03 and 2.06 (s, 3H, CH₃ Ac), 2.20–2.32 (m, 1H, $^{\beta}$ CH Val), 2.82–3.19 (m, 4H, $^{\beta}$ CH₂ Phe and "CH2 hal), 3.62, 3.64, 3.65 and 3.67 (s, 3H, OCH3), 3.71-3.95 (m, 1H, $^{\alpha}$ CH₂ all), 4.10–4.38 (m, 2H, $^{\alpha}$ CH₂ all and $^{\alpha}$ CH Val), 4.77–5.26 (m, 6H, ^aCH Leu, ^aCH Phe and =CH₂), 5.49– 5.96 (m, 2H, =CH), 6.06-6.09, 6.65-6.57 and 7.03-7.12 (m, 1H, NH), 7.17–7.26 (m, 5H, ArH). ¹³C NMR (CDCl₃): δ 18.0, 18.7, 18.8, 19.5, 21.7, 21.8, 21.9, 22.8, 23.0, 23.2, 24.6, 24.7, 26.1, 26.2, and 31.4 (CH3 and CH), 33.2, 37.8, 38.4, 38.7, 39.3, 45.5, 48.9, 49.7 (CH₂), 50.5, 51.6, 51.7, 53.0, 55.1, 55.9, and 58.1 (^aCH and OCH₃), 116.9, 117.0, 117.2, 117.8 (=CH₂), 126.7, 127.0, 128.4, 128.5, 128.6, 129.3, 129.5, and 129.5 (CH Ar), 133.8, 134.3, 134.4, 134.5 (=CH), 135.9 and 136.7 (C Ar), 169.8, 180.4, 170.5, 171.6, 171.9, 172.0, 172.1, and 172.7 (CO). MS (ESI) m/z: 550 [M + Na]⁺.

Ac-(*N*hal)Val-D-Phe-(*N*all)Leu-OMe 14b was prepared as described for 6d. Crude 14b was purified by chromatography (gradient 2.5% MeOH/DCM to 5% MeOH/DCM) and obtained as a colorless oil (25 μ mol, 13 mg) in 10% yield. R_f 0.68 (10% MeOH/DCM). ¹H NMR (CDCl₃): δ 0.72–0.98 (m, 12H, CH₃) Val and Leu), 1.27–1.43 (m, 1H, ^yCH Leu), 1.46–1.80 (m, 2H, ${}^{\beta}CH_{2}$ Leu), 1.99–2.21 (m, 2H, ${}^{\beta}CH_{2}$ hal), 2.11 and 2.14 (s, 3H, CH₃ Ac), 2.43 (m, 1H, $^{\beta}$ CH Val), 2.84–3.09 (m, 2H, $^{\beta}$ CH₂ Phe), 3.19-3.25 (m, 2H, ^aCH₂ hal), 3.56-3.76 (m, 1H ^aCH₂ all), 3.62 and 3.65 (s, 3H, OCH₃), 4.19-4.37 (m, 1H, ^aCH₂ all), 4.83-4.88 (m, 1H, $^{\alpha}$ CH Leu), 5.00–5.25 (m, 6H, $^{\alpha}$ CH Val, $^{\alpha}$ CH Phe and =CH₂), 5.57-5.74 (m, 2H, =CH), 7.18-7.26 (m, 5H, ArH), 7.40–7.50 (m, 1H, NH). $^{13}\mathrm{C}$ NMR (CDCl_3): δ 19.0, 19.5, 22.0, 22.7, 24.7, 26.3 (CH₃ and CH), 33.4, 37.9, 39.0 and 48.6 (CH₂), 50.6, 52.0, and 55.8 (^aCH and OCH₃), 117.2 and 117.5 (=CH₂), 126.7, 128.3, and 129.5 (CH Ar), 134.3 (=CH), 136.6 (C Ar), 170.6, 171.7, 172.1, and 172.5 (CO). MS (ESI) m/z. 550 [M + Nal⁺

Ac-(Mhal)Gly-Val-Phe-(Nall)Leu-OMe 14c was prepared as described for **6d**. Crude **14c** was purified by chromatography (2.5% MeOH/DCM) and obtained as a colorless oil (101 μ mol, 59 mg) in 46% yield. R_{ℓ} 0.36 (10% MeOH/DCM). ¹H NMR (CDCl₃): δ 0.75–0.87 (m, 12H, CH₃ Val and Leu), 1.40–1.48 (m, 1H, $^{\gamma}$ CH Leu), 1.51–1.77 (m, 2H, $^{\beta}$ CH₂ Leu), 2.05–2.18 (m, 1H, $^{\beta}$ CH Val), 2.17 and 2.18 (s, 3H, CH₃ Ac), 2.30–2.45 (m, 2H, $^{\beta}$ CH₂ hal), 2.87–3.07 (m, 2H, $^{\beta}$ CH₂ Phe), 3.38–3.50 (m, 2H, $^{\alpha}$ CH₂ hal), 3.61 and 3.62 (s, 3H, OCH₃), 3.67–4.04 (m, 4H, $^{\alpha}$ CH ₂ all and CH₂ Gly), 4.19–4.24 (m, 1H, $^{\alpha}$ CH Val), 4.74–4.79 (m, 1H, $^{\alpha}$ CH Leu), 5.06–5.15 (m, 5H, $^{\alpha}$ CH Phe and =

CH₂), 5.60–5.78 (m, 2H, =CH), 6.68–6.71 and 6.92–6.95 (d, 2H, NH), 7.16–7.27 (m, 5H, ArH). ¹³C NMR (CDCl₃): δ 14.8, 21.6, 21.8, 22.1, 22.2, 22.5, 22.6, 24.2, 24.5, and 24.6 (CH₃ and CH), 24.6, 27.1, 27.5, 37.7, 38.9, 46.6, 46.7, 46.8, and 48.4 (CH₂), 49.7, 50.4, 51.9, 52.2, 55.6, 57.9, 59.6, and 59.8 (°CH and OCH₃), 116.1, 116.5, 117.6, and 117.7 (=CH₂), 126.8, 128.3, 129.2, and 129.5 (CH Ar), 133.9 and 134.8 (=CH), 136.3 and 136.5 (C Ar), 170.2, 170.6, 171.6, 171.9, and 172.4 (CO). MS (ESI) *m*/*z*. 607 [M + Na]⁺, 585 [M + H]⁺, 400 [M – ((*N*all)-Leu-OMe) + H]⁺.

Ac-(Nhal)Glv-Val-p-Phe-(Nall)Leu-OMe 14d was prepared as described for 6d. Crude 14d was purified by chromatography (2.5% MeOH/DCM) and obtained as a colorless oil (101 µmol, 59 mg) in 46% yield. R_f 0.36 (10% MeOH/DCM). ¹H NMR (CDCl₃): δ 0.69–0.94 (m, 12H, CH₃ Val and Leu), 1.27–1.36 (m, 1H, ^γCH Leu), 1.42–1.80 (m, 2H, ^βCH₂ Leu), 1.97–2.22 (m, 1H, ^βCH Val), 2.04, 2.14, 2.16 and 2.22 (s, 3H, CH₃ Ac), 2.28–2.39 (m, 2H, ^βCH₂ hal), 2.88–3.11 (m, 2H, ^βCH₂ Phe), 3.36-3.50 (m, 2H, ^aCH₂ hal), 3.52-4.11 (m, 4H, ^aCH₂ all and CH2 Gly), 3.62, 3.63 and 3.65 (s, 3H, OCH3), 4.26-4.32 (m, 1H, «ČH Val), 4.81-4.87 (m, 1H, «CH Leu), 5.00-5.20 (m, 5H, $^{\alpha}$ CH Phe and =CH₂), 5.44–5.81 (m, 2H, =CH), 6.57-6.60, 6.66-6.69, 6.81-6.85 and 6.88-6.99 (m, 2H, NH), 7.13-7.27 (m, 5H, ArH). ¹³C NMR (CDCl₃): δ 16.9, 19.1, 21.0, 21.8, 22.6, 24.5, and 30.2 (CH3 and CH), 31.8, 32.8, 37.6, 39.1 48.4, 50.0, and 51.0 (CH₂), 50.8, 52.0, 55.6, and 58.0 (^aCH and OCH₃), 117.8 and 118.0 (=CH₂), 127.0, 128.5, and 129.7 (CH Ar), 134.0 (=CH), 136.4 (C Ar), 169.7, 170.3, 171.8, 172.0, and 172.7 (CO). MS (ESI) m/z: 607 [M + Na]+

Ac-(Nhal)Gly-Leu-Val-D-Phe-(Nall)Gly-OMe 14e was prepared as described for 6d. Crude 14f was purified by chromatography (2.5% MeOH/DCM) and obtained as a white solid (134 µmol, 86 mg) in 54% yield. R_f 0.54 (10% MeOH/ DCM). ¹H NMR (CDCl₃): δ 0.58–0.84 (m, 6H, CH₃ Val), 0.88– 0.93 (m, 6H, CH₃ Leu), 1.47–1.77 (m, 3H, $^{\gamma}$ CH Leu and $^{\beta}$ CH₂ Leu), 1.86–2.06 (m, 1H, ^βCH Val), 2.00, 2.12 and 2.13 (s, 3H, CH₃ Ac), 2.45–2.35 (m, 2H, $^{\beta}$ CH₂ hal), 2.91–3.13 (m, 2H, $^{\beta}$ CH₂ Phe), 3.39-3.44 (m, 2H, $^{\alpha}CH_2$ hal), 3.64, 3.65 and 3.72 (s, 3H, OCH₃), 3.68-5.21 (m, 13H, ^aCH₂ all and CH₂ Gly, ^aCH and =CH₂), 5.57-5.76 (m, 2H, =CH), 7.14-7.26 (m, 5H, ArH), 6.8-8.3 (m, 3H, NH). ¹³C NMR (CDCl₃): δ 17.6, 17.7, 18.8, 18.9, 19.1, 21.1, 21.6, 21.9, 22.3, 22.8, 24.8, 30.9, 31.2, and 31.7 (CH₃ and CH), 31.9, 32.8, 38.7, 41.0, 47.4, 48.4, and 49.9 (CH₂), 49.8, 50.2, 50.4, 51.4, 51.9, 52.0, 52.5, 57.5, and 58.0 (^aCH and OCH₃), 116.5, 117.6, 117.7, 118.2, 118.4, and 118.5 (=CH₂), 126.8, 128.4, 129.3, and 129.4 (CH Ar), 131.9, 132.2, 134.0, and 135.3 (=CH), 136.2, 136.3, and 136.8 (C Ar), 168.6, 169.1, 169.2, 169.3, 169.9, 170.3, 170.5, 171.3, 171.5, 171.6, 172.2, and 172.6 (CO). MS (ESI) m/z.664 [M + Na]

Cyclo [Ac-(*N*hal)Val-D-Phe-(*N*all)Leu-OMe] 15b was prepared as described in the typical procedure for RCM. Column chromatography (gradient: 2.5% MeOH/DCM to 5% MeOH/DCM) afforded 15b (2 μ mol, 8 mg) as a brownish oil in 36% yield. R_f 0.50 (10% MeOH/DCM). MS (ESI) *m*/*z*. 522 [M + Na]⁺, 500 [M + H]⁺.

Cyclo [Ac-(*Nhal***)Gly-Val-Phe-(***Nall***)Leu-OMe] 15c was prepared as described in the typical procedure for RCM. Column chromatography (gradient: 1% MeOH/DCM to 10% MeOH/DCM) afforded 15c** (40 μ mol, 22 mg) as a brownish oil in low purity. *R_f* 0.30 (10% MeOH/DCM). Preparative HPLC afforded pure (99+%) **16c** in 5% recovery, overall 2% yield. MS (FAB) *m/z*. 579 [M + Na]⁺, 557 [M + H]⁺.

Cyclo [Ac-(Mal)Gly-Val-D-Phe-(Nall)Leu-OMe] 15d was prepared as described in the typical procedure for RCM. Column chromatography (gradient: 2.5% MeOH/DCM to 5% MeOH/DCM), followed by another purification by column chromatography (gradient: EtOAc:hexanes, 1:1 to EtOAc) afforded **15d** (68 μ mol, 38 mg) as a colorless oil in 90% yield. R_f 0.30 (10% MeOH/DCM). Preparative HPLC afforded pure (99+%) **15d** in 39% recovery. ¹H NMR (CDCl₃): δ 0.69–0.74 (m, 6H, CH₃ Val), 0.77–0.88 (m, 6H, CH₃ Leu), 1.31–1.36 (m, 1H, $^{\mu}$ CH Leu), 1.51–1.59 (m, 1H, $^{\mu}$ CH₂ Leu), 1.60–1.74 (m, 1H, $^{\mu}$ CH Val), 1.77–1.86 (m, 1H, $^{\mu}$ CH₂ Leu), 2.04 (s, 3H, CH₃ Ac), 2.06–2.19 (m, 1H, $^{\mu}$ CH₂ hal), 2.44–2.49 (m, 1H, $^{\mu}$ CH₂ hal), 2.88–2.96 (m, 1H, CH₂ Phe), 3.00 and 3.05 (s, 1H, CH₂ Gly), 3.20 and 3.26–3.25 (s, 1H, "CH₂ hal), 3.27–3.44 (m, 2H, CH₂ Phe and "CH₂ all), 3.59 (s, 3H, OCH₃), 3.55–3.69 (m, 1H, "CH₂ hal), 4.05–4.09 (m, 1H, "CH Val), 4.35 and 4.41 (s, 1H, "CH₂ all), 4.75–4.80 (m, 1H, "CH Leu), 4.85 and 4.90 (s, 1H, CH₂ Gly), 5.06–5.14 (m, 1H, "CH Leu), 4.85 and 4.90 (s, 1H, CH₂ Gly), 5.06–5.14 (m, 1H, "CH (*N*all)Gly), 5.32–5.42 (m, 2H, "CH (*N*all)Gly and "CH Phe), 6.26 (d, 1H, J = 10.2 Hz, NH Phe), 7.16–7.26 (m, 5H, ArH), 8.04 (d, 1H, J = 8.4 Hz, NH Val). ¹³C NMR (CDCl₃): δ 18.0, 18.8, 21.5, 21.6, 22.8, 24.6, and 31.4 (CH₃ and CH), 31.4, 36.3, 38.2, 47.2, 51.5, and 53.1 (CH₂), 49.9, 51.9, 54.6 and 58.3 ("CH and OCH₃), 126.7, 128.4, 128.8, 129.6, and 130.9 (CH Ar and =CH), 136.9 (C Ar), 169.7, 170.3, 170.5, 172.2, and 172.4 (CO). MS (FAB) *m/z*: 579 [M + Na]⁺, 557 [M + H]⁺.

Cyclo [Ac-(Mal)Gly-Leu-Val-D-Phe-(Nall)Gly-OMe] 15e was prepared as described in the typical procedure for RCM. Column chromatography (gradient: 2.5% MeOH/DCM to 5% MeOH/DCM) afforded **15f** (82 μmol, 50 mg) as a white solid

in 61% yield. R_f 0.40 (10% MeOH/DCM). MS (ESI) m/z: 636 $[M + Na]^+$, 614 $[M + H]^+$.

Acknowledgment. These investigations were supported by the Council for Chemical Sciences of The Netherlands Organization for Scientific Research (CW-NWO) with financial aid from The Netherlands Technology foundation.

Supporting Information Available: Copies of ¹H NMR spectra of compounds **4a–d**, **6a–d**, **7a–d**, **8a–d**, **9b–e**, **10**, **11**, **12a–c**, **13a**, **13c**, **14a–e**, and **15b–e**. Copies of ¹³C NMR spectra of compounds **4a–d**, **6a**, **7b–d**, **8c–d**, **9b–d**, **10–11**, **12a**, **14a–e**, and **15b–e**. HPLC traces of compounds **4a–d**, **7a–d**, **8a**, **9b–d**, **11**, **13a**, **15b–e**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO000759T