

0960-894X(95)00557-9

SYNTHESIS AND BIOLOGICAL ACTIVITY OF 5-HETEROARYL BENZODIAZEPINES : ANALOGUES OF YM022

Graeme Semple^a, Hamish Ryder^a, David A. Kendrick^a, Michael Szelke^a, Mitsuaki Ohta^b, Masato Satoh^b, Akito Nishida^b, Shinobu Akuzawa^b and Keiji Miyata^b

* Ferring Research Institute, Chilworth Research Centre, Chilworth, Southampton, U.K., SO16 7NP.

^b Neuroscience & Gastrointestinal Research Laboratories, Yamanouchi Institute for Drug Discovery Research, 21, Miyukigaoka, Tsukuba, Ibaraki 305, Japan.

Abstract: A novel series of analogues of the potent gastrin/CCK-B receptor antagonist YM022 have been prepared which incorporate 5- and 6-membered heteroaromatic rings in the benzodiazepine 5-position. The 5-(2-pyridyl) derivatives in particular retained good *in vitro* and *in vivo* potency and one such compound 9i was shown to inhibit acid secretion after oral dosing in dogs. Improved bioavailability for 9i over the 5-phenyl analogue, 9h was demonstrated in rats.

Urea derivatives of 3-amino-5-phenyl-1,4-benzodiazepin-2-ones (e.g., L-365,260, 1) have been known for some time to be antagonists of the gastrin/CCK-B receptor.¹ Incorporation of aryl- (2) or alkylcarbonylmethyl groups (3) at the benzodiazepine 1-position improves both potency and selectivity of receptor binding and efficacy *in vivo*.^{2,3}

Figure 1 Structures of gastrin/CCK-B antagonists

Compounds of type 1 however, have been shown to be sparingly soluble in water and consequently have limited oral bioavailability.⁴ Aqueous solubility has been increased by introducing acid groups onto the aryl urea portion of the molecule,⁵ and we have shown that incorporation of a *tert*-butylcarbonylmethyl group at the 1-position (**3**, Alkyl = t-butyl) provides a significant increase in absorption.³

An alternative approach to improving bioavailability has been to introduce substituents other than phenyl into the 5-position of the parent benzodiazepine. This has been achieved by incorporation of either a cyclohexyl group⁶ or a saturated cyclic amino

group to form an amidino functionality.⁷ We now wish to report the structure-activity relationships of a series of derivatives of YM022 and related compounds, in which fiveand six-membered aromatic nitrogen containing heterocycles have been incorporated at this position.

The benzodiazepine derivatives were synthesised using the benzotriazole mediated ring synthesis reported recently^{8,9} (Figure 2). The intermediates **7** were typically crystalline and could all be selectively alkylated at the 1-position with the requisite bromomethyl ketone derivative to provide **8**. Deprotection of the 3-amino substituent and resolution of the intermediate amine where appropriate,^{9b} followed by reaction with m-tolyl isocyanate, provided the target compounds **9**. In the examples where the 5-heteroaryl group was a diazole, a (trimethylsilyl)ethoxymethyl (SEM) protecting group was employed throughout the synthesis to prevent side reactions on the ring nitrogen. In these cases the Z group in **8** was removed by hydrogenolysis and the SEM group removed after the urea formation step by acid hydrolysis. For each of the six-membered nitrogen containing heterocycles however, attempted hydrogenolysis of the Z group in **8** resulted in concomitant reduction of the benzodiazepine imine bond and so in these cases deprotection was carried out by treatment with dry HBr in DCM.

Figure 2: Synthesis of 5-heteroaryl substituted benzodiazepine analogues.

Reagents and Conditions: (I) WSC, **5**, 0°C-r.t., (ii) a) NH₃/MeOH, b) AcOH, (iii) a) NaH, DMF b) R'COCH₂Br (iv) a) either H₂/5% Pd on C or HBr in DCM, 0°C b) (3-Me)-PhNCO

The structure-activity relationships for the 5-heteroaryl benzodiazepines prepared are shown in the Table. In the 1-cyclopentylcarbonylmethyl series, the isomeric 5substituted 3- (9g) and 4-pyridyl (9e) derivatives exhibited significantly reduced affinity for the gastrin/CCK-B receptor in comparison to the parent phenyl compound (9d). In contrast, the insertion of a 2-pyridyl substituent at the 5-position gave a compound with affinity for the gastrin/CCK-B receptor comparable to that of the 5-phenyl analogue. This pattern was repeated in the YM022 series and the 1-*tert*-butylcarbonylmethyl series. In addition, these 2-pyridyl compounds (9c and 9i) showed improved selectivity for the gastrin/CCK-B receptor over CCK-A.

No.	R'	Ar	Config*	CCK-B ^b (nM)	CCK-A [*] (nM)	ED ₅₉ ^d (nmol/kg)
9a (YM022)	2-MePh	-	R	0.11 (0.10-0.11)	146 (120-170)	7.8
9b	2-MePh	-(»	RS	18 (13-25)	670 (390-1200)	37% @ 0.1 μmol/kg
9c	2-MePh	\rightarrow	RS	0.13 (0.10-0.17)	980 (940-1040)	16.7
9d	\sim	\neg	RS	0.23 (0.17-0.30)	n.d.	15.5
9e		→	RS	48 (33-70)	>10,000	15% @ 0.1 μmol/kg
9f		~~ <u>`</u> `	RS	0.12 (0.10-0.15)	2600 (2400-2800)	18.9
9g	\neg	-< <u>`</u> >	RS	1.6 (1.3-1.8)	80 (75-85)	34% @ 0.1 μmol/kg
9h	\leftarrow	\neg	R	0.52 (0.43-0.63)	111 (85-146)	5.7
9i	+	~`_`	R	0.44 (0.33-0.59)	470 (361-611)	16.0
9j	\leftarrow	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	RS	0.88 (0.70-1.11)	1356 (1051-1772)	55% @ 0.1 µmol/kg
9k			RS	4.52 (2.83-7.24)	844 (721-989)	49% @ 0.1 μmol/kg
91			RS	8.0 (5.02-12.6)	2615 (1507-4539)	14% @ 0.1 μmol/kg
9m			RS	26.1 (13.5-41.2)	232 (171-316)	25% @ 0.1 μmol/kg
9n	$\left \leftarrow \right $		RS	>100	105 (88-124)	18% @ 0.1 μmol/kg
90	\leftarrow	<,s]	RS	0.8 (0.68-0.94)	433 (369-509)	58% @ 0.1 μmol/kg

Table: Structure-Activity relationships for substituted benzodiazepines (95% confidence limits).

a) Absolute configuration at the benzodiazepine 3-position.

b) IC₅₀ value for displacement of [¹²⁵I]-CCK-8 from Gastrin/CCK-B receptors from rat brain.

c) IC₅₀ value for displacement of [³H]-L-364,718 from CCK-A receptors from rat pancreas.

d) In Vivo data : i.v. dose required to inhibit pentagastrin induced gastric acid secretion in rats by 50 %. (For full experimental details see ref. 2).

Having established that a 2-heterosubstituted 6-membered ring was well tolerated, we attempted to further increase the predicted water solubility by adding a second heteroatom to the 5-substituent. However, the insertion of a second nitrogen into the ring to give the 5-(2-pyrazine) derivative **9j** resulted in a decrease in potency.

We next turned our attention to a series of 5-membered heteroaromatic ring substituents each containing two heteroatoms. As can be seen from the Table however,

only the 5-(2-thiazole) derivative **90** retained any significant affinity, whereas all the diazole analogues tested were much poorer ligands for the gastrin/CCK-B receptor.

In our *in vivo* functional screen, the 5-(2-pyridyl) compounds again proved to be comparable to the analogous 5-phenyl derivatives in their ability to antagonise the effects of pentagastrin-induced gastric acid secretion in rats following i.v. administration (Table). None of the weaker gastrin/CCK-B ligands showed such good levels of efficacy in this *in vivo* test.

We further examined the gastrin antagonist properties of one of our 5-(2-pyridyl) analogues **9i**, after oral administration in Heidenhain pouch dogs.¹⁰ **9i** inhibited pentagastrin-induced gastric acid secretion in dogs by 97% at a dose of 3μ mol/kg (p.o.) and peptone meal induced gastric acid secretion by 64% at the same dose.

Significantly improved oral bioavailability for the 5-(2-pyridyl) series was clearly demonstrated in a preliminary pharmacokinetic study. Following an oral dose of 10mg/kg in rats the 5-phenyl derivative **9h** gave a maximum plasma concentration (C_{max}) of 80.7 ng/mL, whereas the same dose of the 5-(2-pyridyl) analogue **9i** achieved a C_{max} of 570.5 ng/mL.

Together these data show 9i to be a highly potent and orally active gastrin/CCK-B antagonist. Thus incorporation of a 5-(2-pyridyl) group into the parent structure provides compounds with a major advantage over other known benzodiazepine based gastrin/CCK-B antagonists.

REFERENCES

- Bock, M.G., DiPardo, R.M., Evans, B.E., Rittle, K.E., Whitter, W.L., Garsky, V.M., Gilbert, K.F., Leighton, J.L., Carson, K.L., Mellin, E.C., Veber, D.F., Chang, R.S.L., Lotti, V.J., Freedman, S.B., Smith, A.J., Patel, S., Anderson, P.S. and Freidinger, R.M., *J.Med. Chem.*, **1993**, *36*, 4276-4292.
- Nishida, A., Miyata, K., Tsutsumi, R., Yuki, H., Akuzawa, S., Kobayashi. A., Kamato, T., Ito, H., Yamano, M., Katuyama, Y., Satoh, M., Ohta, M., and Honda, K., J. Pharmacol. Exp. Ther., 1994, 269, 725-731.
- 3) Preceding communication.
- Chen, I.-W., Dorley, J.M., Ramjit, H.G., Pitzenburger, S.M. and Lin, J.H. Drug Metab. Disp., 1992, 20, 390-395.
- 5) Bock, M.G., DiPardo, R.M., Mellin, E.C., Newton, R.C., Veber, D.F., Freedman, S.B., Smith, A.J., Patel, S., Kemp, J.A., Marshall, G.R., Fletcher, A.E., Chapman, K.L., Anderson, P.S. and Freidinger, R.M., J. Med. Chem., 1994, 37, 722-724.
- 6) Chambers, M.S., Hobbs, S.C., Fletcher, S.R., Matassa, V.G., Mitchell, P.J., Watt, A.P., Baker, R., Freedman, S.B., Patel, S. and Smith, A.J., *Bioorg. Med. Chem. Letts.*, **1993**, *3*, 1919-1924.
- 7) Showell, G.A., Bourrain, S., Neduvelil, J.G., Fletcher, S.R., Baker, R., Watt, A.P., Fletcher, A.E., Freedman, S.B., Kemp, J.A., Marshall, G.R., Patel, S., Smith, A.J. and Matassa, V.G., *J. Med. Chem.*, **1994**, *37*, 719-721.
- 8) Sherrill, R.G. and Sugg, E.E., J.Org. Chem., 1995, 60, 730-734.
- a) Semple, G., Ryder, H., Szelke, M., Satoh, M., Ohta, M., Miyata, K., Nishida, A., and Ishii, M., 1995, *PCT International Patent*, WO 95/06040
 b) Semple, G., Ryder, H., Ohta, M. and Satoh, M., *Syn. Commun.*, 1995, in press.
- 10) Heidenhain, R., Pflugers Arch., 1879, 19, 148.

(Received in Belgium 2 August 1995; accepted 24 November 1995)